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Spread-Spectrum Watermarking of Audio Signals
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Abstract—Watermarking has become a technology of choice for A. Watermarking Technologies

a broad range of multimedia copyright protection applications. . . . .
Watermarks have also been used to embed format-independent Audio watermarking schemes rely on the imperfections of

metadata in audio/video signals in a way that is robust to common the human auditory system (HAS) [3]. Numerous data hiding
editing. In this paper, we present several novel mechanisms for ef- techniques explore the fact that the HAS is insensitive to small
fective encoding and detection of direct-sequence spread-spectrumgmplitude changes, either in the time [4] or frequency [5]-[7]

watermarks in audio signals. The developed techniques aim a} 4, nains as well as insertion of low-amplitude time-domain
improving detection convergence and robustnessj) improving :

watermark imperceptiveness,iii) preventing desynchronization echoes [8]. Info_rmqtlon modulation IS usually carried out using:
attacks, iv) alleviating estimation/removal attacks, and finally,v) SS [9] or quantization index modulation (QIM) [10]. The main
establishing covert communication over a public audio channel. advantage of both SS and QIM is that WM detection does not
We explore the security implications of the developed mechanisms require the original recording and that it is difficult to extract

and review watermark robustness on a benchmark suite that o higden data using optimal statistical analysis under certain
includes a combination of audio processing primitives including: conditions [11]

time- and frequency-scaling with wow-and-flutter, additive and -l . )
multiplicative noise, resampling, requantization, noise reduction, ~ However, itis important to review the disadvantages that both

and filtering. technologies exhibit. First, the marked signal and the WM have
Index Terms—Audio signals, covert communication, desynchro- to be p(_arfectly synchronized at W_M detection. Next, to achieve
nization, estimation attacks, spread-spectrum, watermarking. a sufficiently small error probability, WM length may need to

be quite large, increasing detection complexity and delay. Fi-
nally, the most significant deficiency of both schemes is that by
breaking a single player (debugging, reverse engineering, or the
ITH the growth of the Internet, unauthorized copyingensitivity attack [12]), one can extract the secret information
and distribution of digital media has never been easidthe SS sequence or the hidden quantizers in QIM) and recreate
As a result, the music industry claims a multibillion dollar anthe original (in the case of SS) or create a new copy that in-
nual revenue loss due to piracy [1], which is likely to increasguces the QIM detector to identify the attacked content as un-
due to peer-to-peer file sharing Web communities. One sourwerked. While an effective mechanism for enabling asymmetric
of hope for copyrighted content distribution on the Internet lieSS watermarking has been developed [2], an equivalent system
in technological advances that would provide ways of enforcirigr QIM does not exist to date.
copyright in client-server scenarios. Traditional data protection
methods such as scrambling or encryption cannot be used siBceTechniques for SS Watermarking of Audio
the content must be played back in the original form, at which
point, it can always be rerecorded and then freely distributed. Ms and develop a set of technologies to improve the effec-
prlomising solution to this problem is.marking the media sign eness of their embedding and detecting in audio. WM robust-
with a secret, robust, gnd mperceptlble watgrmark (WM). TrHaess is enabled usinyblock repetition coding for prevention
media player at the client S'd? can detect this ma.rk and Cong‘ahinst de-synchronization attacks [13] d@ingsycho-acoustic
quently en_force a c_orrespondmg €-commerce policy. frequency masking (PAFM). We show that PAFM creates an im-
Recent _mtrqductlon of a content screening system that u Salance in the number of positive and negative WM chips in the
a;ym_metrlc Q|rect sequence spread-spectrum (SS) WM.S A%t of the SS sequence that is used for WM correlation detec-
S|gn|f|can.tly increased th? value of WMS because a sin fon and that corresponds to the audible part of the frequency
compromised dgtector (client player) in that system does,%gectrum. To compensate for this anomaly, we propo&d a
affect the security of the content [2]. In order to compromis odified covariance test. In addition, to improve reliability of
A detection, we propose two techniques for reducing the vari-

. INTRODUCTION

In this paper, we restrict our attention to direct-sequence SS

high-definition video. WNMs. Since we embed SS WMs in the frequency domain, the

energy of a WM is distributed throughout the entire synthesis
block, making SS WMs audible in blocks that contain quiet pe-
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In order to investigate the security of SS WMs, we explor %4
the robustness of such a technology with respect to watermi o2
estimation attacks [2]. To launch that attack, an adversary o
assumed to know all the details of the WM codec, except tl ,|
hidden secret. We present a modification to the traditional ¢
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the recorded signal in order to successfully remove an SS W v A

We have mc;orporated these technyqt)asn) m_to a system MCLT @ Phase @’ MOLT
capable of reliably detecting a WM in an audio clip that ha
been modified using a composition of attacks that degrade t \4 H

original audio characteristics beyond the limit of acceptab [®®!
quality. Such attacks include fluctuating scaling in the time ar

frequency domain, compression, addition and multiplication ¢
noise, resampling, requantization, normalization, filtering, ar #°
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In Section Il, we review the basic aspects of SS watermarkin .g 80
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and in Section Ill, we describe the specifics for audio WM. W gieck of Frequency (MCLT) Domain Block of Frequency (MCLT) Domain
consider the overal security aspects in Section IV and prest Samples of the Original Content Samples of the Marked Content

final remarks in Section V.
Fig. 1. Process of WM embedding: conversion of a block of time-domain
samples into the MCLT domain, SS WM addition, and conversion back to the
II. BASICS OF SPREAD-SPECTRUMWATERMARKING time-domain.

The media signal to be watermarkede R can be mod- . . . "
eled as a random vector, where the elemeptre independent tector ,'S optimal [14]. The probability’ss of a false positive
identically distributed (i.i.d.) Gaussian random variables, witﬂeteCtlon (false alarm) is
standard deviatioa,., i.e.,z; ~ N (0, 0,.).1 Because: actually 1 N
represents a collection of blocks of samples from an appropriate Pra = Pr[C(z,w) > 7|(z = )] = Eerfc (—) 2
invertible transformation on the original audio signal [5], [7], 02 V2
[9], such modeling is arguable and is further discussed in Segid the probabilityPyr, of a false negative detection (misde-
tion V. A watermarkis defined as a direct SS sequengavhich  tection) is
is a vector pseudo-randomly generatedsvine {+1}"V. Each

elementw; is usually called a “chip.” WM chips are generated Pyp =Pr[C(z,w) < 7[(2 =z + w)]

such that they are mutually independent with respect to the orig- 1 (E[z - w] — 7)VN

inal recordingz. The marked signal is created by = = + §w, =§eff0 5 3)
whereé is the WM amplitude. The signal varianeg directly v

impacts the security of the scheme: the higher the variance, th&traightforward application of the principles above provides
more securely information can be hidden in the signal. Simteither reliability nor robustness. In the following subsections,
larly, higheré yields more reliable detection, less security, angle outline the deficiencies of the basic SS WM paradigm and
potential WM audibility. provide solutions for improved WM robustness, detection reli-

Letp- ¢ denote the normalized inner product of vecteend  ability, and resilience to certain powerful attacks.
¢, i.e.,p-q = N"'Y",pig; with p*> = p - p. For example, for

w as defined above, we haw€ = 1. A WM w is detected by ll. HIDING SPREAD-SPECTRUM SEQUENCES
correlating (or matched filtering) a given signal vectavith w: IN AUDIO SIGNALS
O In our watermarking system, the vecteris composed of
Clzyw)=z-w=E}z-w]+ N (0: W) (1) magnitudes of several frames of a modulated complex lapped

transform (MCLT) [15] in a decibel (dB) scale. The MCLT is a

Under no malicious attacks or other signal modifications, #x-oversampled filterbank that provides perfect reconstruction.
the Signalz has been marked, th@{z U)] — 57 e|SeE'[Z w] — The MCLT is similar to a DFT ﬁlterbank, but it has pl’operties
0. The detector decides that a WM is presen®'if:, w) > 7, that makes it attractive for audio processing, especially when
wherer is a detection threshold that controls the tradeoff bédtegrating with compression systems, because signals can
tween the probabilities of false positive and false negative deasily be reconstructed from just the real part of the MCLT
cisions. We recall from modulation and detection theory thbk5]. After addition of the WM, we generate the time-domain

under the condition that andw are i.i.d. signals, such a de-marked audio signal by combining the vector = + éw with
the original phase of and passing these modified frames to

the inverse MCLT. Fig. 1 illustrates this process on an example
time-domain frame. Typically, WM amplitudgis set to a fixed
1A/ (a, b) denotes a Gaussian with meamnd variancé?. value in the range 0.5-2.5 dB. For example, foe= 1.5 dB,
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audible inaudible The expectation for the relative differenté the number of
positive and negative chips in the correlated audible part of the
+ 8(X) | —— SS sequence equals
g- !
g N
§ " inaudible audible . i;l W; B R, + R -
_ N Noo| 2Rs+Ri+R_
w;
y
-50 . : :
50 100 150 200 N . . ) ) 5
MCLT frequency magnitudes (200-2kHz) X X+w wherew; = w; if corresponding:; + w; is audible andp; = 0

if z; + w; is inaudible.
Fig. 2. PAFM: (Leff) Example MCLT frequency block with an identified ~ Asymmetric distribution of positive and negative chips in the
P e e o i o me e aiasked SS secuence can drastcal influence the convergence
of the correlation test in (1). The convergence is affected be-

cause the expected value of the correlation fefst - w] has
trained ears cannot statistically pass a distinction test betwesnadditional component proportionalgoFor our benchmark
watermarked and original content for a benchmark suite cosuite,¢ averaged 0.057 @t = 1 dB, with peak values reaching
sisting of pop, rock, jazz, classical, instrument solo, and vocgk 0.3 for recordings with low harmonic content. Thus, when-
musical pieces. For the typical 44.1 kHz sampling, we useeger PAFM is used, the normalized correlation test (1) must be
length-2048 MCLT. Only the coefficients within 200 Hz—2 kHzreplaced with a covariance test that compensates for using a
are marked, and only the audible magnitudes in the samenzero-mean SS sequence. Assumingo; and g, oo are
sub-band are considered during detection. Sub-band selecties» mean and variance of the audible portioncafelected by
aims at minimizing carrier noise effects as well as sensitivity {@sitive and negative SS chips, respectively, and sigisiva-
downsampling and compression. termarked, the correlation test in (1) can be rewritten as

A. Psycho-Acoustic Frequency Masking: Consequences and C(y,w) =y - w

Remedies N(1+)/2 N(1=¢)/2
1
The WM detector should correlate only the audible frequency =N Z Yiluw,=g1 — Z Yilu,=—1
magnitudes with the WM [7] because the inaudible portions of i=1 i=1
the frequency spectrum are significantly more susceptible to at- 5 1/\/ (ttry ) ©6)
tack noise. That reduces the effective watermark length because 2 e

the inaudible portion often dominates the frequency spectrum
of an audio signal [6]. where the noise componenf(,.,., o,.) of the detection test has
In order to quantify the audibility of a particular frequency@ meanu, = p1 — po + £(u1 + po) and variancer? =
component, we use a simple PAFM model [16]. For each MCL¥ (o7 (1+£&) 4+ 03 (1—£)). The mean valug,, of the part of the
magnitude coefficient, the likelihood that it is audible average¥iginal signalr that corresponds to the audible paryafan be
0.6 in the crucial 200 Hz—2 kHz subband in our audio benchxpressed a&, = i1 + (o + £(11 — po), whereas the mean
mark suite. Fig. 2 illustrates the frequency spectrum of an MCIVRlue 11, of the audible part of; equalsy, = . + ¢, where
block as well as the PAFM boundary. PAFM filtering introduces = 2£¢ if signaly is watermarked ang = 0 in the alternate
the problem of SS sequence imbalance: a problem also ill@ase. Thus, by using a traditional covariance test
trated in Fig. 2. When embedding a positive chip = +1),
an inaudible frequency magnitude becomes_a_u_dible if; > V(y,w) = C(y,w) — E(y)E(w) = C(y,w) — puy&6  (7)
Hz;) — 6, whered(-) returns the level of audibility for the ar-
gument magnitude for a given MCLT block. Similarly, whe
embedding a negative chi( = —1), an audible magnitude
becomes inaudible if; < J(z;) + 6. We defineR 4, R, and
R_ as the ratios of frequency magnitudes that fall within th
corresponding ranges

Yhe detector would induce a mean absolute erronpf- 11, &6
to the covariance test because of the mutual dependency of
%ndw. Consider the following test:

1 N(14+£)/2
Cly,w)=y-w :m ; Z/i|w,:+1
X _ =
Ra :% — (Vo; € Xa)wi € |9 (i) + 57-!—00} ;] Naz9/2
- T N_—¢ ; ?Jj|wj:_1 (8)

X
Ry :% — (Vs € X))z € |9 (x3),9 (w;) + ‘5}

(Vi€ X_)ms € |0 (ar) - 5,19(@)}. (4)

| X | which results in a noise compone¥t( ., o) for this test equal

R = t0 1. = p1 + po ando? = N(a?/(1 + &) + 02/(1 = &)).
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Computation ofu,. = u1 + e from y can be made relatively

accurate as follows. First,; andyu are computed as means of

the audible part of the signalselected by positive and negative

chips respectively. Then, jf; — po > 26 — €, we conclude

that the signal has been watermarked and compensate the te

(8) for u1 + po — 26; in the alternate case, we compensate fc

1 + po. Parametet is a constant equal tas,., which ensures g, . {

low likelihood of a false alarm or misdetection through selectio ENCODING ) . REGION FOR

of 7 (2), (3). TR < sorh
An error of 2 in the covariance test occurs if the original

signal is bipartitioned with the SS chips such that— po >

26 — €. This case can be detected at WM encoding time. Thafig. 3. Example of block repetition coding along the time and frequency

the encoder could signal an audio signal blockasl-to-mark domain o_f an audio clip. Each block is e_ncoded with the‘same bit, whereas the

or it could extend the length of the WM. Such cases are eXCéBEector integrates only the center locations of each region.

tionally rare for relatively long SS sequences and typical music

content rich in sound events. Note that the exact computation®fthe encoding regions;, i = 1..Np are computed using a

1 and o would also resolve the error problem incurred in theeometric progression

original covariance test in (6) through exact computation,of

Thus, the two tests in (6) and (8) are comparable and involve Fi =F +np + F'
computation of similar complexity. On super-pipelined archi- izl
tectures, we expect the test in (8) to have better performance via Fi>|F + Z Fi | -w
loop unfolding, as it does not use branch testing. i=1
i—1
F/'> | F/+nr+F+) F|-w (9)
B. Preventing the Desynchronization Attack J=1

The correlation metrics from (1)-(3) are reliable only ivherenr is the width of the decoding region (central to the en-
the majority of detection chips are aligned with those uség@ding region) along the frequency. Similarly, the length of the
in marking. Thus, an adversary can attempt to desynchroni Nr, in groups of constarif; = 7, j = 1..Np, MCLT
the correlation by fluctuating time- or frequency-axis scalinglocks watermarked with the same SS chip block is delimited
within the loose bounds of acceptable sound quality. To prevéit V1o Toyvv < T, —nr, wherenr is the width of the decoding
such attacks, we use a multitest methodology that relies &gion along the time-axis. Lower bound on the replication in
block repetition coding of chips of the WM pattern. the time domainy}, is set to 100 ms for robustness against crop-

It is important to define the degrees of freedom for time- arfing or insertion.
frequency-scaling that preserves the relative fidelity of the at-If @ WM length of N1, T, MCLT blocks does not produce
tacked recording with respect to the original. The HAS is muditisfactory correlation convergence, additional MCLT blocks
more tolerable to constant scaling rather than wow-and-flutté¥r > Nt,) are integrated into the WM. Time-axis replica-
(variations in scaling over time). Hence, we adopt the followinon 2}, j > N, for each group of these blocks is recursively
tolerance levels, which are appropriate in practige< 0.1 for  computed using the geometric progression (10). Within a region
constant time-scaling ang= < 0.05 for constant frequency- of F;7; samples watermarked with the same chip, only the

scaling and scaling variancg, < 0.01 along both time and centernenr samples are integrated in (1). It is straightforward
frequency. to prove that such generation of encoding and decoding regions

1) Block Repetition Codingin the first step, we provide guarantees thatregardless of induced wow-and-flutter limited to
resilience against fluctuations in playtime and pitch bendirgy , the correlation test is performed in perfect synchronization.
(wow-and-flutter) of up to a fixed parametes,, which de- Typical redundancy parameters are i) constant replication along
limits the maximum fluctuation magnitude independently alonigme axis 5-10 MCLT blocks and ii) geometrically progressed
any of these two dimensions. As common standard values féplication along the frequency axis such that typically 50-120
wow-and-flutter for modern turntables are significantly belowhips are embedded within the target sub-band 200-2 kHz.
0.01, we adopt this value as our robustness limit. 2) Multiple Correlation Tests:The adversary can combine

We represent an SS sequence as a matrix of chips= wow-and-flutter with a st.ronger constant scaling in time and
{wi;},i = 1..Np, andj = 1..Ny, where N is the number fre.quency. Constant scaling of uptge < 0..1 along the time
of chips per MCLT block, andV; is the number of blocks of &XiS @ndyr < 0.05 along the frequency axis can be performed
N chips per WM. Within a single MCLT block, each chip; on an aud_|0 clip V\_/l_th good f|de_llty with respect to the orig-
is spread over a sub-band Bf consecutive MCLT coefficients. mgl recording. Re_smence fco static t|me_- and pitch-scaling is ob-
Chips embedded in a single MCLT block are then replicatéa'”ed by performing multiple correlation tests as follows:
along the time axis within consecuti¥é MCLT blocks. An ex-
ample of how redundancies are generated is illustrated in Figl 3 pointer = 0; progress = L(1+~7); ( L de-

(with fixed parameterg’; = 3, T; = 3 for all ¢ andy). Widths notes WM length in MCLT blocks.
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Cepstrum Filtering
% Cepstrum filtered signal
= cx=6.1
g o Iy \
g “; i 1‘ ‘ }“ |
3 o O !
3 ° ‘ CF-envelope
@ | T
N S sl i
S 2 S0rI I,
8 ' | ‘ H[l’\ I
£ g || H | I W h L
z b L "
Original signal
o : i s 70r 0,=11.6 ‘
664 668 671 674 678
MCLT block index - time line 90 . . s : .
Fig. 4. Example of how a WM is detected during the search process. TI 200 300 400 500 600 700
correlation test that corresponds to one particular time- and frequency-scal Watermarking Freg-Subband 2-7kHz

has synchronized the WM with the MCLT block indexed 671. Fig. 5. Demonstration of an original MCLT block and its cepstrum filtering.

The dashed line represents the CF-envelope subtracted from the original MCLT

block.
2) load buffer with MCLT co-efficients o
from progress consecutive MCLT blocks : . o
starting f?om the MCLUTIVbIock indexed with conclude whether there is a WM or not in the audio clip based
pointer on the SS statistics from (1) and regardless of the presence of
3) for time.scaling = —yr to +vr step the attack.
~vv/2 and for frequency.scaling = —yF to I
+vr step v /2, correlate buffer with WM C. Cepstrum Filtering
scaled according to time.scaling and fre- The variancer? of the original signal directly affects the car-
guency.scaling. rier noise in (1). Audio clips with large energy fluctuations or
4) if (WM found in buffer with with strong harmonics are especially bound to produce lagge
time.scaling = T) then progress = L(1+ T) Thus, we propose here a nonlinear processing step to reduce
else progress = A. the carrier noise. One approach is to subtract a moving average
5) pointer + = progress; goto 2). from the frequency spectrum right before correlation: a sort of

whitening step. Unfortunately, as bits of the SS sequence are

_ . spread over frequency ranges, this technique induces patrtial re-
The search algorithm initially loads a buffer of MCLT 44 of the WM chips. We have developed a cepstrum filtering

coefficients fromL(1 + yr) consecutive MCLT blocks. Then, (cF) technique that produces significantly better results than

the loaded contents are cor_related with different scalings j%t spectral whitening. With CF, we reduag in (1) through
the searched WM; the scalings are such that they creatg,a following steps:

grid over {—~vyr..y7, —yr.yr} With vy, /2 minimal distance

between points (tests). Due to block redundancy coding, each

test{7’, F'} can detect a WM if the actual scaling of the clipis) *# = DCRy}—compute the cepstrum of the
within the {7’ — yr..T + vz, F — ve..F +~r )} region. The test 48 magnitude MCLT vector  y under test via
{Tm, F,n} yielding the greatest correlatiofi(y, w(T, Fin)) the discrete cosine transform.

is compared with the detection thresholdo determine wm 2) _ #i = 0. @ = L.K—filter out the first K
presence. If WM is found, the entire buffer is reloaded witypically 5 < K < 20) cepstrum coeffi-
new MCLT coefficients. Otherwise, the content of the buffer iglents.
shifted forA MCLT blocks, and a new set of tests is performed®) ¥ = IDCT {2} —reconstruct the frequency
In a typical implementation, foy,: = 0.02, in order to cover SPECUUM via an inverse DCT. The filtered
v = 0.1 and~z — 0.05, the WM detector computes 105 dif-TeduUency spectrum replaces y in the cor-

ferent correlation tests. The search step along the time axis E%gtmn detector @ .

noted as\ typically equals between one and four MCLT blocks.

An example is shown in Fig. 4. Note that the main incentive The rationale behind CF is that large variationg ican only

for providing such a mechanism to enable synchronizationdeme from large variations im since|w| is limited to a small

the fact that, within the length of the WM, the adversary resalue < o,. Thus, by filtering out large variations in we can

ally cannot move away from the selected constant time and freduce the carrier noise significantly, without affecting much the
guency scaling more tham, /2; such a change would induceexpected valué [y - w]. That is particularly efficient if the WM
intolerable sound quality. If the attacker is within the assumegquencev has a nonwhite spectrum containing more noise at
attack bounds, the described mechanism enables the detectbigber frequencies, as discussed in the next subsection. Fig. 5
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a) Correlation convergence for RW, PW, CW  P) the remainder of the block is rich in audio energy. Since the SS
otr 1-p sequence spreads over the entire MCLT block, it can cause au-
. ;\\;VV dible noise in the quiet portion of the MCLT block (see Fig. 7).
sk N e cw Tq alleviate that problem, we detect MCLT_bIogks with dy-
5 \ ——— 90% Container namic content W_here an SS_WI\/I may be audlbl_e |f_ added. The
B wmeme St Deviation p p blocks are identified according to an energy criterium, for ex-
§ 008k ample, as descried below. WMs are not embedded nor detected
2 in such blocks. Fortunately, such blocks do not occur often in
3 audio content; in our benchmark set, we identified up t0 5%
E 002} of MCLT blocks per WM as potential hazard for audibility.
2 S ——— 1-p By not marking these blocks, the corresponding correlation is
R ————— bound to a lower expected valdg]y - w] = 1 — (, which
% . s . - = causes only a minor effect on detector’s decision. The detec-
Watermark length in SS blocks tion of hazardous blocks is performed on each lengtMCLT

block using the following algorithm.
Fig. 6. (a) Convergence of the normalized correlat®©(y, w) with WM
length for a nonwatermarked signal. Top three plots: 90% percentile limits of
C(y, w) (90% of the correlation values are under each curve), for a traditio@ Compute the interval energy level E@) =
purely random SS sequence, a perfect WM (PW), and a chess WM (C\W.:iK /P L
Bottom three plots: Corresponding standard deviatiorS(af, w) in the same j:l+K(i—1)/ﬁP) Yjr = L.p
e

order. (b) Simple state machine that produces a chess WM @.5). for each of t P interleaved subin-

tervals of the tested signal y in the
illustrates the impact of CF on the signal variance, which is tygme-domain (commonly ~ K/P > 32). Block
ically reduced by a factor of almost four. Thus, in order to attaffHbintervals are illustrated in Fig. 7

ind. if (minl_ (E()/ X5, E(#) < xo) then WM
the performance of CF detector, a non-CF detector must intg- ' ;= (LA i=1 S Xo !
grate almost four times more magnitude points. is audible in the block. Parameter Xo 1S

empirically determined.
D. Chess Watermarks

Because of the relatively short MCLT frames (30 ms), we Covert Communication Over Audio Channels

assume that the audio signal has a slowly varying magnitudesg provides only means of embedding (hiding)
spectrum. Thus, for short WMs, a possible sequence in time@faydo-random bit sequences into a given signal carrier
several consecutive positive WM chips can pose false alarmgdf,gio clip). One trivial way to embed an arbitrary message
correlated with large positive values. In practice, that problemijnig 5 S5 sequence is to use a pool of WMs such that each WM
occurs frequently for quiet clips with strong harmonics (e.Grepresents a symbol from an alphabet used to create the covert
piano or sax solo). To alleviate the problem, it is important tﬁlessage. Depending on the symbol to be sent, the encoder
attenuate the DC component of the WM chips along the tin@jects one of the WMs from the pool and marks the next
direction. consecutive part of audio with this WM. The detector tries alll
We define aperfect WM(PW) as a sequence of alternatingy\s from the pool, and if any of the correlation tests yields
positive and negative chips, along both the time and frequengyositive test, it concludes that the word that corresponds to
axis. Correlation with PW results in highly improved correlaghe getected WM has been sent. Since a typical WM length
tion convergence for a nonwatermarked signal, as illustratgfoyr implementation ranges from 11 to 22 s, to achieve a
in Fig. 6. To leverage the convergence efficacy of PW WitBoyert channel capacity of just 1 b/s, the detector is expected
the security of pseudo-random SS sequences, we introducg derform between 210 and 221 different WM tests. Besides
chess-WMCW). We define a CW as a stochastic approximatiofeing computationally expensive, this technique also raises the

to a PW by using the simple first-order state machine depictggklinood of a false alarm or misdetection by several orders of
in Fig. 6. Whereas the probabilify of switching from the 0" magnitude.

state to the 1" state for traditional SS sequences is desired to Therefore, it is clear that a covert channel cannot rely solely

be one-half, we built CWs to enforce frequent toggling of bitg, \wm multiplicity, and thus, some form of WM modulation
along the time axis or, equivalently, to emphasize high frequepyst be considered. A basic concept for the design of a mod-
cies in the WM sequence. We typically selgct= 0.75. For a yation scheme is the observation that if we multiply all WM
sufficiently largelV, the randomness reduction in the sequeng@ips by —1, the normalized correlation changes sign but not
domain does not pose a security threat, while resulting in corigagnitude. Therefore, the correlation test can detect the WM
lation convergence similar to PW (typically > 200). by the magnitude of the correlation and the sign carries one bit
) o of information.
E. Improvmg the Inaudibility of Spread-Spectrum Watermarks The covert communication channel that we have designed
in Audio uses two additional ideas. First, to afldnessage bits, the SS
SS WMs can be audible when embedded in the MCLT dsequence is partitioned along the time-axis ifitequal-length
main, even at low magnitudes (e.§ < 1 dB). This can happen subsetsv,, &k = 1..5, where eachw,, consists of all WM chips
in blocks where certain parts (up to 10 ms) are quiet, whereag such that(k — 1)S < j < kS. Thus, there aréV; /S
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Fig. 7. Example of audibility of a SS WM when embedded in the frequency domain. The black plot denotes a single MCLT block of time domain sample of the
original recording, whereas the grey line denotes the corresponding marked recording with audible noise prior to the signal peak.

false alarmPg, (2) can be computed using the upper tail of the
chi-squared pdf witlt degrees of freedom:
Ppa =Pr[C(y, w) > 7]
1 o 2(572)/2(1 4T N
e
wherel'(-) is the Gamma function. The lower bound on the like-
lihood of a WM misdetection is computed according to (3) as

Group of MCLT blocks x, marked
with the same S§ chips w,

Set of MCLT
groups x, xored
with the same
message bit - b,

(11)

g:,";&:{;ﬁ?i:ﬁ}ieqpﬂ'; the third component in (10) can be neglected for marked sig-
FREQUENCY subband. nals because it is always positive. Bits of the covert message

are recovered at detection time as the sign of partial correla-
tions b, = sign(C(yx, wy)). The likelihood of a bit misdetec-

. . . ion Py, once a WM is detected equals
Fig. 8. Embedding a permuted covert communication channel over tLe MDB q

temporal and spectral domain. Pypp =Pr [C (yk. wk) < 7_]

chip blocks of N chips per eaclvy. Each bith, of a message =Pr (N (0, Oy \/g> > 6 — r]

B € {£1}% is used to multiply the chips of the corresponding

wy, While creating the marked content = z + 6b,wy, where 1 (6 —7)VN

yr, andz;, are content blocks that correspondit. A typical < erfc Tov2s | (12)

example is shown in Fig. 8.

At detection time, the squared value of each partial covarianceFinally, in order to improve the robustness of each bit of the
testC (yx, wy )—computed using (1)—is accumulated to creat@ncoded covert message, we perform a secret permutg(ipn
the final test value as follows: of the message bits for each MCLT subbalid Thus, a per-
muted bitb.(; 1) is combined with chip blocks along a certain

S .

1 2 subbandw;x, k = 1..S (each block hasv/S chips) and then
Cly, w) -3 Z_: [C (g wi)] embedded in the original content @ = @i + Swirbr(i k).
k: 9 This procedure aims a) spreading each bit of the encoded

1 /S covert message throughout the entire WM for security reasons
s ; <E [y - we] + N (0’ e N)) (an attacker cannot focus only on a short part of the clip hoping

h o to remove the message bit) almplincreasing the robustness of
=E[y-w]* + 2E[y - wN (07 \/—Iﬁ) the detection algorithm because of spreading localized variances

s of noise over the entire length of a WM. The process of per-
muting bits of the message is illustrated in Fig. 8.
+%ZN2(07% S) (10) uting bi geisillu in Fig
k=1

N .. . .
G. Summarizing Discussion
Therefore,C(y, w) in this case has three componerijsa We have deployed the techniques described in the previous
mean andi) a zero-mean Gaussian random variable (both stibsections to create an audio watermarking system with strong
them equal to zero if the content is not marked) &ijch sum of robustness with respect to common audio editing procedures. A
squares of Gaussian random variables. Thus, the likelihood dflack diagram that illustrates how the developed technologies
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B

Fig. 9. Block diagram of the WM (left) embedding and (right) detection procedures.

are linked into a cohesive system for audio marking is presentemtenated into a single sound clip on these diagrams): (a) and
in Fig. 9. (b) versus (c) and (d) demonstrates strong gairCity, w)

A reference implementation of our data hiding technology orariance due to cepstrum filtering, and (e) and (f) versus (g)
an x86 platform requires 32 Kbytes of memory for code arehd (h) showcases slightly reduced detection reliability due
100 Kbytes for the data buffer. The data buffer stores averagedthe permuted covert communication (PCC) channel. Peaks
MCLT blocks of 12.1 s of audio (for a WM length of 11 s).in the correlation test clearly indicate detection and location
WMs are searched withy = 0.02, which requires~ 40 of each WM. Note that the peak values for both detectors are
tests per search point. Real-time WM detection under these eiirtually the same; however, the negative detection for the PCC
cumstances requires about 15 MIPS, which is a small requitkecoder yields slightly higher variance (in our experiments, we
ment for today’s DSP processors. WM encoding is an order iifcorded differences up to 5%).
magnitude faster, with smaller memory footprints. The achievedFinally, in order to quantify the robustness of the wa-
covert channel bit rate varies in the range of 0.5-1 b/$fer4 termarking technology with respect to a publicly available
and a pool of 16 different WMs. benchmark, we show the watermark detection results against

We have tested our proposed watermarking technology usthg attacks in Stirmark Audio [18]. For that experiment, we
a composition of common sound editing tools and malicious dtave selected an audio clip rich in music events (a rhythmic
tacks, including all tests defined by the Secure Digital Musiatin jazz clip with trombone, piano, and alto-sax solos),
Initiative (SDMI) industry committee [17]. Such tests includedvatermarked it, and then detected watermarks in the original,
double D/A-A/D conversion, noise addition at th86 dB level, the marked copy, and all 46 clips created by the Stirmark Audio
bandpass filtering, MP3 encoding at 64 and 32 kbps, time-scalgte of attacks. The detection results are presented in Table I.
changing of up tat4%, wow and flutter at 0.5%, and echo in-For watermarked clips, we report the minimal correlation
sertion of up to 100 ms. We used a data set of 80 15-s audio clipshieved for each of the ten watermarks embedded in the audio
which included jazz, classical, voice, pop, instrument solos (adip. For the original clip, we report the maximal correlation
cordion, piano, guitar, sax, etc.) and rock. In that data set, theadue throughout the search for any of the ten watermarks.
were no errors and from measured noise levels in the correlde corresponding correlation value is marked’qg, w) in
tion metric, we estimated the error probability to be well belovable I. The detection threshold is setto= 0.25, which
107°. Error probabilities decrease exponentially fast with theesults in an estimated probability of a false positive smaller
increase of WM length:; therefore, it is relatively easy to desighan 10°° for a variety of audio clips. From Table I, we observe
a system for error probabilities below 1% for example. Anal- that all but one attack had only minimal effect on the correlation
ysis of the security of embedded WMs is presented in the nestlue. The only attack that reduced significantly the correlation
section. value copysampl§ had a strong impact on the fidelity of the

Fig. 10 shows the performance improvements, with threcording so that the attacked clip almost did not resemble the
modifications described above, on our benchmark set (casriginal. The parameters of the Stirmark Audio attack were the
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Fig. 10. Detection comparison for four different detection systems (a), (b) without and (c), (d) with cepstrum filtering and (e), (f) without @)dvd),
a permuted covert communication channel. For each diagram;-thes depicts the timeline in MCLT blocks, whereas theaxis quantifies the normalized
correlation.

same as the ones included in the version of the tool availalpl®]. Thus, we need to quantify the efficiency of such attacks
on the Web [18]. and devise new mechanisms to protect against them.
In order to simplify the formal description of block repetition
codes in our audio WM codec, we now modify slightly our no-

IV. SECURITY ANALYSIS tation. The marked signal is created by adding the WM with
We now evaluate the security of our watermarking mec€rtain magnitudé to the original
anisms with respect to the watermark estimation attack. y =+ dw,w € {{~1}", {1}™}". (13)

As discussed in the previous section, we introduced block

repetition codes and multiple correlation tests to enfordéectorsy andx have N = m x n samples, whereas hasn
synchronization for attacks with limited variable scalingchips, each of them replicated successivelyimes. The WM
Therefore, in improving robustness against signal deformatidetector correlates the averages of the centraklements of
attacks, we introduced a certain amount of redundancy éach region marked with the same chip, where commen)y=
the watermarking pattern. That improves the chances thatrafk, andk € {2,5}. Such a detector can tolerate fluctuation in
attacker can estimate the WM chips from the marked sigradntent scaling up tok — 1)m/2k signal coefficients.
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TABLE |
WATERMARK DETECTION RESULTS ONAUDIO CLIPS ATTACKED WITH THE STIRMARK AUDIO BENCHMARK. PARAMETERS OF THE
ATTACKS ARE INHERITED FROM THE VERSION OF THETOOL AVAILABLE ONLINE

Attack Cly,w) Attack m Attack Cly, w) Attack m

Original 0.0619 Marked 1.004 addbrumm_100 1.0049 | addbrumm_10100  0.9934
addbrumm_1100  0.9986 | addbrumm 2100  0.9918 | addbrumm_3100  0.9923 addbrumm 4100  0.9939
addbrumm_5100 0.993 addbrumm_6100  0.9973 | addbrumm-7100  0.9935 addbrumm_8100 0.9942
addbrumm_9100  0.9918 addnoise_100 1.004 addnoise_300 1.0097 addnoise_500 1.0076

addnoise_700 1.0009 addnoise_900 1.0069 addsinus 1.0062 amplify 1.0075
compressor 1.0086 copysample 0.0761 cutsamples 0.9797 dynnoise 1.0097
echo 0.9128 exchange 0.9767 extrastereo_30 1.0061 extrastereo_50 1.0061
extrastereo_70 1.0061 hlpass 1.0103 invert 1.0053 fft_real_reverse 1.006
fft_stat1 1.0032 fft_test 1.0019 flippsample 1.0084 invert 1.0061
Isbzero 1.006 normalize 1.0059 rc_highpass 1.0083 rc_lowpass 1.0076
resampling 1.0092 smooth 1.0147 smooth2 1.007 statl 1.009
stat2 1.0075 ZErocross 0.9815 zerolength 0.9823 zeroremove 1.0013

The involved block repetition code improves the detection, Corollary 1: The varianceVar[z] = o2 of the attacked
but it also improves the efficacy of the estimation attack. If aflignal depends on as presented:
details of the embedder are known (except the adversary
can compute the WM estimate, amplify it with a factor> 1, 52
and then subtract the amplified attack vector from the marked ~~*
content [2].

Theorem 1: Given a set ofn samples oft marked with the ¢ =0, o (67 /(202))[ + 5erf<
same chipw; such that

n

E owl

=02+ 6240 -2t

1)
. 18
o2\V2 ) (18)
. Proof (sketch): By replacing {; — aw;) in (18) with (z; +
Y(i-)m+j = T(i-1ym+j T 0w, 1 <j<m (14)  sw; — asign(z; + dw,)), we obtain

the optimal estimate; of the hidden WM chipw; is given by o2 =024 6% +a = 20 Z s + o] (19)
n
=1
v; = sign Z T 1ymag + 0wi) | - (15) which proves (18) to be correct. n
j=1 Corollary 2: After the attack, the expected correlation value
computed by the WM detector equals
See [2, Lemma 1] for proof. Note thate {£1}". §/m
Theorem 2:The optimal WM estimation, as presented in  E[z-w]=§ — a(l —2¢) = § — aerf < > (20)
Theorem 1, yields the following probability of estimation error 02V2
per WM chip: with Var[z - w] = (02)/(nm,).
Fig. 11 demonstrates how[z - w] ando, change as in-
e="Prlv; £ w] = lerfc < ‘5\/ﬁ> . (16) creases under fixetl= 1.5, with o, //m varying from 2.5 to
2 o2V2 6.5.
From (20), we compute that in order to draw the expected
See [2, Coroll. 1] for proof. correlation value ta[z - w] = 6, the attacker has to induce
The estimation attack is performed by subtracting an ampli{4) equal to
fied WM estimatenv from the marked content
5—10
all) = ———. (21)
=y — oy/m
z=y—av. (17) erf (axﬂ)

The maximum value of the amplification facter depends If v # w or a # §, the estimation attack adds noise to the
solely on the desired level of audibility for the attack. Irmarked signal. Part of this noise is an accurate estimate of the
practice,a can be much greater thanbecause the contentWM, and it actually reverses the effect of the watermarking
marking entity is subject to much more stringent conteptrocess. The remainder of the attack vector is applied in addi-
fidelity constraints than an attacker. tion to the existing marked data.
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Fig. 11. Diagram of the dependency®f: - w] andV ar[z]'/? asa increases E‘Tg /%)Dela?;ér_n' gf;f;ea?]zgeidggcyb‘;/() (26) with respect ta for given

from O to 10 for fixeds = 1.5 and variabldo, //m) € {2.5...6.5}.

Corollary 3: The estimation attack on a marked content de PE=f(e,G n,m_ )
scribed in (17) induces the following additive noise with respec ~ 10°
to the original signal

)E {2 65}

/sqrt

E

]_{a+6(2s—1), a>é (22)

N/O = E||zi —xzi]] = b+a2e—1), a<d

whereas the added noise with respect to the marked copy eqt

N— .

A realistic attack/detect watermarking model would assum
the following criteria.

Criterion 1: The amplitude of the attack is limited by the
induced noise ad//0 < g.

Criterion 2: An attack with fixeda(#) draws the expected

&

Probability of detection error P
3

value of the correlation to a valug[z - w] = 6. For a fixed L0203 b VR A A VAN
WM length n and detection decision threshotd= ¢/2 that 10* 10° 10°
achieves symmetric probability of false alafa, and misde- Number of chips [n]
FeCtlonPMD’ the detection error probability = Pra = Pyp Fig. 13. Dependency diagram fdPr (24) with respect ton for given
is upper bounded by at most (0. /\/i5) € {2...6.5} andd = 0.3.

1 6. /nm,

Pg = —erfc ( nm ) <7. (24)
2 20.\/2 2) From (16), (21), and (22), we can compute the depen-

Itis important to stress that the efficiency of SS watermarking ~ dency of the inducedv/O on the WM magnitudé:
and detection depends by and large on the parameters that are
content dependent. | ' NJO = f(5) = 6—0 o ( 5@) (26)
Problem 1: For a givens,., what is the optimal value of erf ( WE) oaV2
such that under the optimal estimation attack described in (17) ou V2
and quantified usingy, maximal N/O is induced while Crite-

rion 2 is satisfied? maximizes the induced’/O.

Th d probl be solved in t teps.
€ pose pro- em can be solved in two S e.p.s Fig. 12 depicts the dependency8f O with respect ta) for
1) From Criterion 2, we can compute the minimal expecte(d /J/m) € {2...6.5). Optimal valuesi(c, ), which result in
value for the normalized correlatiafi[ - w] > ¢ after maX|maIN/O are depicted using the} symbol. Fig. 13 illus-

from which we can numerically find the desirédthat

the attack: trates the probability of a detection erBg, (for 7 = 6/2) with
0 20.v/2erf (1 — 27) (25) respect to a given WM length ef chips and for(c./,/m,) €

nm, ' {2...6.5} andf = 0.3.
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The The undo of Correct Incorrect
N estimation the attack undo of undo of
attack moves the N the
0.1 \ moves each 0.1 pdf(z) \ 1 01 attack. attack.
half of pdf(y) against the ‘
against its likely
0.05 sign. 0.05 | direction of 1 0.05
attack.
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0
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Signal pdf(y) before attack: Decomposed pdf(z) after the Decomposed pdf(u) after
N(O,cy=3) attack. undoing the attack.

Fig. 14. lllustration of thaindoof the estimation attack.

A. Undoing the Estimation Attack

Effect of UNDO on detection

1 .

In this subsection, we demonstrate a remedy for the estim o9 ‘
tion attack described in (17) (see Fig. 14). The main idea is 1
optimally reverse the attack, i.e., estimate the signal coefficie
y; from the attacked signa}. We also demonstrate that a slight — 0.7
modification to the attack in (17) succeeds in removing the Wh 5

=, 0.6
(or disabling the detector to identify the WM) by adding addi-W

tional noise to the attacked signal. g 0.5}
Definition 1: Theundooperatoif(z;, o), wherez;, « € R, = 4
is defined as follows: N,
W o3
ion(=), |z N
o ‘ Sz tasign(z;), |z > 2a
i =U (2, 0) = { zi —asign(z;), |z < 2a. (27) 0.1

S 2 3 4 5 6 7 8 9 10

Theorem 3: Given a signal coefficient; created using the Attack amplitude o

estimation attack as = y; —a Sl,gr(yi)’ wherey; IS awelghted Fig. 15. Effect of the undo test on the correlation test.cA#creases, the

sumy; = z; + éw; of a Gaussian zero-mean i.i.d. variable figure shows howE |z - w] andE[u - w] change for fixedr, = 4 and variable

and a SS sequence chip anda > §, optimal estimation;; of ¢ € [0.5...3].

the signaly; such thatF'[|u; — y;|] is minimal is given using the

undooperatoru; = U(z;, a). mixed with Y (—«,0) U Y (0, «) during the attack. We com-
Proof (sketch): When doing the estimation attack, the adpensate the final correlatiofi[u - w] as follows: Efu - w] =

versary shifts the positive and negative pdf of the marked sigiat- C1 + C2 with

7 for « against the sign of. Theundooperation described in

(27) retrieves all values of the original signat V(y; > 2a),

u; = y;. Now, let us define a subséf(a,b) C y s.t.y; €

Y (a,b)iff a < y; < b. Since for a zero-mean Gaussian distribu-

tion of z; anda > 6, |Y (0, a)| > |Y (—2«, —a)|, theny;, is the

optimal estimation ofj; based on a given; s.t. —a < z; < 0.

o :/ o= 6@ = 8) + (x4 8)f(x + )] da

sz/:a[(x—é—h)f(x—é)

Similarly, since|Y (—a,0)| > [Y(a, 2a)|, u; is an optimal es- + (# + 06— 20) f(z + 6) | dz (29)
timation ofy; based on; s.t.0 < z; < . [ ]

Corollary 4: The expected value for the correlation of thevhere f(z + ¢) is a function of the Gaussian distribution cen-
recovered: andw is given by tered at: with variances2, which results in (28). n

Fig. 15 illustrates the effect of thendo operation on WM
detection. Whereas the correlation value of a traditional SS
Elu-w] =6 — aferfc(a) — erfc(b) — erfc(c) + erfc(d)] (28) WM detectorE|[z - w] inevitably converges to zero, the corre-
lation after theundooperation yieldg: = min(E[u - w]) > 0.
Thus, according to (24), for a sufficiently long SS sequence
wherea = (a — 8)/V20,.,b = (a + 6)/V/20,, ¢ = (2o — (nm, elements ofu are integrated), a detection threshold at
8)/V20,, andd = (2a + 6)/v/20,. 7 = min(E[u - w])/2 would yield desired detection results,
Proof (sketch): The undoof the estimation attack cannotregardless of the strength of the estimation attack. In the region
recover the magnitudes &f(—2«, —a) U Y («, 2«) that got of interest, i.e.qx s.t.(y — aw) - w = u, the correlation variance
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satisfiesV ar[u-w] ~ o2 /n, wheres . is computed in Corollary
1.

The detector cannot possibly know the attack amplificatio
valuea while performing the detection. However, note that fol
any o, ElU(z,a),w] = 0 [with U(z,a) = {U(z;,a), 1 =
1..n}], wherez is a signal which does not have embedded.
Thus, the detector can perfoffhtestsE[U (z, o), w] for real-
istic values ofa = {4, t = 1..7'} that can potentially break
the system (e.ga = {3,4,5}).

The power of thaindooperation is based on the inequivalent
distribution of magnitudes marked with positive and negativ
chips. Therefore, the attacker must impose additional notse
the attacked signal such that the latter distributions are equal-
ized. While the "smart noise>«av drawsE]|z - w] to zero, the
additional noisen enables that nandooperation is able to re- 1
trieve even a small part of the original distributions of the signe
marked with positive and negative chips.

10

9 N Standard deviation seen by the detector

Standard deviation of working vector

/

Standard dewviation seen by the estimator

0 T(IJD 260 360 4(IJD 560 660 700
Coefficients of a 2048-long MLCT window (1-7kHz)

A modified undooperation Fig. 16. Standard deviation of a typical music signal computed per transform
coefficient for a 2048-long MCLT block for two different redundancy metrics
, zi+a sign(zi) , |Zz| >2a+p 3 x 5 (seen by the detector) and<59 (seen by the estimator), where the two
u; =U (Zi7 Oé) = ) : ) ) 9 3 parameters represent corresponding redundancy along the frequency and time
zi —asign(zi), |zi] <2004/ axis, respectively.

with 8 ~ o,, may strengthen the detection procedure; however,

its effectiveness is very limited. Because of threlooperation, o = o,/\/m that the estimator sees, assuming it knows
the estimation attack needs to be modified as follows: perfectly the location of the WM and the standard deviation
op = 0,//m, that the detector sees while computing the cor-

z=y—ov+mn (30) relation test. Block repetition assumed in this case is 5 x 9

coefficients along the frequency and time axis, respectively. The
wheren is a noise pattern aiming to equalize the distributionsorresponding region for detectiorvis, = 3 x 5 coefficients.
of magnitudes marked with positive and negative chips. For ex-According to Fig. 16, we locate the WM to the 200 Hz—2 kHz
ample, white noise of amplitude, ~ o../2 commonly creates region for three reasons. First, HAS is much more sensitive

a difficult task for the designer of amdooperation. to noise in this sub-band (a noise of only 4 dB can rarely be
tolerated). Second, the variance of the carrier signal is higher
V. FINAL REMARKS in this region, providing a more robust host for data hiding
We now consider three key aspects of SS-based audio waéth respect to the estimation attack. Third, although the ratio
marking. m/m, = /3, in the proposed subband, the actaal/op

retrieved experimentally from over 100 audio clips is only 1.18.
A. Justifying the Gaussian Assumption

The linear marking (13) and detection (Corollary 4) process% What is_the Impact of the Results Obtained so far on Audio
performed on the audible, averaged, and cepstrum-filtered codfetermarking?
ficients of a 2048-long MCLT analysis window [15] in the loga- We have presented a generic recipe for using SS to hide se-
rithmic (dB) domain. We have observed that on a great variety eets in multimedia content. For a typical music content, if the
audio clips, even thimdividualfiltered coefficients can be accu-SS WM is located in the 200 Hz—2 kHz sub-band, in order to
rately modeled using a Gaussian PDF. In addition, the detecgipaw the correlation of the neundocorrelation test to a value
averages the centrab, coefficients in each repetition block,that forces detection failure, the adversary needs to add total
which significantly improves the modeling accuracy due to theoise in the excess of 6 dB, which may be intolerable to many
central limit theorem. Thus, the final working vecipextracted users. SS WM length that would enable false alarm accuracy of
from the audio clip can be highly accurately macro-modeled &5, ~ 10~¢ would require approximately an 80-s music frame.
a Gaussian vector. Local correlations and nonstationarity are &ftwM of such length is difficult to synchronize at the detector.
fectively cancelled using sufficiently large windows (e.g., 102Although block repetition codes enable wow-and-flutter toler-
window size at a sampling frequency of 44.1 kHz), cepstruahce required for most low-end turntables (e.g., 0.15% playtime
filtering, and running-average windowing along the time axisfluctuation), it is arguable whether a common HAS would dis-

) card such content as of no value.

B. How Does Redundqncy Impact Detector and Estimator On the other hand, techniques presented in this paper may
Performance on Real-Life Data? provide better results for data hiding in video signals, as we esti-

The reliability of detection as well as the performance ahate that per frame, significantly more chips can be embedded,
the WM estimator depend on the variance of the originasulting in shorter watermarks, i.e., higher robustness to frame
working vectorz. Fig. 16 illustrates the standard deviatiordropping and limited geometric distortions.
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