
Playing by the Rules: Mining Query Associations
to Predict Search Performance

Youngho Kim1*, Ahmed Hassan2, Ryen W. White2, Yi-Min Wang2
1 140 Governors Drive, University of Massachusetts, Amherst, MA 01003, USA

2 One Microsoft Way, Microsoft Research, Redmond, WA 98052, USA

yhkim@cs.umass.edu, {hassanam,ryenw,ymwang}@microsoft.com

ABSTRACT

Understanding the characteristics of queries where a search engine

is failing is important for improving engine performance. Previous

work largely relies on user-interaction features (e.g., clickthrough

statistics) to identify such underperforming queries. However, re-

lying on interaction behavior means that searchers need to become

dissatisfied and need to exhibit that in their search behavior, by

which point it may be too late to help them. In this paper, we pro-

pose a method to generate underperforming query identification

rules instantly using topical and lexical attributes. The method first

generates query attributes using sources such as topics, concepts

(entities), and keywords in queries. Then, association rules are

learned by exploiting the FP-growth algorithm and decision trees

using underperforming query examples. We develop a query clas-

sification model capable of accurately estimating dissatisfaction us-

ing the generated rules, and demonstrate significant performance

gains over state-of-the-art query performance prediction models.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Search Process

General Terms

Algorithms, Experimentation

Keywords

Underperforming query analysis; User dissatisfaction;

1. INTRODUCTION
Automatic detection of underperforming queries (where search en-

gines are failing and users are dissatisfied with their search results)

has been extensively studied [1][13][18][23]. In Web-search envi-

ronments large volumes of query logs are readily attainable. This

makes it affordable to collect many training examples that can be

used to improve classification performance.

The ability to identify underperforming queries is especially im-

portant to Web search engines. Since those systems need to cover

a broad range of diverse queries and since ranking algorithms are

typically trained using a single sampled data set, there will be que-

ries on which the ranking algorithms cannot execute effectively.

Previous work on predicting underperforming queries has primarily

targeted user interactions (e.g., clickthrough statistics) [18][23] and

combined features from user behaviors in query logs and physical

sensors [13]. Although previous systems are quite successful, they

are less effective from the search engine perspective. The reason is

those dissatisfaction signals are only available a posteriori (e.g.,

once search is abandoned). This means that search engines rarely

have the opportunity to interfere and remedy the user dissatisfied

experience. On the other hand, query performance predic-

tors [10][24], for example, are more useful for that purpose because

those predictors do not require interaction behavior signals and can

help recognize dissatisfaction before the search session ends.

In this paper, we propose a method for generating underperforming

query identification rules using topical and lexical attributes of que-

ries (e.g., topic of interest, important entities (concepts) in queries).

We assume that there are frequent patterns among the features of

underperforming queries and the association of those frequent fea-

tures with dissatisfaction is helpful for identifying user queries

likely to be associated with future dissatisfaction. Table 1 shows a

sample association rule and examples of matching queries. For ex-

ample, the rule {Movie, Art, "Robocop remake"} ⇒ {DSAT} con-

sists of an antecedent with a set of binary attributes: Movie,
Art, and "Robocop remake" and a consequent which is in our case

a query satisfaction label: DSAT. Note that each query label is ob-

tained using a DSAT prediction model [21], which is described

briefly later. Since those attributes can be identified from only

query, search systems can be informed of DSAT likelihood to the

queries implied by the antecedent (LHS) of this rule promptly.

Moreover, we can identify that current search systems cannot han-

dle particular classes of queries successfully, which is valuable for

improving the search experience.

In our system, given DSAT and SAT query examples, we perform

two sub-tasks: (1) Attribute Generation, and (2) Association Rule

Mining. In the first task, we define various attributes which can ef-

fectively characterize diverse Web queries. For example, categories

in the Open Directory Project (ODP, dmoz.org) (e.g., Art) can be

used as a binary attribute. Wikipedia categories and named entity

categories (e.g., "Robocop" Movie) are also useful. Besides, we

consider lexical attributes (e.g., "Robocop remake") because many

DSAT queries frequently share some keywords. In addition to these

* This work was conducted while interning at Microsoft Research

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

WSDM’13, February 4–8, 2013, Rome, Italy.
Copyright 20010 ACM 1-58113-000-0/00/0010…$15.00.

Table 1: Sample rule and example queries. Label indicates

if the query leads to satisfaction (𝐒𝐀𝐓) or dissatisfaction

(D𝐒𝐀𝐓).

Association Rule

{Movie, Art, "Robocop remake"} ⟹ {DSAT}

No. Query Label

1 Robocop remake poster DSAT

2 pics from Robocop remake DSAT

mailto:yhkim@cs.umass.edu

topical attributes, we adopt behavior attributes that can characterize

user-search actions (e.g., number of issued queries, and frequency

of viewing search result pages). We extract distinct distributions of

defined search actions, and label similar distributions for an identi-

cal category (i.e., a category label indicates a behavior attribute) by

employing a spectral hashing algorithm [32]. From this, we can

identify how behavior attributes (typically used in previous work)

are combined with our topic attributes.

Using those attributes, we mine association rules to identify DSAT

queries. Among many association rule learning techniques

(e.g., [2][3]), we selected the FP-growth algorithm [20] because our

system needs to handle a large amount of Web queries and FP-

growth can effectively work on such large datasets [20]. In mining,

we apply the FP-growth algorithm to both DSAT and SAT queries

using categorical attributes (e.g., ODP categories), and identify

what subsets of the attributes (item-sets) frequently appear in DSAT

queries. In other words, the identified item-sets (antecedent) imply

DSAT queries (i.e., the consequent of the rule is {DSAT}). After

generating categorical rules, we augment the antecedent of the rules

with lexical attributes. Since the number of lexical attributes (i.e.,

keywords) extracted from all queries is prohibitively large, we

adopt a two-tiered approach where we first extract categorical rules

and then mine lexical rules using queries to which certain categor-

ical rules apply.

We show the effectiveness of our rule mining system by verifying

that the system is capable of generating effective DSAT segments.

We also demonstrate the effectiveness of the rules by using them

as features for building a DSAT prediction system and show that it

achieves superior performance when compared to state-of-the-art

query performance prediction baselines [10][17][25].

The remainder of this paper is structured as follows. Section 2 de-

scribes relevant related work in the areas of search satisfaction,

search quality analysis, and query performance. Section 3 defines

our problem and Section 4 describes the main approach. We present

experimental results in Section 5 and conclude in Section 6.

2. RELATED WORK
Relevant research in a number of areas is presented: (1) satisfaction,

(2) search quality, and (3) query performance prediction.

2.1 Search Satisfaction
There has been significant prior work on deriving signals related to

search satisfaction and success from online behavior. Methods for

doing this typically correlate users’ search behavior with their in-

situ self-reporting [16] or judgments of search success provided by

expert judges [18][22]. Early investigations by Fox et al. [16] cor-

related self-reported measures of search satisfaction with interac-

tion signals gathered implicitly from search behavior, such as

search-result clicks and dwell time for clicks. They deployed an in-

strumented browser and showed a relationship between explicit

measures of search satisfaction and implicit measures derived from

search behavior. In particular, they found that short dwell times and

clicks on many results for a query were both indicators of search

dissatisfaction. Ageev et al. [1] propose a formalization of different

types of success for informational search via a scalable game-like

infrastructure for crowdsourcing search behavior studies. They

show that their model can predict search success effectively on their

data and on a separate set of logs comprising search engine sessions.

Hassan et al. [23] developed models of user behavior to accurately

estimate search success on a session level, independent of the rele-

vance of documents retrieved by the search engine. In recent fol-

low-up work, Hassan [21] proposed a semi-supervised approach for

search satisfaction modeling via both labeled and unlabeled data.

2.2 Search Quality Analysis
Beyond studying search session satisfaction in isolation, others

have investigated how the quality of search results can affect search

behavior. Huffman and Hochster [26] discovered a fairly strong

correlation with search session satisfaction using a linear model en-

compassing the relevance of the first three results returned for the

first query in a search task, whether the information need was nav-

igational, and the number of events in the session. Aula et al. [6]

investigated the behavioral signals that are suggestive of a user

struggling in a search task. They showed in a laboratory study and

in a larger-scale remote study that when searchers have difficulty

in finding relevant information, they formulate more diverse que-

ries, they are more likely to use advanced operators (e.g., ‘+’, ‘–’,

‘OR’), and they spend a longer time on the search result page as

compared to the successful tasks. Feild et al. [13] studied the affec-

tive impact of searching and developed methods to predict search

frustration from behavioral and physiological signals. They gave

users difficult information seeking tasks and estimated their degree

of frustration via query logs and physical sensors. One behavior that

can be associated with dissatisfaction is search engine switching:

the voluntary transition between different engines. Guo et al. [18]

characterized the reasons that searchers switch via a browser plugin

that captured an explanation at switch time. They showed that one

of the primary reasons that people switched was dissatisfaction

with the search results on the pre-switch engine.

2.3 Query Performance
Search engine performance for a particular query is typically meas-

ured using relevance metrics such as precision and recall. Al-Mas-

kari et al. [4] found a reasonable correlation between many infor-

mation retrieval metrics and satisfaction with result rankings. Be-

yond performance measurement, research on predicting query per-

formance has been conducted to understand differences in the qual-

ity of search results provided by search systems for different que-

ries. Such predictions do not require relevance judgments (at least

not when the models are being applied, but perhaps during a sepa-

rate training phase) and can be used to determine when to use addi-

tional computational resources or use alternative methods (e.g.,

specialized ranking algorithms or different interface support) to im-

prove results for difficult queries. While it has been shown that dif-

ferent query representations [8] or retrieval models [9] improve

search performance, it is more challenging to accurately predict

which methods to use for a particular query.

Methods using Jensen-Shannon divergence [8], query clarity [10],

and weighted information gain [35] have been developed to predict

the retrieval performance on a query (e.g., as measured via preci-

sion) post retrieval. Rather than using post-retrieval query-docu-

ment relevance scores, which can take time to compute, He and

Ounis [24] proposed the use of pre-retrieval properties that can be

generated prior to the retrieval process (e.g., query length, query

scope). Pre-retrieval predictors are advantageous because they can

be calculated during indexing, rather than waiting for the query to

be received, making them more efficient. Zhao et al. [33] propose

pre-retrieval predictors based on the similarity between a query and

the underlying collection and the variability with which query

terms occur in documents. Leskovec et al. [28] used graphical prop-

erties of the link structure of the result set to predict the quality of

the set and the likelihood of subsequent query reformulation. Some

research has also been conducted on predicting query performance

using searcher interaction behavior. Carterette and Jones [9] used

click-through behavior to evaluate the quality of search advertising

results, but they did not study other user interaction features, and

their focus was on search advertising not general Web search. Guo

et al. [17] used behavioral features, including engine switches, to

predict query performance. Their method involved the use of inter-

action logs for a large number of their most important prediction

features. However, the reliance on log data limits the generalizabil-

ity of the model, meaning that it can only be applied in commercial

search engines and evaluating the model outside of those settings is

potentially problematic.

Our work extends the research presented in this section in a number

of ways. First, rather than simply modeling or identifying the at-

tributes of search satisfaction, we use apply DSAT modeling to

identify queries where the search engine may be underperforming.

Second, the method that we propose is not dependent on interaction

behavior meaning that our approach can help before users have to

experience dissatisfaction with the engine. Also, by not relying on

interaction behavior makes our results more reproducible by aca-

demic researchers trying make advances in query performance pre-

diction. Third, we demonstrate through a large-scale evaluation

with search queries drawn from search logs that our approach out-

performs several baselines that draw on query properties, search

interaction, and their combination.

3. PROBLEM FORMULATION
In this section, we formulate the task of mining DSAT association

rules and predicting query performance. We start by defining terms

that we will use throughout the paper.

Definition 1 (Search Session) A search session is a sequence of

user actions that begin with a query, includes subsequent queries,

URL visits, click information, and ends with a period of inactivity.

We assume that a session ends if the user was idle on a page for

over 30 minutes, typically used in previous work, e.g., [12].

Definition 2 (Search Goal) A search goal is a single information

need that may result in one or more queries. Every search session

could be segmented into one or more search goals. We adopt the

search goal definition and the goal extraction method from [27].

Using the prediction model in [21], we label each goal to either of

{DSAT, SAT} and use a search goal as an instance in mining. We

assume that each instance (i.e., search goal) is represented by the

first query. If we use the subsequent queries of an instance, we ex-

plicitly specify “subsequent” queries.

Definition 3 (Attribute): An attribute is a binary property of a query

instance that describes a specific characteristic of that instance. For

example, the attribute “Shopping” indicates that the query is topi-

cally related to retail.

In this work, we present solutions to the following problems:

Problem 1 (Attribute Generation): Attribute generation is the pro-

cess of defining and generating a set of attributes to represent query

instances. Given a query instance, our objective is to generate ef-

fective attributes and associate (binary) values to them. The attrib-

utes should describe different aspects of the query instance and they

should be dynamic in the sense that they may be easily extendible

and need minimal human intervention to define.

Problem 2 (DSAT Association Rule Mining): DSAT association

rule mining is the process of discovering frequent patterns (subsets)

of generated attributes (from Problem 1) to identify DSAT queries.

Given attributes and labeled queries, we generate rules that imply

DSAT. The task is formally defined as follows.

Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} be a set of 𝑛 binary attributes and 𝑄 =
{𝑞1, 𝑞2, … , 𝑞𝑚} be a set of (query) instances where each instance is

labeled as DSAT or SAT. Based on 𝐴, each instance can be repre-

sented by a vector of binary attributes, e.g., 𝑞𝑖 = {𝑎1 = 1, 𝑎2 = 0,
… , 𝑎𝑛 = 1} . Then, an association rule can be formulated as

{𝑎𝑖 , 𝑎𝑗 , … } ⟹ {DSAT} where 𝑎𝑖 and 𝑎𝑗 in LHS are the frequent at-

tributes of DSAT instances, and as an output, we generate multiple

association rules. Since we are interested in rules whose consequent

(RHS) is {DSAT}, we simply represent every rule by only its ante-

cedent (LHS). The instances represented by a rule indicate queries

implied by the antecedent of the rule. Based on mined rules, DSAT

segments are formed by the queries matched to the rules.

Problem 3 (DSAT Prediction): DSAT Prediction is the process of

predicting, at query time, whether a query will be satisfied or not.

In solving this, we use the association rules defined in Problem 2.

4. MINING UNDERPERFORMING QUERY

ASSOCIATIONS
We now present our methodology for generating underperforming

(DSAT) query identification rules. We first describe how useful at-

tributes are defined for rule generation, and then explain how to

generate DSAT identification rules using the defined attributes.

4.1 Attribute Generation
Generally, many attributes can be used to describe query impres-

sions including query topic, query entities, and search behavior.

However, most behavior-related features (e.g., search state [1],

dwelling time [23]) have been examined in previous studies, and

behavior information is typically available only after the user has

abandoned searches. Instead, we attempt to devise topical and lex-

ical attributes (which can be mainly identified from query texts) and

the values for these attributes are instantly computed from current

queries. For this, we exploit the categories in ODP, Named Entity

Recognition (NER) [30], and Wikipedia (wikipedia.org). In addi-

tion, we also generate behavior attributes from distributions of his-

toric user search actions. Thus, given a query instance, we generate

attributes described as follows.

4.1.1 ODP Attributes
Open Directory Project (ODP, dmoz.org) is a hierarchical ontology

for Web pages and lists similar topic pages in the same category

including smaller categories. We use each ODP category as a bi-

nary attribute, and the ODP classifier, proposed in [7], can classify

queries into 219 categories from the top two levels of the ODP hi-

erarchy (see [7] for more details, including results of a performance

evaluation). Specifically, for each query instance, the classifier out-

puts top-5 probable categories, and among them we select the cat-

egories whose probabilities are greater than 0.5 (empirically set) as

attributes. In our experiments, we allow more than one category to

describe every query instance.

4.1.2 Named Entity Attributes
Named Entity Recognition (NER) is the process of identifying en-

tities (e.g., 𝑃𝑒𝑜𝑝𝑙𝑒, 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠, 𝑂𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠, etc.) from text.

NER systems are oftentimes domain dependent and need large

amounts of labeled data for training. This makes them less suitable

for Web search queries that are short in nature and not usually rep-

resented by well-formed sentences. For our purpose we need a

named entity tagger that can be easily adapted to new classes,

works well on short and ill-formed text, and uses available

knowledge sources instead of domain-dependent human labeled

training data.

We rely on Wikipedia and n-gram Language Models (LMs) to tag

named entities in queries [30]. Specifically, given a sequence of

words, salient entities in a domain-specific LM are identified. A

domain-specific LM is generated by a domain corpus (e.g., “Mov-

ies” LM contains n-gram statistics of a movie corpus). Salient do-

main entities are identified by measuring statistical differences be-

tween the domain model (foreground) and general LM (back-

ground). For each word, if a word belongs to the background, or the

outside-tag, the word should be generated using the background

LM. On the other hand, if the word belongs to the foreground,

begin-tag, or inside-tag, the word should be generated using the

foreground LM that named entities are built from. Weak unsuper-

vised signals from each domain corpus (e.g., Wikipedia titles and

click counts) are used to estimate parameters in the recognition

model. This approach achieves 0.51 precision and 0.48 recall [30],

when applied to short and not necessarily grammatical dataset with

1,300 queries, compared to 0.35 precision and 0.43 recall from a

Conditional Random Fields system [15] .

One motivation to use this NER tagger is that topics in Web queries

are diverse and recognizing only basic entities (i.e., Person, Loca-

tion, and Organization) is less useful for identifying effective at-

tributes. Thus, to cover various web topics, we train the classifier

using domain language models corresponding to the following do-

mains (Person, Location, Organization, Food, Restaurant, Local
review, Wikipedia, Movie, and Game). We use each domain (cat-

egory) as a binary attribute, and assume that a query can contain

multiple attributes if the query contains entities from multiple do-

mains. As an example, “Caesar salad recipe in TGI Friday’s” can

contain the attributes {𝐹𝑜𝑜𝑑, 𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡} because “Caesar salad”

is a 𝐹𝑜𝑜𝑑 entity and “TGI Friday’s” is a 𝑅𝑒𝑠𝑡𝑎𝑢𝑟𝑎𝑛𝑡 entity.

4.1.3 Wikipedia Attributes
Wikipedia is an online encyclopedia which contains four million

articles (entities). We use Wikipedia entities to generate a set of

descriptive and diverse attributes. Specifically, we first crawl about

one million Wikipedia articles, and extract Wikipedia entities from

query texts as described in the previous subsection. Then, for each

extracted entity, we identify the most relevant Wikipedia article by

using a surface-level exact matching. (Note that other types of

matching (e.g., semantic-level) can be used further if it can perform

reasonably well). Once Wikipedia articles are matched to the query

entities, we extract Wikipedia topic-categories from each article.

Each Wikipedia article generally contains one or more topic-cate-

gories, e.g., the article of “Ford Mustang” includes Ford Vehicle,

Coupe, etc. As a result, we can link a query instance to the catego-

ries via identified entities from the query texts, and use those cate-

gories as attributes. In experiments, each query instance contains

0.9 entities on average, and 4,482 Wikipedia topic-categories are

extracted and used as attributes.

4.1.4 Behavior Attributes
Here we present a method to generate behavior attributes. Since

previous work proves that using behavior information is effective

to predict query performance [17], we devise the attributes which

recognize the characteristics of the general search behavior of users.

We assume that dissatisfied users act differently in searches com-

pared to satisfied users. For example, we observed that some dis-

satisfied users issue many queries, but spend less time on examin-

ing search results. To capture such behavior characteristics, we gen-

erate a distribution of search action frequencies from each query

instance. Specifically, we define seven distinct search actions and

identify frequent distributions that occur more than 10 times (i.e.,

we ignore extremely rare patterns). Figure 1 shows some examples

of the distributions. Then, we group similar distributions into the

same cluster (attribute) by using spectral hashing [32], which can

develop a hashing function that maps similar vectors into the same

bucket (i.e., hash code). Given a set of behavior distributions, we

consider a distribution as an input vector and run the spectral hash-

ing algorithm [32] with k-bits (the bit length of a hashing code).

After a hash function is obtained, we use a mapped hash code as a

binary attribute. In experiments, we hash 3,069 distinct distribu-

tions into 2-bit codes (i.e., four different hash values are mapped),

and accordingly four behavior attributes are generated.

One motivation for using spectral hashing is that a hashing-based

algorithm is much faster than clustering algorithms, such as k-Near-

est Neighbor, in learning patterns. Moreover, in pilot experiments,

a simple clustering method failed to find a reasonable number of

clusters (attributes); only a single cluster was identified. To under-

stand the effectiveness of using the spectral hashing, we conduct

pilot experiments using about 140,000 session instances randomly

sampled from our dataset. From that data, we extract 237 distinct

distributions of search action frequencies and generate 4-bit hash

codes. Then, as shown in Table 2, we measure the mean frequency

of each action among the instances mapped to each code (i.e., 0, 1,

2, and 3). First, the instances mapped to 0 and 2 include signifi-

cantly more query submission (Q) while the instances belonging to

1 and 3 have fewer query submissions. Second, regarding search

result actions (i.e., SERP, SR, and SR_long), the users in 2 and 3

spend more times on SERP and SR than the users in 0 and 1. To

prove these, we perform a statistical significance test on each of

those actions (see Table 2). In summary, we can characterize the

users (instances) in each code; 0 indicates more query submission

and short search result examination, 1 denotes less query submis-

sion and short search result examination (generally most DSAT us-

ers belong to this category), 2 indicates more query submission and

long search result examination, and 3 indicates relatively less query

submission and long search result examination (i.e., spend more

time on a few search results).

4.2 DSAT Association Rule Mining
In this section, we describe our method for finding DSAT associa-

tion rules using FP-growth algorithm and decision trees. Specifi-

cally, we first use the FP-growth algorithm with the “categorical”

attributes (i.e., ODP, NER, Wikipedia, and Behavior) to identify

categorical rules (e.g., {Movie, Art}). After this, we apply Decision

Tree learning using “lexical” attributes that include n-gram key-

words from the queries identified by the categorical rules, and ex-

tract lexical rules (e.g., {Movie, Art, "Robocop remake"}). We pro-

vide the details of each method in the rest of this section.

User Q SERP SR SR_long Ad

A 4 1 1 0 0

B 2 4 2 2 0

Figure 1: Sample distributions of search action frequencies.

Q, SERP, SR, SR_long, and Ad indicate a query submission,

search result page, search result click, long dwell (> 30s) re-

sult click, and ad click, respectively.

Table 2: Mean frequencies of search actions. Due to the space

limit, the statistics of less significant actions (e.g., Ad) are omit-

ted. In each column, a superscript indicates a significant differ-

ence at 𝒑 < 𝟎. 𝟎𝟏 using the Wilcoxon rank-sum test, e.g., C13 de-

notes a significant difference from the code of 1 and 3.

Code Q SERP SR SR_long

0 5.01 C13 0.18 0.38 0.56

1 1.60 0.53 0.56 0.61

2 4.82 C13 1.18 C01 1.09 C01 1.55 C01

3 1.74 1.96 C01 1.26 C01 1.35 C01

Figure 3: Input data set for FP-growth algorithm.

4.2.1 Categorical Rule Mining
Given a set of attributes, we identify subsets of attributes (item-sets)

to identify DSAT instances. For this, we can utilize several well-

known approaches to find frequent patterns in transactional or rela-

tional data sets that are described in the data-mining literature. A

typical example of this approach is the market basket analysis prob-

lem [2]. Using a similar formulation, we formally define the DSAT

association rule mining problem as follows: Let 𝐴 =
{𝑎1, 𝑎2, … , 𝑎𝑛} be a set of 𝑛 binary attributes containing ODP, NER,

Wikipedia (WIKI), and Behavior (BH) attributes, and 𝑄 =
{𝑞1, 𝑞2, … , 𝑞𝑚} be a set of instances and each instance is labeled as

DSAT or SAT. We define a new attribute set, 𝐴′ = {𝑎1, 𝑎2, … , 𝑎𝑛} ∪
{DSAT, SAT} where the labels are included as attributes. Figure 2

illustrate an input data set, {𝐼 × 𝐴′}. Then, a “DSAT” association

rule is defined as an implication of the form X ⇒ Y where X ⊆ 𝐴,

Y = {DSAT} and X ∩ Y = ∅.

Among many algorithms to solve this problem (e.g., [3]), we chose

to use the FP-growth algorithm [20] because it is more efficient

than generate-and-test algorithms given that it adopts a divide-and-

conquer strategy. The proposed approach should be able to handle

millions of instances and hence efficient rule mining is necessary.

Briefly, the algorithm consists of two main steps. First, it builds the

FP-tree which efficiently represents information about item-set

(subset of attributes) association, and in the next step, frequent pat-

terns are mined from the FP-tree. To build the tree, the whole data

set is scanned twice; in the first scan, the attributes are sorted in

descending order by their frequencies, and the tree is constructed

by spanning attribute nodes from more frequent attributes to less

frequent ones, scanning each row in the data (see [20] for details).

Before running the algorithm, to reduce the computational com-

plexity and obtain more effective rules, we define 3 constraints:

1) The number of attributes from a single group may not exceed

a threshold 𝑙.
2) Minimum support-level needs to be reasonably small.

3) Minimum confidence-level is more than or equal to the por-

tion of DSAT instances to the whole data set.

In our data set, originally there are four different attribute groups

(i.e., ODP, NER, WIKI, BH), and the first constraint limits a min-

ing path (from the root to a leaf node in the FP-tree) to have maxi-

mally 4𝑙 different attributes from those groups. In other words, a

mined rule resembles any combination of {[ODP], [NER], [WIKI],

[BH]} where each attribute group (bracket) contains at most 𝑙 at-

tributes from the corresponding group. Thus, we impose a con-

straint on the maximum depth of the tree, which can reduce the

time-complexity in practice. Since the algorithm for mining the FP-

tree structure is a recursive procedure during which many sub FP-

trees are created, too long paths (e.g., containing more than 100

nodes (attributes)) are problematic and defining an effective length

is complicated. The second and the third constraints allows more

effective rules to be generated. The support (𝑆) of an item-set (X) is

defined as the proportion of instances in the data set which contain

X, and the minimum support level denotes the minimum number of

instances which support a generated rule. If the rule can cover many

queries (instances), it may contain more SAT queries and is ineffec-

tive. Thus, targeting relatively small number of instances is more

helpful to obtain effective rules, and in experiments, we have about

one million instances and we set 𝑆 to 20.

Based on the 𝑆 , the confidence (𝐶) of a rule is defined

as 𝐶(X ⟹ Y) = 𝑆(X ∪ Y) 𝑆(X)⁄ , an estimation of the probabil-

ity p(Y|X). By the third constraint, we can recognize effective rules

which can cover relatively more DSAT queries comparing to the

general proportion of DSAT instances to the whole dataset,

p(DSAT|X) ≥ p(DSAT). However, a confidence level that is too

high can also mean that very few rules are extracted because gen-

erally p(DSAT) is low, which is also ineffective.

Next, we run the FP-growth algorithm on the augmented data set

with two parameters, 𝑆 and 𝐶. We use an improved-version of FP-

growth implemented by [11], which can reorder and prune the input

data so that more common attributes appear first and unsupported

1-item-sets are discarded. Among the extracted rules, we only se-

lect the ones whose consequent (RHS) is DSAT (i.e., Y = {DSAT}).

As a result of this step, we generate multiple categorical rules that

contain effective attributes for identifying DSAT queries.

4.2.2 Lexical Rule Mining
In this section, we provide the details of generating lexical rules

that use DSAT query keywords as lexical attributes.

One motivation for adopting lexical rules is to identify more spe-

cific information about DSAT queries. Although categorical attrib-

utes provide general topic information of DSAT queries (e.g.,

search engines perform worse with queries related to the categori-

cal attributes, Ford Vehicle and Shopping/Vehicle), identifying

detailed lexical information (e.g., among Ford Vehicle and

Shopping/Vehicles queries, the queries containing “lease” are not

properly handled) would be much more helpful for analysis pur-

poses. Besides, more specific rules are more likely to have higher

confidence (i.e., p(DSAT|X)) than general rules because typically

p(DSAT) is much lower than p(SAT).

We generate a lexical rule by combining categorical rules with dis-

criminative keywords in 𝐷𝑆𝐴𝑇 queries. The formal definition is

given as: X ∪ Z ⟹ Y where X ⊆ 𝐴 , Z ⊆ 𝐾 , Y = {DSAT} , (X ∪
Z) ∩ Y = ∅, 𝐴 is the attribute set (Section 4.1), and 𝐾 is the set of

keywords extracted from the DSAT queries represented by X. Since

effective categorical rules (i.e., X ⟹ Y) are already extracted, we

need to identify effective DSAT keywords (i.e., Z).

To solve this problem, we propose a decision tree learning-based

method which extracts effective lexical attributes from DSAT query

texts. If we could train a decision tree where a node corresponds to

a term appearing in DSAT queries (instances) in order to determine

whether a query is DSAT, a decision rule which represents DSAT

examples includes a set of discriminative terms (features). In addi-

tion, to combine those key terms with categorical rules, for each

Figure 2: Decision tree-based lexical rule generation.

categorical rule, we identify the set of queries implied by the cate-

gorical rule, and generate a decision tree using the instance set.

Then, extracted keywords are effective when combined with the

categorical rule. Figure 3 depicts how lexical rules are generated

from a categorical rule. Since decision trees can represent negation,

we originally extract the first and second lexical rules containing

negated lexical attributes (e.g., ¬"patch"). However, to generalize

these rules (i.e., expanding their coverage in real situations), we can

ignore negation and the third and fourth rules can be formulated.

Figure 4 describes the algorithm.

For the lexical rule generation, we can alternatively consider pat-

tern mining approaches (e.g., FP-growth algorithm [20] used in

Section 4.2.1) using keywords as attributes. However, in compari-

son with the FP-growth algorithm, decision tree learning has the

following advantage: decision tree rules can imply negation

whereas FP-growth algorithm mines only association rules that do

not imply negation. In some circumstances, negation is important

because some attributes rarely appear in DSAT queries but fre-

quently appear in SAT queries. For example, let us consider the first

lexical rule in Figure 3. This rule indicates that among the queries

represented by {Game/Video_Games, "airplane simulator"}, the

queries not related to "patch" are DSAT (otherwise the queries are

SAT), i.e., not every query in {Game/Video_Games, "airplane
simulator"} is DSAT. Moreover, if we ignore negation (e.g., the

third and fourth rules in Figure 3), the mining results are almost

identical to the ones identified by the FP-growth algorithm (ideally,

checking the confidence of each decision tree rule can be necessary,

but in our experiments, every decision rule ignoring negation had

p(DSAT|X) ≥ p(DSAT)) because the FP-growth algorithm uses the

confidence (the proportion of DSAT to the instances represented by

the rule) to identify DSAT association rules and similarly decision-

tree learning also considers the entropy of each attribute (the pro-

portion of DSAT to the examples that contain selected attributes) in

generating DSAT decision rules. In our experiments, we discovered

that the rules including negation can provide more specific infor-

mation. We describe some examples in Section 5.3. We use WEKA

implementation of C4.5 algorithm [19] to train decision trees, query

texts are stemmed by WordNet [14], and stop-words are removed.

4.3 DSAT Query Prediction Model
In this section, we describe a DSAT query prediction model that can

classify a given query into DSAT or SAT. Since we generated cate-

gorical and lexical rules to be effective to identify DSAT queries

(Section 4.2) we use these rules as features, and train the model

using labeled examples. The formal definition is given as follows.

Suppose that 𝑅 = {𝑟1, 𝑟2, … , 𝑟𝑛} is a set of 𝑛 rules, 𝑄 = {𝑞1, 𝑞2, … ,
𝑞𝑚} is a set of m query examples, and the label of each example

𝐿(𝑞𝑖) is known. For training, a feature vector of each 𝑞𝑖 is created

as 𝑥𝑞𝑖
= {𝑟1(𝑞𝑖), 𝑟2(𝑞𝑖), … , 𝑟𝑛(𝑞𝑖)} where 𝑟𝑗(𝑞𝑖) is a binary value;

if 𝑞𝑖 is matched to 𝑟𝑗 then 1; otherwise, 0. Then, a set of training

examples is given as X = {〈𝑥𝑞𝑖
, 𝐿(𝑞𝑖)〉}

𝑖=1

𝑚
, and a classification

function 𝑓: X ⟼ {1,0} maps a feature vector associated with a

query to a binary label where 1 and 0 indicate DSAT and SAT, re-

spectively, and the model is learned to minimize a loss function

defined by the disagreement between a mapped label and original

label, 𝐿(𝑞𝑖) for every training example. For learning, we use Sup-

port Vector Machine and Logistic Regression (see Section 5.2).

ALGORITHM Lexical Rule Generation

INPUT:

 Set of labeled query instances, 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑛}

where the label of 𝑞 is 𝐷𝑆𝐴𝑇 or 𝑆𝐴𝑇 , i.e., 𝐿(𝑞) ∈
{DSAT, SAT}

 Categorical rule, 𝐶: X ⟹ {DSAT} where X is a subset

of categorical attributes (item-set)

 Boolean value, b, which indicates ignoring negation

OUTPUT: A set of lexical rules

PROCESS:

1) Initialize 𝑅 = { }

2) Find the set of query instances implied by X, i.e., 𝑄′ =
{𝑞|X(𝑞) = 1} and 𝑞 ∈ 𝑄

3) If 𝑄′ = ∅ Then return ∅

4) Generate 𝐾 which contains n-grams extracted from

𝑄′

5) Train a binary decision tree, 𝐷𝑇, which uses 𝐾 as fea-

tures and 𝑄′ as examples where 𝐿(𝑞) indicates a label

of 𝑞 ∈ 𝑄′

6) For each 𝐷𝑆𝐴𝑇 leaf node, 𝑙𝐷𝑆𝐴𝑇

a. Generate Z the set of nodes (features) in the

path from the root to 𝑙𝐷𝑆𝐴𝑇 in 𝐷𝑇

b. If 𝑏 = 1 Then exclude the node corresponding

to negation from Z

c. Append Z into 𝑅

7) End For

8) Return 𝐶 × 𝑅

Figure 4: Lexical rule generation algorithm.

5. EXPERIMENTS
In this section, we provide experimental results of our DSAT iden-

tification rule mining system. In Section 5.1, we analyze the gener-

ated rules in terms of topical cohesiveness, clickthrough rate, and

DSAT correlation. Section 5.2 describes our query performance

classification model that uses the mined rules to predict dissatisfac-

tion of queries, and demonstrates its effectiveness.

5.1 Rule Analysis

5.1.1 Experimental Set-up
We obtained interaction logs (from June 2012) for 1.5 million

search sessions from hundreds of thousands of consenting users us-

ing several commercial search engines through a widely-distributed

Web browser toolbar. Log entries include a unique identifier for the

user, a timestamp for each page view, and the URL of the Web page

visited. Intranet and secure (https) URL and any personally identi-

fiable information were removed from the logs prior to analysis.

Using the DSAT prediction model [21], we classify each instance

into either of DSAT or SAT. To implement [21], we develop a semi-

supervised model; we first build a supervised classifier using a

small set of labeled DSAT and SAT query instances, and by this

classifier, initial parameters are obtained; the membership of unla-

beled data is calculated using an updated model whose parameters

are re-estimated by the Expectation-Maximum algorithm. Then, we

randomly split the data into two distinct equally-sized groups, non-

overlapping in time: mining and analysis. We use the mining set to

generate association rules (setting the support (𝑆) to 20), and ana-

lyze rules using the analysis set (i.e., unseen data).

In analysis, we use three different metrics defined as follows.

(Cosine-Similarity) Cosine-Similarity is measured to identify the

topical similarity between the instances (queries) represented by

each rule. We hypothesize that more topically cohesive segment

(set of queries) would be obtained if the rule is effective. We de-

scribe each query by a vector of all unique terms in the whole data

set and each dimension corresponds to the frequency of a term in

the query. The similarity between two queries, 𝑞𝑖 and 𝑞𝑗 is given:

similarity =
𝑞𝑖 ∙ 𝑞𝑗

‖𝑞𝑖‖‖𝑞𝑗‖

(Clickthrough Rate) Clickthrough Rate (CTR) indicates the frac-

tion of times the query results in a click on the algorithmic results

when it is issued. Given a query, CTR is computed by:

CTR =
of algorithmic clicks

 # of impressions

CTR is calculated using a different and much bigger set of queries

that does not overlap with our data set.

(𝐃𝐒𝐀𝐓 𝐂𝐨𝐫𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧) DSAT Correlation is a simple measure that

estimates the correlation/dependence between a rule and dissatis-

faction. Given a rule, X ⟹ {DSAT}, the metric is defined as:

DSAT Correlation =
p(X, DSAT)

p(X)p(DSAT)
=

 p(DSAT|X)

p(DSAT)

p(DSAT|X) is the confidence of X defined in Section 4.2.1, and

p(DSAT) is estimated by the proportion of DSAT instances in the

data. If the value is exactly 1, X and dissatisfaction is independent,

and if the value is greater than 1, X is positively correlated with

dissatisfaction. Otherwise, X is negatively correlated with DSAT.

Comparing with the confidence, this metric is more robust because

the confidence can be misleading if the data are imbalanced, and

generally much more SAT queries are recognized in query logs. In

addition, we considered the confidence in rule generation.

(Fixed Attribute Set Baseline) Traditionally, some predefined

query attributes (e.g., IsCommerce indicates the query is related

“Commerce” topics) have been used to segment queries into classes.

For this, text classifiers are trained using manually labeled data. We

refer to those attributes as the Text Classification (TC) attributes.

As a baseline, we generate association rules using these query at-

tributes, and compare the rules generated by our system to the TC

rules. In our method, we do not consider using the TC attributes

because they need extensive human involvement in terms of select-

ing which classifiers to build and labeling training data. In addition

to the need for extensive human involvement, using these attributes

has two more downsides. First, they put a burden on the human

building the system to decide which attributes to consider and

hence which classifiers to build. Contrast this with the proposed

approach where a huge number of attributes is automatically intro-

duced using existing resources (e.g. Wikipedia). Second, these clas-

sifiers may be readily available to commercial search engines as

private properties, but they are not publicly available which limits

their usefulness to the research community. Instead, we use them

as a baseline to validate our method which utilizes public resources.

For generating TC rules, we use a set of 60 proprietary classifiers

(e.g. Technology, Travel, etc.) and we apply the FP-growth algo-

rithm to the same data set (mining set).

5.1.2 Analysis Results
Table 3 shows basic statistics of rule generation using our system

and the baseline. Using the mining set, we generate lexical rules

with ignoring negation (Section 4.2.2) because negation can reduce

the rule coverage and the rules containing negation are hard to reuse

in unseen data (analysis set). As a result, 3,859 categorical rules

and 22,986 lexical rules are generated (OUR). For TC, 1,160 rules

are extracted from the same data. To identify rule coverage, we

measure the number of the rules that can match any analysis in-

stances, i.e., reusable with unseen data. Comparing with TC, our

system can generate many more rules but many of them are not

reusable in unseen data. That said, slightly more examples in the

analysis set can be represented by the rules generated by our system,

i.e., generally both systems can cover the almost same amount of

new queries.

Next we provide the results using the metrics defined in Section

5.1.1. For each rule, we first identify which analysis instances can

be matched (i.e., generate clusters), and calculate the average sta-

tistic of each metric in a cluster. Every rule corresponds to a query

cluster which contains all queries that match this rule. Then, we

report the mean of the average value of each metric over all clusters.

Table 4 shows the results of each metric. First, the clusters obtained

by OUR rules are more topically coherent. Since lexical rules con-

taining keywords of DSAT queries are quite topically specific, this

result is somewhat straightforward. Second, the rules generated by

our system are strongly positively correlated with dissatisfaction,

which means that OUR rules are more effective for identifying

DSAT queries than TC rules. Third, the CTR of both systems is not

significantly different. Generally, low CTR indicates dissatisfaction,

but sometimes DSAT queries can include more clicks. For example,

users do more clicks on search results but they immediately leave

from the clicked results because those are not relevant. However,

DSAT Correlation provides more direct relation between the rules

and DSAT. Lastly, we calculate Kendall’s 𝜏 coefficient between

avg. CTR and DSAT Correlation. In both systems, DSAT Correla-
tion is negatively correlated with CTR, which means generally low

CTR indicates dissatisfaction. Besides, more salient negative rela-

tion is identified by OUR as is evidenced by a much higher DSAT
Correlation in OUR.

5.2 DSAT Query Classification

5.2.1 Experimental Set-up
We conduct experiments to evaluate our system in DSAT query

classification (Section 4.3). In this, a system would perform better

if its features (e.g., association rules in our system) are more effec-

tive to identify DSAT queries. We use the mining set to generate the

Table 3: Basic rule statistics. OUR includes both categorical and

lexical rules. The percentile ratio indicates the reuse ratio of the

generated rules in the analysis set.

Metric \ Method TC (baseline) OUR

of rules generated

from mining set
1,160 26,845

of rules matched

in analysis set

1,158

(99.83%)

5,861

(21.83%)

Percentage of the matched

queries in the analysis set
0.7310 0.7520

Table 4: Comparison against TC baseline. Bold indicates sta-

tistically significant difference at 𝒑 < 𝟎. 𝟎𝟏 from TC (using

Wilcoxon rank-sum test).

Metric \ Method TC OUR

Avg. Cosine-Similarity 0.0133 0.5296

Avg. CTR 0.4509 0.4554

Avg. DSAT Correlation 1.9420 4.0141

Avg. # of queries 2122.44 530.79

Correlation Coefficient

(CTR vs. DSAT Correlation)
−0.2718 −0.3204

rules, and exclude all behavior attributes because we are interested

in predicting query performance at query time before observing any

user behavior. For evaluation, a balanced data set is used, which

contains 40,000 query instances (i.e., 20,000 instances are DSAT

and the others are SAT); this comes from another random sampling

of the queries that does not overlap with the mining set. For learn-

ing, we use a Linear Support Vector Machine (SVM) [29] and Lo-

gistic Regression (LR) [5]. We run each classifier 10 times and for

each run, we perform 10-fold cross-validation using random parti-

tioning.

5.2.2 Baselines
To develop baselines, we leverage the features from previous work

on predicting query performance [10][17][25]. We compare our

system to four different baselines each of which uses different fea-

tures. Table 5 summarizes the features used in Baseline 1 and 2.

The first baseline is developed by using a combination of the query

performance predictors presented in [10][25]. We chose to use

query clarity score ([10]) because it performs as well as other mod-

els (e.g. [34]), does not require access to external resources ([34]

requires the ranking results from two different search algorithms),

and is not limited to any specific query types ([34] focuses on only

two types of queries; named-page finding and content-based). To

estimate inverse collection term frequency ([25]), we used term

probabilities obtained from the Web N-Gram services [31] that pro-

vide smoothed n-gram probability. We calculate the sum, standard

deviation, ratio of the maximum to the minimum, maximum, arith-

metic mean, and geometric mean among the term probabilities of

all query terms. While the first baseline only uses the features ex-

tracted from query texts, the work of [17] additionally considers

interaction behavior (e.g., clickthrough statistics) which can largely

improve prediction performance. Thus, as Baseline 2, we imple-

ment the features proposed in [17], which showed best performance

in that paper. For more robust baselines, we combine the features

from the Baseline 1 and 2 to form Baseline 3. In addition, we de-

velop Baseline 4 which uses all the attributes (see Section 4.1) as

features but does not use the association rules. The purpose of Base-

line 4 is to verify the effectiveness of our rule mining method (Sec-

tion 4.2) by comparing a system that uses the association rules as

features and another that uses the original binary attributes used to

mine the rules.

5.2.3 Classification Results
To perform a fair comparison, we run the methods with various set-

tings. First, to compare with Baseline 1, we exclude behavior at-

tributes and generate association rules (Cat+Lex(NOBH)) because

Baseline 1 uses only query texts for extracting its features and in

our method only behavior attributes require out-of-query infor-

mation (sequence of search actions). Second, to compare with

Baseline 4, we use only categorical rules (Cat) because our objec-

tive is to verify the effectiveness of the rule mining method. Third,

we combine our approach with the most robust baseline (Baseline

3) to verify further enhancements when using behavioral signals.

Tables 6 and 7 (overleaf) show the classification results with SVM

and LR, respectively. We measure Precision, Recall, and F1 for

each class. The area under the receiver operating characteristic

curve (AUC) is measured to identify overall classification perfor-

mance. Since we focus on DSAT query identification, the metrics

related to DSAT are more important.

First, as we intended, Baseline 3 performs better than Baseline 1

and 2. In both classifiers, Baseline 3 can significantly outperform

the two baselines in terms of DSAT precision, AUC and all metrics

regarding SAT. Second, the rule mining method (Section 4.2.1) is

effective using both classifiers. Comparing Cat with Baseline 4, the

performance of Cat is significantly better in most metrics (except

DSAT Recall and SAT Precision using SVM). This is because a cat-

egorical rule itself is a meta-feature, one effective subset of the fea-

tures in Baseline 4 (i.e., categorical attributes). In other words,

learning with the rules, the classifier can find an effective linear

combination of equally associated features (i.e., the rules). Third,

concerning Cat+Lex (NOBH), our system can significantly outper-

form Baselines 1, 2, and 3 in every DSAT metric and AUC, which

means that the rules are more effective than the existing predic-

tors [10][17][25]. This result is important because as we described

in Section 1, we attempt to identify dissatisfaction without behavior

information (before searches terminate), and our system excluding

behavior attributes is better than the baselines using the interaction

features. Moreover, Cat+Lex using all proposed attributes can out-

perform the baselines as well. Fourth, we combine our system

(Cat+Lex) with the robust baseline (Baseline 3), and in SVM ex-

periments (Table 6), we observed significant improvements on

overall classification performance (i.e., AUC). However, using LR

(Table 7), the combination performs worse than our system; espe-

cially in DSAT Recall, where a significant falloff (about a 32% drop

from the performance of Cat+Lex) is observed, but in AUC the per-

formance slightly decreases and significance is not observed. This

is because in LR experiments (Table 7), when compared to

Cat+Lex, Baseline 3 performs poorly in terms of DSAT Recall

(though in AUC, Baseline 3 is much better than Baseline 1 and 2)

and combining with it is harmful to our system which basically per-

forms much better than the baselines. On the other hand, in SVM

experiments (Table 6), comparing to Cat+Lex, Baseline 3 is com-

petitive and the combined approach can perform significantly better

in AUC. Overall, our system (Cat+Lex and Cat+Lex (NOBH)) is

more effective at identifying DSAT instances than existing perfor-

mance predictors [10][17][25] in two statistical learning frame-

works.

5.3 Further Analysis
We provide a qualitative analysis of our approach via query exam-

ples. Table shows three sample rules generated by our system and

example queries represented by the rules. In the first rule, the que-

ries (instances) related to 0 (behavior category, which indicates

more query and less search result exploration) and Society/
People are dissatisfaction. In particular, the users querying for [lisa

hill] reformulated the query several times but only clicked on two

results with short dwell time (less than 30 seconds).

Table 5: Summary of Baseline Features.

Baseline Class Feature

Baseline 1 Query

query clarity score [10]

query word length

inverse web term probability [25]

Baseline

2 [17]

Query
query word length

query character length

User

Interac-

tion

of distinct subsequent queries,

of SR, # of SERP, # of all search

actions, # of clicked answers

query impression count, # of long ac-

tions (dwelling time is more than 30

seconds),

of algorithmic clicks,

clickthrough rate (CTR),

SAT Rate =
of long actions

 # of algorithm clicks

Table 6: Classification results using SVM. Cat indicates using only categorical rules, Lex indicates using lexical rules, NOBH denotes

excluding behavior attributes (Section 4.1.4), and Baseline4 uses categorical attributes as features (Section 5.2.2). In each column, a

significant improvement over each baseline is marked by its number, e.g., B12 indicates improvement over Baseline 1&2. A † and ‡

denote a significant improvement over Cat and Cat+Lex, respectively. The paired t-test is performed with 𝒑 < 𝟎. 𝟎𝟏.

Method \ Metric
𝐃𝐒𝐀𝐓

Precision

𝐃𝐒𝐀𝐓

Recall

𝐃𝐒𝐀𝐓

F1

𝐒𝐀𝐓

Precision

𝐒𝐀𝐓

Recall

𝐒𝐀𝐓

F1
AUC

Baseline 1 [10][25] 0.5951 0.6614 0.6265 0.6210 0.5277 0.5706 0.6427

Baseline 2 [17] 0.5965 0.6535 0.6237 0.6189 0.5393 0.5764 0.6425

Baseline 3 [10][17][25] 0.6932 B12 0.6742 0.6836 B12 0.7248 B12 0.7395 B124†‡ 0.7321 B124†‡ 0.7710 B124

Baseline 4 0.6911 B12 0.7297 B123 0.7099 B123 0.7165 B12 0.6685 B12 0.6917 B12 0.7557 B12

Cat 0.7119 B1234 0.7242 B123 0.7180 B1234 0.7201 B12 0.7052 B124 0.7126 B124 0.7794 B1234

vs. Baseline 4 +3.01% −0.75% +1.14% +0.50% +5.49% +3.02% +3.14%

Cat+Lex (NOBH) 0.7081 B1234 0.7348 B123 0.7212 B1234 0.7253 B12 0.6953 B124 0.7100 B124 0.7787 B1234

vs. Baseline 1

vs. Baseline 2

vs. Baseline 3

+18.99%

+18.71%

+2.15%

+11.10%

+12.44%

+8.99%

+15.12%

+15.36%

+5.51%

+16.80%

+17.19%

+0.07%

+31.76%

+28.93%

−5.98%

+24.44%

+23.18%

−3.02%

+21.16%

+21.20%

+1.00%

Cat+Lex 0.7167 B1234 0.7221 B123 0.7194 B1234 0.7210 B12 0.7125 B124 0.7167 B124 0.7831 B1234†

vs. Baseline 1

vs. Baseline 2

vs. Baseline 3

+20.43%

+20.15%

+3.39%

+9.18%

+10.50%

+7.10%

+14.83%

+15.34%

+5.24%

+16.10%

+16.50%

−0.52%

+35.02%

+32.12%

−3.65%

+25.62%

+24.35%

+2.10%

+21.85%

+21.88%

+1.57%

Cat+Lex+Baseline3 0.7124 B1234 0.7261 B123 0.7192 B1234 0.7534 B1234†‡ 0.7360 B124†‡ 0.7446 B1234†‡ 0.8175 B1234†‡

vs. Baseline 3

vs. Cat+Lex

+2.77%

−0.60%

+7.70%

+0.55%

+5.21%

−0.03%

+3.95%

+4.49%

−0.47%

+3.30%

+1.71%

+3.89%

+6.03%

+4.39%

Table 7: Classification results using LR. The same notation is used as in Table 6. The paired t-test is performed with 𝒑 < 𝟎. 𝟎𝟏.

Method \ Metric
𝐃𝐒𝐀𝐓

Precision

𝐃𝐒𝐀𝐓

Recall

𝐃𝐒𝐀𝐓

F1

𝐒𝐀𝐓

Precision

𝐒𝐀𝐓

Recall

𝐒𝐀𝐓

F1
AUC

Baseline 1 [10][25] 0.6386 0.5257 B3 0.5767 0.5414 0.6537 0.5923 0.6282

Baseline 2 [17] 0.6173 0.5718 B3 0.5937 0.5538 0.6146 0.5826 0.6338

Baseline 3 [10][17][25] 0.6936 B12 0.4778 0.5658 0.6429 B12 0.8160 B124†‡ 0.7192 B124 0.7747 B124

Baseline 4 0.6789 B12 0.7319 B123 0.7044 B123 0.7092 B123 0.6536 0.6803 0.7529 B12

Cat 0.7155 B1234 0.7350 B123 0.7251 B1234 0.7276 B1234 0.7077 B124 0.7175 B124 0.7942 B1234

vs. B4 +5.39% +0.42% +2.94% +2.59% +8.28% +5.48% +5.49%

Cat+Lex (NOBH) 0.7128 B1234 0.7408 B1234 0.7265 B1234 0.7302 B1234 0.7015 B124 0.7156 B124 0.7938 B1234

vs. Baseline 1

vs. Baseline 2

vs. Baseline 3

+11.62%

+15.47%

+2.77%

+40.92%

+29.56%

+55.04%

+25.99%

+22.38%

+28.40%

+34.87%

+31.85%

+13.58%

+7.31%

+14.14%

−14.03%

+20.82%

+22.82%

−0.50%

+26.36%

+25.24%

+2.47%

Cat+Lex 0.7163 B1234 0.7363 B123 0.7262 B1234 0.7287 B1234 0.7084 B124 0.7184 B124 0.7953 B1234

vs. Baseline 1

vs. Baseline 2

vs. Baseline 3

+12.17%

+16.04%

+3.27%

+40.06%

+28.77%

+54.10%

+25.92%

+28.77%

+28.34%

+34.60%

+31.58%

+13.35%

+8.37%

+15.26%

−13.19%

+21.30%

+23.31%

−0.11%

+26.60%

+25.48%

+2.66%

Cat+Lex+Baseline 3 0.7148 B1234 0.5036 B3 0.5909 B123 0.6504 B123 0.8207 B124†‡ 0.7257 B1234† 0.7882 B1234

vs. Baseline 3

vs. Cat+Lex

+3.06%

−0.21%

+5.40%

−31.60%

+4.43%

−18.63%

+1.17%

−10.75%

+0.58%

+15.85%

+0.91%

+1.01%

+1.74%

−0.89%

Table 8: Sample rules and query examples. BH denotes Behavior attributes (Section 4.1.4), ODP denotes ODP attributes (Section

4.1.1), and WIKI denotes Wikipedia attributes (Section 4.1.3). For each rule, the consequent ({𝐃𝐒𝐀𝐓}) is omitted.

No. Rule Example Query Label

1 {0[BH], Society/People[ODP]} lisa hill DSAT

2 {automobiles[WIKI], "warranty"}
1989 toyota mr2 warranty DSAT

2011 suzuki sx4 factory warranty SAT

3 {motor vehicle company of Italy[WIKI], ¬aventador, ¬fiat, "ferrari"}
used ferrari cars scottsdale DSAT

certified ferrari cars phoenix DSAT

The second rule describes a set of underperforming queries for auto

warranty information. We found that sometimes the warranty in-

formation of older models (e.g., [1989 toyota mr2]) is not readily

located whereas the information for newer models (e.g., [2011 su-

zuki sx4]) is easily found. The third rule contains negation, and

shows that some users are dissatisfied with results for a group of

queries related to “ferrari” and not containing “fiat” or “aventador”.

6. CONCLUSION
In this paper, we proposed a framework to automatically generate

association rules to identify underperforming queries. In order to

build effective rules, we first generate topical attributes recognized

from query text and formulate association rules that discover fre-

quent patterns of the attributes for identifying dissatisfaction que-

ries. Then, we apply a decision tree learning to identify discrimina-

tive keywords of dissatisfaction queries and combine the keywords

with the association rules. In experiments, we verified the effec-

tiveness of our system in the task of dissatisfaction query classifi-

cation in comparison to existing query performance prediction

baselines. Considering previous work on modeling user satisfaction,

the advantage of our method is identifying dissatisfaction at query

time and our system can provide evidence of dissatisfaction to

search engines before users abandon searches. For future work, we

plan to devise effective methods to improve the instances of search

dissatisfaction identified by our method.

7. REFERENCES
[1] Ageev, M., Guo, Q., Lagun, D., and Agichtein, E. (2011).

Find it if you can: a game for modeling different types of
web search success using interaction data. SIGIR, 345-354.

[2] Agrawal, R., Imielinski, T., and Swami, A. (1993). Mining

association rules between sets of items in large databases.
SIGMOD, 207-216.

[3] Agrawal, R. and Srikant, R. (1994). Fast algorithms for min-

ing association rules in large databases. VLDB, 487-499.

[4] Al-Maskari, A., Sanderson, M, and Clough, P. (2007). The

relationship between IR effectiveness measures and user sat-
isfaction. SIGIR, 773-774.

[5] Andrew, G. and Jainfeng, G. (2007). Scalable training of L1-

regularized log-linear models. ICML, 33-40.

[6] Aula, A., Khan, R.M., and Guan, Z. (2010). How does search

behavior change as search becomes more difficult? CHI, 35-
44.

[7] Bennett, P.N., Svore, K., and Dumais, S.T. (2010). Classifi-
cation-enhanced ranking. WWW, 111-120.

[8] Carmel, D., Yom-Tov, E., Darlow, A., and Pelleg, D. (2006).

What makes a query difficult? SIGIR, 390-397.

[9] Carterette, B. and Jones, R. (2007). Evaluating search en-

gines by modeling the relationship between relevance and

clicks. NIPS, 217-224.

[10] Cronen-Townsend, S., Zhou, Y., and Croft, W.B. (2002).

Predicting query performance. SIGIR, 299-306.

[11] Coenen, F., Goulbourne, G., and Leng, P. (2004). Tree struc-

tures for mining association rules. Data Mining and
Knowledge Discovery, 8(1): 25-51.

[12] Downey, D., Dumais, S.T., and Horvitz, E. (2007). Models

of searching and browsing: languages, studies, and applica-

tions. IJCAI, 2740-2747.

[13] Feild, H., Allan, J., and Jones, R. (2010). Predicting searcher

frustration. SIGIR, 34-41.

[14] Fellbaum, C. (1998). WordNet: An Electronic Lexical Data-
base. Bradford Books.

[15] Finkel, J., Grenager, T., and Manning, C. (2005). Incorporat-

ing non-local information into information extraction sys-

tems by Gibbs sampling. ACL, 363-370.

[16] Fox, S. Karnawat, K., Mydland, M., Dumais, S., and White,

T. (2005). Evaluating implicit measures to improve web
search. ACM TOIS, 23(2): 147-168.

[17] Guo, Q., White, R.W., Dumais, S.T., Wang, J., and Ander-

son, B. (2010). Predicting query performance using query,
result, and user interaction features. RIAO, 198-201.

[18] Guo, Q., White, R.W., Zhang, Y., Anderson, B., and Dumais,

S.T. (2011). Why searchers switch: understanding and pre-
dicting engine switching rationales. SIGIR, 335-344.

[19] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,

P., and Witten, I.H. (2009). The WEKA data mining soft-
ware: an update. SIGKDD Explorations, 11(1): 10-18.

[20] Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns
without candidate generation. SIGMOD, 1-12.

[21] Hassan, A. (2012). A semi-supervised approach to modeling

web search satisfaction. SIGIR, 275-284.

[22] Hassan, A., Jones, R., and Klinkner, K.L. (2010). Beyond

DCG: user behavior as a predictor of a successful search.
WSDM, 221-230.

[23] Hassan, A., Song, Y., and He, L. (2011). A task level user

satisfaction model and its application on improving relevance
estimation. CIKM, 125-134.

[24] He, B. and Ounis, I. (2004). Inferring query performance us-
ing pre-retrieval predictors. SPIRE, 43-54.

[25] He, B. and Ounis, I. (2006). Query performance prediction.

Information System, Vol. 31(7), 585 – 594.

[26] Huffman, S. and Hochster, M. (2007). How well does result
relevance predict session satisfaction? SIGIR, 567-574.

[27] Jones, R. and Klinkner, K. (2008). Beyond the session

timeout: automatic hierarchical segmenting of search topics
in query logs. CIKM, 699-708.

[28] Leskovec, J., Dumais, S., and Horvitz, E. (2007). Web pro-

jections: learning from contextual sub graphs of the web.

WWW, 471-480.

[29] Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007).

Pegasos: primal estimated sub-gradient solver for SVM.
ICML, 807-814.

[30] Wang, C., Hsu, B., Chang, M., and Kiciman, E. (2012). Sim-

ple and knowledge-intensive generative model for named en-

tity recognition. Technical Report.

[31] Wang, K., Thrasher, C., Viegas, E., Li, X. and Hsu, P.

(2010). An overview of Microsoft web n-gram corpus and
applications. NAACL HLT Demo Session, 45-48.

[32] Weiss, Y., Torralba, A., and Fergus, R. (2008). Spectral

hashing. NIPS, 1753-1760.

[33] Zhao, Y., Scholer, F., and Tsegay, Y. (2008). Effective pre-

retrieval query performance prediction using similarity and
variability evidence. ECIR, 52-64.

[34] Zhou, Y., and Croft, W. B. (2006). Ranking robustness: a

novel framework to predict query performance. CIKM, 567-
574.

[35] Zhou, Y. and Croft, W.B. (2007). Query performance predic-
tion in web search environments. SIGIR, 543-550.

