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ABSTRACT 

In this paper, independent component analysis (ICA) in a sub-
band domain has been extended into a feed-forward network.  
The feed-forward network maximizes mutual independence of 
separated current frames using information from both current 
and previous multi-channel frames of speech signals captured by 
a microphone array.  To guide into a proper separation prevent-
ing permutation and arbitrary scaling, we not only rely on the 
steered response for the first tap of the demixing filter but also 

penalize on the direction thus drastically increasing the mean 
squared error with the spatial filtered output.  After conver-
gence, by applying instantaneous direction of arrival (IDOA) 
based post-processing, we can additionally suppress the leakage 
of interference as well as the reverberated target signal.  The 
signal to interference ratio (SIR) is improved more than 20 dBC 
for distances up to 2.7 m and angle differences down to 26°. 

Index Terms — Speech separation, Independent compo-

nent analysis, Beamforming, Instantaneous direction of arrival, 
Feed-forward ICA 

1. INTRODUCTION 

   Speech separation has been an active research topic for various 
interesting applications, ranging from speech enhancement to 
simultaneous capture and separation of human voices.  One of 
the compelling applications is simultaneous voice control of 
multimedia equipment.  In this scenario we should successfully 
handle various acoustic environments (noise levels and reverbe-

ration conditions) to achieve a robust separation of the simulta-
neous voices.  Recently, combinations of beamforming and in-
dependent component analysis have been proposed [1].  Consi-
dering the fact that those two schemes are based on the different 
optimality criteria (minimizing power for non-look direction 
signal [2] versus maximizing non-Gaussianity or mutual inde-
pendence [3]), we might be able to expect that combining two 
heterogeneous technologies would provide better results than 

each individual approach alone.  However, most of the current 
approaches are reporting that converged ICA demixing filters 

are closer to a null-former on interference sources [1], [4], [5].  

Although this observation is appealing because by nulling the 
interferences we can increase super-Gaussianity in such a way 
that we can suppress the unwanted speech signals. This also 
means that the ICA does not contribute much to the convention-
al beamforming combined with nullforming on the interferences 
(assuming known directions of arrival).  In fact, the beamform-

ing plus nullforming scheme seems to be the best we can 

achieve using only the information from the current frame. 
   Frequency domain ICA has been proposed to solve convolu-
tive mixing with separated instantaneous demixing in each indi-
vidual frequency bin [3].  Although the fact that convolution in 
time domain can be represented as multiplication in frequency 
domain has been a reasonable justification for the benefits of the 
frequency domain approach, this is true only when the frame 
length is large enough.  In a typical frame length (10-20 ms), the 

reverberated target and interference cannot be compensated 
properly because reverberation time (typically 200-300 ms) 
exceeds the frame length [4].  Also, the permutation and arbi-
trary scaling among the separated sources per each frequency 
bin have been critical issues that still need to be solved. 
   In this paper, we overcome the fundamental limitation of the 
subband domain ICA in a reverberant acoustic environment by 
taking previous multi-channel frames into consideration as well 

in order to increase the super-Gaussianity of the separated 
speech signals rather than just using current frames for instanta-
neous demixing.  Feed-forward demixing filter structure with 
several taps in the subband domain is accommodated with natu-
ral gradient update rules [6].  To prevent permutation and arbi-
trary scaling and guide the separated speech sources into the 
designated channel outputs, we not only use the estimated spa-
tial information on the target and interference, but also add a 
regularization term on the update equation thus minimizing 

mean squared error between separated output signals and the 
outputs of spatial filters.  After convergence of the regularized 
feed-forward demixing filter, we observe better separation of the 
speech signals, with audible late reverberation for both desired 
and interference speech signals.  These reverberation tails can be 
substantially suppressed by using spatial filtering based on the 
instantaneous direction of arrival (IDOA), which gives us the 
probability for each frequency bin to be in the original source 

direction [7].  This post-processing also suppresses the remain-
ing leakage of the interference speech coming from non-look 
directions. The proposed method is evaluated using two criteria: 
physical separation is measured by the signal to interference 
ratio (SIR), and separated speech quality is measured by the 
perceptual evaluation of speech quality (PESQ) algorithm [8].  
Experiments are performed in a relatively adverse acoustic envi-
ronment (T60 of 375 ms, SNR of 15 dBC, where dBC stands for 

dB in C-weighting [7]), a distance of 1.5 to 4.3 meters, and an 
angle between the two speakers ranging from 6° to 70°.  The 
proposed algorithm achieves an improvement of 29 dBC in SIR 
and 0.6 in PESQ points for the best case.  These improvements 



remain above 10 dBC and 0.084 PESQ points in the most ad-
verse condition.  For distances up to 2.7 m and separation angles 
down to 26° the SIR stays above 20 dBC. 

2. PROBLEM FORMULATION AND 

BACKGROUND 

   Figure 1 shows a block diagram for separation of two inde-
pendent speeches in the subband domain.  Time-domain signals 
captured using multiple microphones are converted to the sub-
band domain using a modulated complex lapped transform 
(MCLT) that can produce better separation between frequency 
bands in an efficient manner [9].  The source separation can be 

performed using a demixing filter in each individual frequency 

bin 1,2, ,k K  where K  is the number of the frequency bins. 

Then the resulting signal can be converted back to the time do-
main using inverse MCLT. Source separation per each bin can 
be formulated as following: 

 S WY  (1) 

where S  is the separated speech vector, W  is the demixing 

matrix, and Y  is the measured speech vector in a reverberant 
and noisy environment.  We omitted a bin index for clarity of 
presentation. 

2.1. Beamforming 

   One of the most commonly used beamformers is the minimum 
variance distortionless response (MVDR) beamformer, which in 
the frequency domain can be described as: 
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Here D  is a steering vector, nR  is a noise covariance matrix, 

and W  is a weights matrix. Often the noise only covariance 

nR  is replaced by R , which is the covariance matrix of the 

input (signal plus noise).  This is more convenient as we avoid 
using a voice activity detector. This beamformer is known as 
minimum power distortionless response (MPDR).  To prevent 

instability due to the direction of arrival mismatch, a regulariza-
tion term is added to the sample covariance matrix [2], [7].  In 
our case, we also add an additional null constraint in the direc-
tion of the interference.  The beamformer with extra nullforming 
constraint can be formulated as: 
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where tD and iD  are steering vectors toward the target and 

interference direction respectively, and  is the regularization 

term for diagonal loading.  With the beam on the target and null 
on the interference directions, we can initialize the first-tap of 
the feed-forward ICA filter for appropriate channel assignment.  

2.2. Combination of conventional subband domain ICA 

and beamforming 

   With a proper choice of the non-linear mapping function based 

on the speech signal statistic [3], [10], maximizing of the mutual 
independence results in the maximization of the super-
Guassianity of the separated speech signals.  The original ICA 
for the instantaneous mixing case can be extended to the convo-
lutive mixing such as mixing of multiple simultaneous speech 
signals in a room.  This conventional ICA approach performed 
in the subband domain converges towards the beamformer plus 
nullformer solution (3).  This fact has been used as an additional 

component in the ICA filter update [1] to prevent misleading of 
the convergence and to speed up the convergence itself.  Also, 
the steered response on the converged ICA filter per each fre-
quency bin has been utilized as a cue for solving the permutation 
and scaling problem. 

3. REGULARIZED FEED-FORWARD ICA WITH 

IDOA BASED POST-PROCESSING 

   Figure 2 shows a block diagram of the proposed two step me-

thod for one subband. The first step is the beamforming plus 
nullforming, followed by an IDOA based spatial filter, which 
produces additional suppression of the interference signals.  The 
second step is feed-forward ICA, which uses the output of the 
first step for regularization.  Here we maximize the mutual inde-
pendence of the separated speeches by using both current and 
previous multi-channel frames.  A secondary spatial filter is 
applied at the end of the second step. 

3.1. Beamforming followed by a spatial filter 

   To determine the direction of arrival (DOA) of the desired and 
interference speech signals we use an IDOA based sound source 
localizer.  Instantaneous Direction of Arrival (IDOA) space is 

1M   dimensional with the axes being the phase differences 

between the non-repetitive pairs [7].  Here M  is the number of 
microphones.  This space allows estimation of the probability 

density function  kp   as a function of the direction   for 

 
Figure 2. Proposed regularized feed-forward ICA with IDOA 

based post-processing 

 
 

Figure 1. Diagram of speech separation in subband domain 



each subband. The results from all subbands are aggregated and 
clustered [7].  At this stage additional cues (from a video camera, 
for example) can be applied to improve the localization and 
tracking precision.  The sound source localizer provides direc-

tions to desired 1  and interference 2 signals.  Given the prop-

er estimation on the DOAs for the target and interference speech 
signals we apply the constrained beamformer plus nullformer 
according to (3).  

   The consequent spatial filter applies a time-varying real gain 
for each subband, acting as a spatio-temporal filter for suppress-
ing sounds coming from non-look directions.  The suppression 
gain is computed as:  
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where   is the range around the desired direction 1  from 

which we want to capture the sound. 

3.2. Regularized feed-forward ICA followed by IDOA 

based post-processing 

   In this paper, we utilize the virtue of the time-domain source 
separation approach [6] in the subband domain case by allowing 
multiple taps in the demixing filter structure in each subband.  
The proposed update rule for the regularized feed-forward ICA 
(RFFICA) is given below: 

   ICA, First stage,1i i i i       W W  (5) 

where 0,1, , 1i N  , N is the number of taps.  ICA,i and 

First stage,i  represent the portion of the ICA update and the 

regularized portion on the first stage output. 
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where
t

  represents time averaging,  i  represents i sample 

delay, First stageS is the first stage output vector for regularization 

and Ref|  represents the reference channels.  The penalty term 

has been only applied to the channel where the references are 
assigned; the other entries for the mixing matrix are set to zero 
so that the penalty term vanishes on those channel updates.  For 
initialization of the subsequent filters, we modeled the reverbe-
ration process as exponential attenuation: 
 exp( )i i  W I  (10) 

where I is an identity matrix,   is selected to model the aver-

age reverberation time, and i  is the tap index.  Note that we 

initialized the first tap of RFFICA for the reference channels as 
a pseudo-inversion of the steering vector stack for the current 

experiment so that we can assign 1 to the target direction and 
null to the interference direction: 
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Because we update the initialized filter using ICA, a slight mis-
match with actual DOA can be adjusted in the updating proce-
dure.  For the current experiment, we set   as 0.5 just to penal-

ize the larger deviation from the first stage output.  As a nonli-

near function  g  we used a polar-coordinate based tangent 

hyperbolic function, suitable to the super-Gaussian sources with 

a good convergence property [10]: 

 ( ) tanh(| |)exp( )g jX X X  (12) 

where X  represents the phase response of the complex value 
X.  To deal with the permutation and scaling we also used the 
steered response of the converged first tap demixing filter as 
following:  
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where l is the designated channel number, lF is the steered re-

sponse for the channel output, F is the steered response to the 
candidate DOAs.  To penalize the non-look direction in the scal-

ing process we added the non-linear attenuation with the norma-
lization using the steered response.  For our current experiment, 
we set  as 1.  The spatial filter also penalizes on the non-look 

directional sources in each frequency bin. 

4. EXPERIMENTAL RESULTS 

4.1. Experimental setup 

   For sound capture we used a four element microphone array 
with unidirectional microphones and a length of 225 mm.  In a 
large office room (T60 of 375 ms) we measured the room im-
pulse responses (RIRs) between a rectangular grid of points and 
each of the microphones.  This was done by using a mouth si-
mulator playing a wideband chirp signal from each point of the 

grid.  Using the same microphone array we recorded ambient 
noise in the same space (air conditioning plus five computers).  
Using a clean speech corpus convolved with the corresponding 
RIRs and adding the natural noise, we generated 18 different 
evaluation cases with two speech sources.  The distance from 
the microphone array to both speech sources was the same and 
varied from 1.3 to 4.3 meters.  The distance between the sound 
sources varied from 0.6 to 1.8 meters, resulting in a distance 

angle between 6º and 70º from the microphone array point of 
view. 
   For evaluation we used two different measures: signal-to-
interference-ratio (SIR) and perceptual sound quality measured 
with the PESQ algorithm [8].  While the first is the intuitive 
measure for a speech separation algorithm, the second allows us 
to keep track of the output signal quality.  SIR is defined as the 
following: 

 
Target Portion Energy

SIR 10log10  dBC
Interference Portion Energy

  (14) 

where target and interference portion can be estimated precisely 

using the clean speech signals. Although PESQ is not a typical 
measure for a source separation purpose, it allows keeping track 



of the distortions in the desired speech signal. The Matlab im-
plementation of the proposed algorithm was built based on the 

audio stack and microphone array processing implementation 
provided in [7]. 

4.2. Results and discussion 

   We have evaluated all 18 two-speech cases.  With a conserva-
tive setting of 1000 iterations and 20 taps filters for each sub-
band, the proposed approach improves SIR in the range of 10 to 
29 dBC and PESQ 0.1 to 0.6 points.  Figure 3 represents contour 
plots of the improvement in SIR as a function of the distance to 

and the angle between the sound sources.  Note that the contour 
plot has been generated by interpolating the results of 18 actual 
measurements.  Assuming 20 dBC separation as good enough 
for practical purposes, we can say that the proposed algorithm is 
good enough for distances up to 2.7 meters for two speakers at 
26°, i.e. standing shoulder to shoulder.  Published papers report 

an SIR around 8 dB at a distance of 1.15 m, 70°, T60 300 ms [1], 
or 13 dB for a distance of 1.7 m, 75°, T60 200 ms [5].  In the 
most difficult condition of 6° between speakers at 4.23 meters 
distance, we can still maintain a 10 dBC SIR and 0.1 improve-

ment in PESQ points.  
   Figure 4 provides a comparison of the results for several me-
thods for a distance of 1.22 meters, 55° angle between speakers, 

and T60 375 ms.  These conditions are close, but more difficult 

than those published in [1] and [5].  Just the conventional beam-
former plus nullformer provides a nearly 10 dBC improvement, 
which corresponds to the conclusions in these papers. Adding 
the spatial filter (the first stage of the proposed algorithm) in-
creases the suppression close to 20 dBC, which is practically the 
maximum a spatial separation can achieve.  Adding the second 

stage increases the SIR to 29 dBC while keeping an acceptable 
quality of the separated speech signal. 

5. CONCLUSION AND FUTURE WORK 

   In this paper, we proposed a subband domain based, two stage 
approach utilizing spatial filtering, and regularized feed-forward 
ICA with multi-taps demixing filter.  This approach produces 
substantial improvement in terms of SIR, while maintaining 
sound quality, measured with the PESQ algorithm.  The pro-
posed approach can be interpreted from both points of view 

independently.  From the beamforming point of view, with 

proper prior knowledge of DOAs for the target and interferences, 
we can construct a subband domain filter structure augmented 

with higher-order independence maximization criterion for bet-
ter suppression of the unwanted interference and noise.  From 
the ICA point of view, with a prior knowledge on the DOAs for 
the target and interference, we can expand the conventional 
instantaneous demixing in the subband domain into the feed-
forward network which turned out to increase the mutual inde-
pendence without additional processing to solve the permutation 
problems.  Many different ways of solving the permutation 

problem can be combined without hurting current schemes.  In 
our case we used the IDOA-based sound source localization 
information. 
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Figure 4. SIR (dBC) improvement comparison: 1.22 meters distance 

and 55°angle. 1 (BF+NF), 2 (BF+NF+SF), and 3 (Proposed).  
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Figure 3. Contour plot of the improvement in SIR (dBC) as a function 

of the distance and separation angle. 
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