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Abstract
We propose a method for accurate 3D shape reconstruc-

tion using uncalibrated multiview photometric stereo. A
coarse mesh reconstructed using multiview stereo is first
parameterized using a planar mesh parameterization tech-
nique. Subsequently, multiview photometric stereo is per-
formed in the 2D parameter domain of the mesh, where all
geometric and photometric cues from multiple images can
be treated uniformly. Unlike traditional methods, there is
no need for merging view-dependent surface normal maps.
Our key contribution is a new photometric stereo based
mesh refinement technique that can efficiently reconstruct
meshes with extremely fine geometric details by directly
estimating a displacement texture map in the 2D parame-
ter domain. We demonstrate that intricate surface geome-
try can be reconstructed using several challenging datasets
containing surfaces with specular reflections, multiple albe-
dos and complex topologies.

1. Introduction
Recovering an accurate 3D shape from images is an im-

portant and challenging problem in computer vision. With

recent progress in structure from motion (SfM) [12] and

multiview stereo (MVS) [18], it is nowadays possible to re-

construct 3D models for many challenging scenes. These

geometric methods recover 3D shape by estimating pixel

correspondences in multiple views. Hence, they can suf-

fer in accuracy when surfaces are weakly textured or cam-

eras have wide baselines. On the other hand, photomet-

ric methods, such as shape-from-shading [9] and photomet-

ric stereo [25], use shading cues to estimate per-pixel sur-

face normal maps but do not directly provide depth esti-

mates. These two types of approaches have complementary

strengths and have been combined in prior work [28, 15, 6,

27, 26] in the literature.
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In this paper, we present a new multiview photometric

stereo method that efficiently combines geometric and pho-

tometric cues. Our method takes as input, a set of images

captured from multiple viewpoints illuminated by different

light sources. It starts by recovering a coarse 3D mesh using

existing state of the art SfM and MVS techniques. The idea

of transforming this mesh into a parameterized 2D space

using a distortion minimizing piecewise continuous 3D-to-

2D mapping lies at the core of our method. Unlike prior

methods that use explicit 3D representations [6, 15], we

use a planar parameterization of the mesh [19] and cast the

mesh refinement problem into one of estimating a displace-
ment map texture in the 2D parameter domain. We show

that both photometric stereo based surface normal estima-

tion and mesh refinement can be efficiently and accurately

performed in the parameterized 2D space.

Our proposed technique has two advantages. First, im-

ages from multiple viewpoints can be naturally handled

when performing multiview photometric stereo in the 2D

parameter domain, because all the images can be registered

without introducing large pixel distortions. As surface nor-

mals can be directly estimated in this space using multiple

registered images captured under varying lighting, it avoids

the needs to first estimate per-view normal maps and then

merge normal maps obtained from multiple viewpoints. In-

stead, images from multiple views can be jointly handled in

our representation. Second, we can efficiently recover an

extremely detailed 3D mesh exploiting the full resolution

available in the input images. The level of geometric de-

tail in our representation can be easily controlled by spec-

ifying the appropriate resolution of the estimated displace-

ment map and the optimization is more efficient than direct

3D methods that must resort to subdividing the mesh and

refining the vertex positions.

We describe how the proposed technique is used within

a complete 3D reconstruction pipeline. We have evaluated

our method on challenging sequences involving objects that

have intricate 3D shapes or have multiple albedos, reflective

surfaces or complex topologies. We also perform a quanti-

tative evaluation which demonstrates the advantage of our

mesh refinement technique over existing methods [6, 15].
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Input image SfM Depth Map Multiview stereo Mesh parameterization Mesh refinementSurface normal estimation 

Figure 1. Overview of our method. Structure-from-motion is used to calibrate the cameras and multiview stereo is used to recover a coarse

mesh. After parameterizing the mesh, multiview photometric stereo and mesh refinement are performed in the 2D parameter domain.

Base Mesh Calibration 3D Shape Representation Optimize by Normals Estimated in

Nehab et al. [15] 3D Scanner Manual Regular 3D Mesh Mesh Refinement Individual Image

Hernandez et al. [6] Visual Hull Auto Regular 3D Mesh Mesh Refinement Face Normals of Mesh

Our method SfM+MVS Auto Mesh+Displacement Map Displacement Map 2D Parameterized Space

Table 1. A comparison of our method and prior techniques [6, 15]. We use a different 3D shape representation, which is key to the high

accuracy and efficiency of the normal map estimation and mesh refinement steps in our method.

2. Related Work

The idea of fusing geometric and photometric cues

for high-quality 3D scanning is gaining attention due to

their complementary strengths; multi-view geometric ap-

proaches are quite robust, but the recovered shapes can be

coarse whereas photometric approaches can recover fine de-

tails by estimating surface normals. These methods can be

broadly classified into 2D depth map refinement approaches

and the ones that perform 3D mesh refinement.

Nehab et al. [15] propose an efficient method for 2D

depth map refinement by adjusting depth values using or-

thogonality between depth gradients and surface orienta-

tions. Zhang et al. [29] extend their method to better pre-

serve depth discontinuities. Okatani and Deguchi [16] pro-

pose a probabilistic framework for shape refinement using

the first-order derivative of surface normals. While these

methods are effective and can be used for recovering a full

3D mesh, they require additional processing for registering

and merging multiple view-dependent depth maps.

For 3D mesh refinement, Rushmier and Bernardini [17]

adjust local normal directions obtained using photometric

stereo. Nehab et al. [15] state that their 2D depth refinement

method can be extended to handle a 3D mesh. Lensch et
al. [11] introduce a generalized method for modeling non-

Lambertian surfaces by wavelet-based BRDFs and use it

for mesh refinement. Hernandez et al. [6] iteratively refine

mesh polygons by minimizing a quadratic energy function.

Wu et al. [26] use the spherical harmonics representation to

estimate global illumination, and refine a preliminary mesh

using photometric stereo by minimizing �1 penalties. In

an extended approach [27], geometric details are added us-

ing shape-from-shading under natural lightings. Vlasic et
al. [23] first integrate per-view normal maps into partial

meshes, then deforms them using thin-plate offsets to im-

prove the alignment while preserving geometric details.

These 3D mesh refinement methods generally use a

high-resolution mesh in order to enclose high frequency

details obtained by photometric methods; however, deter-

mining the appropriate mesh resolution is non-trivial due

to the view-dependent variation of effective resolutions. In

contrast, our method allows the mesh resolution to be de-

rived directly from the normal map resolution and avoids

the problem of undersampling mesh vertices. In addition,

our 2D parameterization approach performs mesh refine-

ment efficiently, where only 1D vertex displacements are

optimized rather than directly working in the 3D coordi-

nates. Table 1 summarizes how our approach related to the

two closely related methods proposed by Nehab et al. [15]

and Hernandez et al. [6].

3. Proposed Method
In this section, we describe the key elements of the pro-

posed method. For now, let us assume that all the cameras

are calibrated and the initial base mesh is available. The

methods for calibration and obtaining the initial base mesh

are later explained in Sec. 4. After describing the mesh pa-

rameterization scheme, we explain how surface normal esti-

mation and mesh refinement is performed in the 2D param-

eter domain. Figure 1 shows an overview of our approach.

3.1. Mesh Parameterization

In our method, first the triangulated base mesh denoted

by M, is mapped to a planar parameterized space using a

piecewise continuous function f : R3 → R
2, which is re-

ferred to as mesh parameterization [19] (see Fig. 1). While

this process is not limited to a particular mesh parameteri-

zation method, in this paper, we use the Iso-charts method

proposed by Zhou et al. [30], which minimizes non-uniform

distortions of the original mesh by finding optimal cuts that

partition the mesh into segments. Each connected segment



Algorithm 1: Image Warping

Input: Image I, camera projection matrix P , mesh M and

its face visibility

Output: Warped image I′

for each pixel u ∈ U do
Find triangle t ∈ U that contains u
Find barycentric coefficients, wt for u in t
Find face f ∈ M that maps to t and its vertices {xt}
if f is visible then

x′ ← Barycentric-interpolation({xt}, wt)

I′(u) ← I(Px′)

is mapped by its own mapping function to a single chart in

the parameter domain. We denote the 2D parameter domain

as U , which contains an arbitrary arrangement of the charts.

Using Iso-charts, we obtain a one-to-one mapping fM from

a 2D point u = [u, v]T in U to a 3D point x on the mesh

M. For maximally utilizing photometric stereo estimates,

the resolution of U is set proportional (0.8 times smaller) to

the input image resolution.

3.2. Image Warping

Using the camera calibration and inverse mapping f−1
M ,

we warp input images I to images I ′ in the U coordinates.

The images are warped using the standard inverse mapping

technique, i.e., we begin with a pixel u in the U coordi-

nates and determine its corresponding pixel location in the

input image I via the inverse mapping function f−1
M . Since

the forward mapping function fM is discrete, we use a

piece-wise linear interpolation to approximate f−1
M . Specif-

ically, our method finds the projected mesh face that en-

closes pixel u in the U coordinates, determines 3D position

x′ that corresponds to pixel u using barycentric interpola-

tion. Finally, the intensity of pixel u in I ′ is determined

by mapping the pixel in image I via the 3D scene point x′.
This procedure is summarized in Algorithm 1. We use kd-

trees [14] to accelerate the search for the 2D triangle. The

warping function is computed once for each viewpoint and

that warp is applied to multiple images captured from that

viewpoint and illuminated by different light sources. Dur-

ing image warping, only visible mesh faces are considered

and z-buffering is used to find which faces are visible to the

camera.

3.3. Surface Normal Estimation

One of the key benefits of our distortion minimizing

mesh parameterization scheme [30] is that pixels in im-

ages from multiple viewpoint and different lighting are well

aligned in the 2D parameter domain of the base mesh with-

out significant errors caused by viewpoint variations. Un-

like single-view photometric stereo, in our case, we have

more observations from different nearby viewpoints that

are reasonably well aligned using the base mesh geometry.

(a) (b) (c) (d)

Figure 2. An example of surface normal map and displacement

map estimation. (a) Input image. (b) Initial normal map obtained

from the base mesh, in U . (c) Disambiguated normals from pho-

tometric stereo in U . Here, unit 3D vectors have been linearly

mapped to RGB. (d) The estimated displacement map.

Therefore, the parameterization allows images from multi-

ple viewpoints to be used effectively for multiview photo-

metric stereo.

In this section, we introduce our method for estimating

surface normals given warped images I ′. To handle a large

amount of observations efficiently, we use the Lambertian

reflectance model at this stage. By denoting the image in-

tensities in the form of an observation matrix I ∈ R
p×q ,

where p is the number of valid pixels in U , and q is the num-

ber of all the images that are taken from varying view points

under varying lightings, the Lambertian image formation

model can be expressed in matrix form, as I = NL. Here,

N ∈ R
p×3 is an albedo-scaled surface normal matrix, and

L ∈ R
3×q represents a lighting matrix. Unlike the single-

view photometric stereo case, I has many missing elements

as most 3D points are not visible from all the viewpoints.

Therefore, we compute surface normals N using subsets of

the observations which form dense block matrices in I. In

general, finding dense block matrices IS from the matrix I
is a NP-hard problem. However, since the columns of I are

arranged in the image capture sequence in our case, valid in-

tensity observations at u tend to be in adjacent columns of

I. The problem of finding the sub-matrices then reduces to

finding maximum cliques in an interval graph. We use the

method proposed by [3] for finding multiple, overlapping

dense block matrices in I.
Next, given an observation matrix IS , we apply the un-

calibrated photometric stereo method of Hayakawa [4] to

each IS . Each observation matrix IS can be approximated

and decomposed into a product of two rank-3 matrices as

IS ≈ U3Σ3V
T
3 = ρ(NSA

−1)(ALS), (1)

where NS = U3Σ
1
2
3 , LS = Σ

1
2
3 V

T
3 , and A is a non-

singular 3×3 matrix that represents a linear shape-light am-

biguity that exists in uncalibrated photometric stereo. Σ3 is

a diagonal matrix with three singular values, and U3 and

V3 are orthonormal matrices with only first three columns

and rows, respectively. To automatically resolve the linear



ambiguity A, we use the mesh normals Nf ∈ R
p×3 ob-

tained from the base mesh, which is coarse yet reasonably

close to the correct surface normal. Specifically, we regard

NSA
−1 ≈ Nf = U3Σ

1
2
3 A

−1. Using the pseudo-inverse

of Nf , we solve for A and obtain the surface normal esti-

mate N̂S as{
A ← (NT

fNf )
−1NT

fU3Σ
1
2
3 ,

N̂S = U3Σ
1
2
3 A

−1,
(2)

where N̂S is a disambiguated surface normal matrix for

subset S. To combine duplicate solutions from distinct sub-

matrices IS , we apply weighted sum to consolidate the nor-

mal estimate as

np(u)=
1

M

∑
S∈S(u)

(nf (u)
TnS(u))nS(u), (3)

where S(u) denotes a set of sub-matrix indices that include

u. nT
fnS(= wS) is a weighting factor, which is the cosine

of the angle between the face normal and estimated normal

vectors, and M = ΣwS normalizes the weighted sum of

nS . This weighting is used for reducing the effect of out-

liers. Figure 2 shows an example of the computed surface

normal maps.

3.4. Geometry Refinement

The major advantage of working in the 2D parameter

domain is that 3D mesh refinement can be performed by

estimating a 2D displacement map of the base mesh M.

The geometry refinement problem can now be formulated

as finding the optimal displacement d ∈ R per pixel u as

x∗(u) = x(u) + d(u)nf (u), (4)

where nf is a unit face normal of the triangle in M to which

x is mapped, and x∗ is the refined 3D position. Notice

that the refinement is defined in the 2D domain using u
as indices. Now, given photometric normals np obtained

via photometric stereo and the initial position x ∈ M, we

estimate the displacement d̂ by minimizing the following

energy function:

d̂ = argmin
d

∑
u∈U

(
nT
p

∂x∗

∂u

)2

+ λ
∑
u∈U

d2(u). (5)

The first term of Eq. (5) is a data term that encourages the

surface gradient at x∗ to be orthogonal to the orientation of

photometric normal np. This term is related to the one pro-

posed by Nehab et al. [15]. However, we estimate only a

single displacement for each 3D point, optimizing a single

scalar instead of three coordinates thereby reducing mesh

refinement to estimating the optimal displacement map. We

Camera #1 

Camera #2 

Light array 

Rotation table 

Target object 

L

Real photograph 

Target objects 

Rotation stage 

LEDs 

Cameras 

Figure 3. Imaging setup: rotation stage, light array and two cam-

eras. For a particular rotation angle, several images are captured

under varying lightings.

use a cross-shape operator for computing partial derivatives,

i.e., [−1, 0, 1] for ∂
∂u , and [1, 0,−1]T for ∂

∂v . To define par-

tial derivatives at pixels on the boundary of two charts, we

use their respective inverse mappings to look up neighbor-

ing 3D points on the mesh. This operation is important as it

prevents seams from occurring on the chart boundaries by

encouraging points across seams to have similar displace-

ment values. The second term of Eq. (5) is a regularization

term that discourages large displacements.

The problem of Eq. (5) can be formulated as a sparse

linear system that can be efficiently solved using an off-

the-shelf sparse linear solver. In our implementation, we

empirically choose λ = 0.3. An example of an estimated

displacement map is shown in Fig. 2. In our method, the

level of geometric detail is controlled by the resolution of U
regardless of the resolution of the base mesh. For example,

a base mesh with as few as 2K vertices with a 512×512 dis-

placement map can generate 262K effective vertices. Since

our approach directly estimates a displacement map on a

coarse mesh, our 3D models can be efficiently stored and

rendered efficiently on modern graphics hardware that sup-

ports displacement mapping [21].

4. Reconstruction Pipeline
This section describes our reconstruction pipeline – the

imaging setup and the SfM and MVS pre-processing stages.

4.1. Imaging Setup

Our acquisition system consists of a rotation stage, LED

array, and two cameras as illustrated in Fig. 3. We assume

that the camera response functions are known. All images

of the target object are captured automatically using a re-

motely controlled rotation stage with synchronized cameras

and LEDs. A typical acquisition captures 312 images (24
viewpoints, 15 degrees apart illuminated by 13 different

LEDs) and takes about three minutes.

4.2. Camera Calibration and Multiview Stereo

We calibrate the camera intrinsics a priori and assume

that they remain constant during the acquisition. The

extrinsic parameters are estimated using a generic SfM



Bunny Gargoyle Happy-Buddha

Mesh Perturbation Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Nehab et al. [15] 2.87, 99.7 2.93, 99.7 6.31, 93.6 4.72, 99.9 4.56, 99.9 4.58, 99.9 4.01, 99.8 3.95, 99.8 4.06, 99.8

Hernandez et al. [6] 1.66, 99.7 2.30, 99.7 5.51, 92.4 3.03, 100.0 3.40, 100.0 4.15, 100.0 2.92, 99.8 3.42, 99.9 3.04, 99.9
Ours 1.50, 100.0 1.94, 100.0 2.67, 100.0 3.43, 100.0 3.47, 100.0 3.70, 100.0 3.50, 99.5 3.65, 99.5 3.50, 99.5

Mesh Resolution 70K 50K 25K 70K 50K 25K 70K 50K 25K

Nehab et al. [15] 3.56, 99.9 5.44, 94.4 7.54, 67.8 6.02, 98.5 8.38, 83.6 11.56, 49.3 4.82, 99.2 6.51, 91.2 8.37, 64.8

Hernandez et al. [6] 1.11, 99.8 1.43, 96.7 1.67, 76.0 3.64, 96.7 4.14, 89.8 4.88, 64.5 2.76, 98.3 3.43, 93.4 4.29, 72.1

Ours 1.39, 100.0 1.40, 100.0 1.41, 100.0 3.33, 100.0 3.37, 100.0 3.45, 99.9 3.45, 99.6 3.48, 99.5 3.49, 99.5

Table 2. Comparison using synthetic dataset. In this experiment, each method refines degraded meshes, and the results are evaluated in

comparison with the ground truth. Each cell of the table shows accuracy (×10−3) and completeness (%) for two experiments, mesh
perturbation and mesh resolution (see text for more details).

pipeline [20], which we found to be quite accurate. How-

ever, methods tailored to turn-tables [2] can also be used.

Stereo matching. Using the visibility of the SfM point

cloud, we estimate a depth range for each viewpoint and

then perform plane-sweep stereo matching for each view-

point using two other images captured from adjacent view-

points under identical lighting. Using normalized cross

correlation as the matching cost and semi-global matching

based cost aggregation [7], we first estimate a dense depth

map with discrete depth estimates. Sub-pixel refinement is

then performed on these depth maps using a standard lo-

cal parabolic refinement of the aggregated matching costs.

We compute per-pixel confidence associated with the depth

map using the ratio of the minimum and the second smallest

costs to measure distinctiveness and prune depth estimates

at pixels with very low confidence. See Fig. 1 for an exam-

ple of a refined depth map.

Mesh extraction. The filtered depth maps are fused us-

ing an energy minimization framework based on volumet-

ric graph-cuts [24]. The step computes an implicit 3D shape

of a closed object by labeling voxels on a uniform 3D grid

with binary labels – occupied, or empty. This optimization

is formulated using a discrete binary Markov Random Field

using unary and pairwise terms on a 6-connected voxel grid

with a typical resolution of 1003. The unary potentials are

computed using free space occupancy of the 3D points in

the depth map [5], where the contributions from depth maps

are weighted by their confidences. The pairwise potentials

are derived from the sub-voxel positions of these 3D points.

As our acquisition setup allows simple foreground silhou-

ette extraction, we also include a silhouette-based unary

term in the energy – voxels that are projected outside the

silhouette are given a high penalty for taking the label occu-
pied. The optimal binary labeling can be exactly computed

in an efficient manner using graph cuts [1]. Finally, from

the labeled grid, we recover a triangulated mesh M using

marching cubes [13]. We prefer MVS in computing our

base mesh over a visual-hull based approach [6], since MVS

yields more accurate mesh in our experience, especially for

objects with large concavities or complex topologies.

5. Results

We first quantitatively evaluate our method using syn-

thetic datasets and compare our method with existing state-

of-the-art approaches [15, 6] focusing on the performance

of our mesh refinement algorithm. In this evaluation, we

used synthetically rendered images and the original mesh

as the preliminary mesh. In a second set of experiments, we

show 3D reconstruction results on various real-world ob-

jects where the level of detail in our reconstructed models

is of the order of a few millimeters.

5.1. Experiments on Synthetic Data

Using the Bunny, Gargoyle, and Happy-Buddha models,

we render 712 × 712 images under 8 different light direc-

tions and 16 distinct viewpoints using the Lambertian shad-

ing model. All the methods in the evaluation have access to

the true camera and light calibration parameters. The num-

ber of triangles for these models varies from 70K to 1M .

For consistency, these 3D models are scaled by setting the

radius of their tightest bounding spheres to a unit. To sim-

ulate errors and irregularities of real data, these meshes are

corrupted by adding noise, and vertices are sub-sampled to

produce meshes with smaller triangle counts.

Mesh perturbation test. In this test, we perturb the original

mesh by adding random vertex displacements as noise and

then use the Taubin operator [22] to apply mesh smoothing.

The perturbation is performed at three levels, where level 3
has the highest error.

Mesh resolution test. In this test, we vary the number of

faces of the base mesh to analyze the effect of mesh resolu-

tions. Using a mesh simplification technique [8], we gener-

ate meshes with 25K, 50K, and 70K vertices.

Evaluation metrics. Given the ground truth mesh G, we

measure the accuracy of the refined mesh R by comput-

ing the accuracy and completeness metrics that are used in

the Middlebury multiview stereo benchmark [18]. These

are based on asymmetric distances distR→G and distG→R,

where distA→B represents the minimum distance from ver-

tices of A to vertices of B. Accuracy refers to the distance

d ∈ distR→G such that x% of the points are within distance
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Figure 4. Cumulative error distributions of Accuracy for three synthetic dataset; Bunny, Gargoyle, and Happy-Buddha. The graph corre-

sponds to mesh perturbation experiment in Table 2 when perturbation level is 3. Except for Happy-Buddha, our curve locates above the

other curves. This means larger proportion of per-vertex errors are smaller than others.

Perturbed Happy-Buddha Zoom-in Hernandez [6] Nehab [15] Ours Ground truth

Figure 5. A perturbed Happy-Buddha model and refinement results by three methods. The result corresponds to mesh perturbation experi-

ment in Table 2 where perturbation level is 3.

d to G. Completeness refers to the proportion of vertices,

where distG→R is less than threshold distth. In our experi-

ments, we set x = 90 and distth = 0.01.

Results. Table 2 shows quantitative results on the synthetic

data. For the mesh perturbation experiment, our method

consistently performs better than Nehab et al. [15] because

our method naturally avoids mesh flipping and overlapping

triangles. In this test, the accuracy and completeness of

our results are comparable to those of Hernandez et al. [6].

As our approach estimates a displacement map whose res-

olution is derived from the original image resolution, our

method recovers fine geometric details regardless of the res-

olution of the base mesh (see mesh resolution in Table 2).

Figure 4 shows the cumulative error distributions for the

Accuracy metric. The percentage of vertices within an ac-

curacy threshold is plotted for different thresholds. The plot

shows that our method is consistently the most accurate,

except for the Happy-Buddha model where our method is

comparable to [6]. The refined meshes for Happy-Buddha
are shown in Fig. 5. Our method faithfully reconstructs fine

details such as the necklace and flower on the model.

Computation time. We compare the computational cost of

our mesh refinement method with that of Nehab et al. [15].

The result is shown in Fig. 6 where its clear that our method

is computationally more efficient than theirs when both

methods are configured to produce results with comparable

accuracy. On average, our proposed method (excluding ac-
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Figure 6. Computational cost and accuracy of mesh refinement.

Base mesh resolutions, reconstruction accuracies, and computa-

tion times are shown under sub-figures. Our method does not re-

quire tuning the mesh resolution because it is automatically deter-

mined by the input image resolution.

quisition and pre-processing) as described in Sec. 3 takes

less than a minute to run. The timings are measured on a

system equipped with an Intel i7 quad-core 3.06GHz CPU

and 8GB memory.

5.2. Experiments on Real Data

Figure 7 shows the result of five real scenes whose im-

ages are taken using the imaging setup described in Sec. 4.1.

The first two objects, BUDDHA and AGRIPPA, have mostly

uniform albedos. However, BUDDHA statue is made of cop-

per and has many specular reflections. Even though our nor-

mal estimation method assumes Lambertian reflectances,

the normal aggregation process of Eq. (3) effectively han-

dles outliers arising from non-Lambertian reflectance.

The other three objects, DOLL-1, DOLL-2, and



TEAPOT, show more interesting topologies and multiple

albedos. In DOLL-1, we can observe the detailed shape of

buttons on the jacket of the right doll as well as facial ex-

pression of the dolls, which cannot be seen in the original

base mesh. The English characters in the middle region of

DOLL-2 are clearly visible in the final mesh. The geometric

details on the TEAPOT model are faithfully reconstructed.

Note that these embossed patterns are only a few millime-

ters deep. On the other hand, an artifact can be seen below

the left doll’s skirt in DOLL-1 as indicated by red rectan-

gles in Fig. 7. Since no valid normal could be estimated

from any of the viewpoints, our method is unable to refine

the coarse mesh in this region.

6. Discussions

Our 3D reconstruction approach enables the acquisition

of high-fidelity 3D models where a mesh parameterization

scheme is used to fuse photometric and geometric cues. Al-

though our automatic pipeline demonstrates high accuracy,

there are currently a few limitations. First, we have used

a linear photometric stereo approach for efficiency reasons,

but the accuracy of our system can be potentially boosted

using recent advances in robust photometric stereo [10].

Dark and textureless surfaces are currently difficult to han-

dle in our method due to the lack of reliable photometric or

geometric cues. In the future, we plan to explore a joint op-

timization approach that simultaneously estimates surface

normals and scene depth for greater accuracy and robust-

ness. Recovering surface reflectance as well as accurate 3D

shape is another interesting direction for future work.
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Figure 7. Reconstruction results by our method for BUDDHA-STATUE, AGRIPPA, DOLL-1, DOLL-2, and TEAPOT scenes. Each row shows

one of input images, the base mesh from MVS, and the refined mesh. The corresponding surface normal and displacement maps are shown

in the supplementary material. Clear failure cases are highlighted by red rectangles; these occur at textureless dark regions.


