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1 Introduction

In the course of daily life, people often forget information that would be valu-
able to them if they had remembered it at the right time. We present a study
of principles for context-sensitive reminding that hold promise for effective per-
sonal reminder systems. The approach employs a set of probabilistic models
learned from labeled data that predict outcomes required for effective remind-
ing. These outcomes include (1) the probability that information will not be
remembered, (2) the relevance of the forgotten information in a current or forth-
coming setting, and (3) the cost of transmitting the reminder to a user within
a current context. The work is inspired by prior work on principles of alerting
aimed at creating personal agents that can mediate if and when notifications
should be delivered to users in the course of daily life. We shall review the set
of models and describe how we combine them into a working prototype named
Jogger. We highlight key ideas in the context of reminders about meetings.

Within the Jogger prototype, forthcoming meetings are drawn from user’s
online calendar stored in an Exchange server. The system relies for reminder
actions on guidance from ongoing decision-theoretic analyses that consider in-
ferences from probabilistic models that are learned from data. We describe
how Jogger calls in symphony predictive models for relevance, memory, and
interruption.

We focus in a study on the sample use of Jogger for reminding users about
forthcoming meetings—or about meeting details. We evaluate the approach
via simulations on real-world calendar data. The results show that the context-
sensitive reasoning methods of the prototype can successfully balance the benefit
of a reminder with its cost. We find that under varying costs of interruption,
Jogger performs significantly better than a traditional, non-adaptive reminder
system that does not have access to predictive models.

2 Related Work

Several reminder systems are described in previous work. The ComMotion [13]
and Memory Glasses [4] systems deliver reminders based on the location of
users as sensed by GPS sensors. Cyreminder is a context-sensitive system that
manages the timing of a reminder based on a user’s context [5]. The Forget-Me-
Not system organizes users’ documents based on contextual cues, such as task
orderings and the locations at which they are generated, and provides users with
tools for retrieving documents based on contextual cues [12]. The Towel system
proposes digital to-do lists as reminders [3]. A personal assistive agent designed
as a part of the CALO project, initiates reminders for future tasks proactively
by applying BDI reasoning [14]. None of these reminder systems employ a
principled methodology for identifying the relevance, value, and timing of a
reminder.

Decision-theoretic approaches have been applied to manage and filter no-
tifications in different application domains. Boger et al. apply POMDPs to



provide task assistance to patients with memory problems [1]. Horvitz et al.
propose learning from user input and building decision-theoretic models that
reason about the cost of interruption to classify and selectively deliver notifica-
tions [8]. Jogger follows this line of research and demonstrates the applicability
of these ideas to reminder systems.

The Coordinate [10] system employs probabilistic inference models learned
from data to predict meeting attendance, meeting priority, and dynamically
computed costs of interruption for meeting contexts. The BusyBody [9] system
predicts the cost of interruption in desktop computing contexts. Jogger har-
nesses predictive models developed in the Coordinate and BusyBody research
efforts, and integrates them with probabilistic models of recall to capture the
expected value of reminders based on users’ situations.

Previous work on building adaptive reminder systems focused on changing
visual presentations of reminders based on user preferences, reminder urgency
and user attention [15]. Jogger follows a complementary approach and pro-
vides formal methods for computing the expected value of reminders and for
distinguishing useful reminders from others based on multiple inferences and
contextual information.

3 Expected Value of a Reminder

Reminder systems seek to assist users by jogging their memories about upcoming
events. Reminders are useful in helping users to recall tasks that need to be
accomplished or providing users with other enabling information (e.g., names
of people met before in a social setting). The information can lead to enhanced
task efficiencies and outcomes. As an example, beyond reminding a user about
a forgotten meeting, appointment reminders can provide users with information
that crispens fuzzy memories about locations, people, and topic information.

An ideal reminder system should consider both the benefit that a reminder
may generate for the user and the cost of interruption associated with transmit-
ting the reminder. We introduce a reminder system which follows a decision-
theoretic approach to distinguish reminders that are beneficial for a user’s per-
formance from the ones that are not.

We shall now discuss how we compute the cost and benefits of a reminder.
We shall introduce several key probabilities in the analysis. In Section 4, we
shall focus on the construction of predictive models from data to capture the
value of a reminder in Jogger with these probabilities.

A reminder for task m is beneficial for a user if the expected utility for
receiving a reminder about m is higher than the cost of interruption given the
current state of the user. The utility of a reminder depends on the cognitive
state of a user: has the user forgotten all or some information that might be
included in a reminder.

Jogger considers three mental states with respect to recall of information
useful for completing tasks under consideration: (1) F™ represents the state in
which a user has forgotten all about m, (2) D™ represents the state in which



the user has forgotten or is unsure about a subset of details regarding the task,
such as its location, start time (or deadline), and other participants, and (3)
R™ represents the state in which the user remembers that task m exists and
also remembers all of the details regarding the task.

Given evidence E that comprises observations about a user’s state, p(F™|E),
p(D™|E), p(R™|E) are the probabilities of the user being in states F, D™,
R™ respectively given evidence E. F, D™ and R™ are mutually exclusive and
collectively exhaustive. Thus, p(R™|E) =1 — p(F™|E) — p(D™|E).

The enhancement of the performance of a user with regard to a task or event
changes depending on the timing of the remembering of relevant information.
As an example, if a user completely forgets about a meeting, she will not be
able to participate nor contribute to a task. If a user forgets some details about
a forthcoming meeting (e.g., the location of a meeting), her utility may decrease
because of tardy arrival. U(F™, E), U(D™, E) and U(R™, E) represent user’s
utilities for being in states F™, D™, and R™ respectively. These utilities are
modeled to be sensitive to the context of a user and the attributes of task m.

A user may maintain a long list of tasks or events (e.g., on an electronic
calendar) but are interested in contributing or participating in only a subset of
the larger list of events. It is important for a reminder system to distinguish
relevant tasks and events from the others within a context. The benefit of a
reminder about task m to a user depends on whether and how much m is relevant
to the user’s plans. p(A™|E) is the likelihood that the user would engage in task
m if she remembers about m. COI(m, E) represents the cost of interrupting
the user by delivering a reminder about m, given evidence E about the user’s
state.

Given the different states that a user may be in and utility values associated
with them, we compute the expected value of reminding (EVR) by considering
the likelihood of each state, the relevance of the reminder and utilities associated
with being in each state. EFV R is calculated as given below:

EVR(m) =p(F™|E) p(A™|E)
(U(R™, E) =U(F™, E))
+p(D™|E) p(A™(E) (1)
(U(R™, E) =U(D™, E))
—COI(m, E)

It is beneficial to send a reminder to a user if the reminder is associated with
a positive EVR value. If so, the expected benefit of interrupting and sending a
reminder is greater than the cost of interruption associated with it.

3.1 Meetings and Memory

We now review the use of the utility and relevance models proposed in Equation
1 for the sample case of recall and reminding about meetings. A user is in state
F™ if she has forgotten that meeting m exists. She is in state D™ if she has
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Figure 1: Jogger system components. Two interfaces of the system are presented
on the right, one for the original system architecture (marked with straight
arrow) and one that includes consideration of traffic-sensitive travel to a meeting
(dashed arrow).

forgotten or is unsure about the details of m such as its location or time. The
user is in state R™ if she remembers all the details of the meeting. Bayesian
models for predicting the likelihood of user being any of these states based on
evidence F are presented in Section 4.1.

We assume that a reminder about meeting m is only beneficial, and thus rele-
vant to a user if the user intends to attend the meeting. In the meeting reminder
context, the relevance likelihood of m is realized by p(A™|E), the probability
of attending meeting m given F, evidence about the meeting. A probabilistic
model for predicting probability of attendance is presented in Section 4.2.

Next, we formalize utility values for being in any of the three possible mem-
ory states. We make the assumption that if a user is in state F™, the user fails
to attend meeting m; if the user is in state D™, she misses the first ¢ minutes of
the meeting because of problems with recalling the details about the meeting;
and if the user is in state R™, the user is on time for the start of a meeting.

Meetings are not equally prioritized in users’ schedules. If the expected cost
of interruption (COI) is high for the current state, the user may not prefer
to be reminded for a low priority meeting although she would be willing to be
reminded for a high priority meeting. Jogger system has the priority predictor
for inferring priority probabilities for meetings. For any given meeting m, the
system predicts the probability that m has high priority p(mf|E), medium
priority p(m™|E) and low priority p(m%|E).



We ask the user to evaluate the value of time for three possible cases; the
minute cost for being late, clH for high, clM for medium, clL for low priority
meetings; the total cost for not attending to a meetings, ¢ for a high, ¢} for
a medium, cZ, for a low priority meeting, and the minute cost for being early,
c. These values represent the user’s willingness to pay in dollars for preventing
to be in any one of these situations. Quantifying users’ willingness to avoid
undesirable outcomes with dollar values has been used in decision analyses in
several fields (e.g., medical decision analyses).

COI(m, E) represents the dollar value a user is willing to pay for not to
receive an interruption about m given evidence . A model for capturing COI
is presented in Section 4.3.

The expected value of a meeting reminder is calculated as below by combin-
ing user costs with associated memory states:

EVR(m) =p(A™|E) (p(F™|E) ¢na +p(D™|E) ¢ )

—COI(m,E) @)

where ¢y, and ¢; values are calculated as below given the priority model:

cna =(p(m|E) cia) + (p(m™|E) cp)
+(p(m"|E) cy,)

ca =(p(m"|E) ') + (p(m™|E) ")
+ (p(m"|E) )

4 Predictive Models

As described above, we require probabilistic inferences, p(A™|E), p(F™|E),
p(D™|E) and the probability distribution over meeting priority to compute
the expected value of reminding. We now review the construction of set of
predictive models used in Jogger to infer these probabilities from calendar data
and context.

Jogger has access to appointments drawn from Exchange, along with a con-
stellation of atomic and derived meeting properties that serve as evidential fea-
tures about the meetings. A set of appointments drawn from several months
of the online calendar are composed into a case library of training and testing
sets of meeting instances. We asked participants to tag meetings with several
labels via a tagging tool. One label encodes a user’s assessments about whether
they will attend a meeting, and that the meeting is thus relevant. A second set
of labels is used to assess meeting priority, used to compute the cost of missing
or being late for a meeting. A third label represents whether users would for-
get about the meeting or about important meeting details. In particular, users
are asked to tag meetings to indicate whether they would likely (or did) recall
versus forget the meeting’s existence and further, whether they would need to



be reminded about important details of a meeting, such as its location and
attendees.

A set of predictive models required for inferences about ideal reminders is
constructed from this tagged training set. The relevance model, built from cases
tagged by attendance, is used to infer the probability that a future meeting will
be attended. A second priority model predicts the probability distribution over
the priority of a meeting. The memory models, built from the labels on recall,
provide inferences about the likelihoods that future meeting would be completely
forgotten, or whether the meeting would be remembered coarsely but that meet-
ing details would be needed. A third class of predictive model, interruption
models, are borrowed from prior efforts on the Coordinate and BusyBody sys-
tems (as described below). These models provide the cost of transmitting an
alert to users in meeting and desktop settings, respectively.

4.1 Memory Models

We constructed memory models for predicting that a user has forgotten the
existence of a meeting, and for predicting that a user has forgotten the details
of a meeting, including its location, date and time, subject and attendee list.

Each user of Jogger invests effort in personalizing two memory models by
applying supervised learning as described above. To collect training data, we
provided users a form that displays a sorted list of past meetings for tagging.
For each meeting, the form has a row providing information about the meeting
(e.g., its subject, organizer, attendees, location) and about the context the user
was in at the time of the meeting (e.g., number of meetings during the day,
previous meeting, next meeting, number of meetings that week, location of the
previous meeting, end time of the previous meeting, etc.) so that the user
is able to recall her cognitive load for that day and the state of her memory
regarding that meeting when she is providing training instances. Each row
has two Boolean fields for the user to fill out to indicate whether the user has
completely forgotten about the meeting and whether the user has forgotten
some details regarding the meeting. Given that states F™™, D™ and R™ are
mutually exclusive, a user is allowed to fill at most a single one of the Boolean
fields. If a user does not fill any of the fields, that instance is labeled to belong
to state R™.

The system generates a training set by combining each meeting instance
tagged by a user with a set of attributes acquired from the user’s personal
Outlook profile. These attributes include the day and time of the meeting, its
duration, subject, location and organizer, the number and nature of attendees,
the response status of the user, whether the meeting is recurring and whether
the time was marked as busy in the user’s calendar. By accessing the Microsoft
Active Directory service, the organizational relationship between the user, the
organizer and the attendees are also included as meeting attributes. Addition-
ally, we identify meetings with atypical locations, attendees and organizers by
checking a personalized database of meetings and by marking the ones that
appear less than a small, predetermined percentage.



Veryatypical (1)
LocationAtypia
ot VeryAtypical (15)
Hot 60 to 113 mins (25) 131

fto 1S mins 285) [
Blznk (260)

Start Reply Diff)
False (311) Not Blank (25)
U] J21]
80 to 118 mins (38]
23]
Tentative (62)0 to 118 mins (23)donth (11)
Sponse requesy
Not Tentative (16) Wonth (12)
True (78) g 4 1221 i)
Mot 11 to 1358 (104)
= ) i3 g
EMPTY_STRING (18] One (43) 11 to 1259 (41): Three to six [31)
ot 22 to 659 (208)TY_STRING [270jative (254)t One (241) Three to six (10)
ey oot ol
22 to 659 (15) Tentative (16)
2] ‘-[1 4] My office (6] p=nl] 6]
5 to 10 days (12)
Mot 5 to 10 days (58]
I {5 171

Not § or more months (25)

VieeklyWeekdays [zss}

Lg]
for more months (s3) Mot 2 to § months (22}

700 to 4059 (114) b[d

2 to & months (25)

Other (47) “myg
Not 700 to 1058 (151)

Mot Monday [37)st Other (50} Jj[1 1]

Not Tentative (35}

Tenhhveiﬁ:l
[10]

Monday (54)
S5[5]
Blank (10)

Start Reply Diff
Not Blank (44)

I7]

Figure 2: A memory model for Subject 1 for predicting the probability of for-
getting about the occurrence of a meeting, based on the selected attributes of
a meeting.

We perform Bayesian structure learning to build probabilistic models that
predict whether a user has forgotten that a meeting exists, and whether a user
has forgotten about some details of a meeting. The system selects a model
by performing heuristic search over feasible probabilistic dependency models
guided by a Bayesian scoring rule ! [2, 6]. The procedure generates decision
trees for predicting the probability of forgetting a meeting and forgetting the
details of a meeting based on the attributes represented in the models.

Two subjects shared their calendar data to evaluate the performance of the
memory models. The subjects tagged a subset of their own appointments. We
individually trained memory models for them by performing cross validation.
We used 85% of the tagged data for training and used the remaining 15% for

LA similar approach has been followed in previous work for modeling context-sensitive costs
and cost of interruption [11, 10]
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Figure 3: A memory model for Subject 1 for predicting the probability of for-
getting details of a meeting, based on the selected attributes of a meeting.

testing. Two sample predictive memory models are presented in Figures 2 and
3.

Table 1 presents the prediction accuracies of the memory models generated
for Subjects 1 and 2. The accuracies of the generated models are compared with
a marginal model that assigns each instance to the most frequent class label.
The results show that the generated models reach above 85% accuracy for both
memory models and both subjects. They also indicate significant improvements
over the marginal models for all instances except for the forgot details model
for Subject 1.

The graphical representations of the memory models displayed in Figures 2
and 3 highlight the similarities and differences in predicting whether a user has
forgotten about a meeting, and whether a user has forgotten about the details
of a meeting. In both memory models, whether a response was requested for
a meeting request, the recurrence of a meeting, whether the user is invited via
alias or message group and whether the location of a meeting is atypical are
selected as prominent attributes. However, the day of the week, the number
of attendees and whether the user is busy do matter for predicting whether
the user has forgotten about a meeting, whereas these attributes do not seem



Forgot All Forgot Details

Subject 1 | Subject 2 | Subject 1 | Subject 2
Learned
Model 85% 96% 90% 94%
Marginal
Model 68% 54% 89% 8%

Table 1: Classification accuracies of learned memory models in comparison with
the marginal models.
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Figure 4: Memory models learned for Subject 1 (left) and Subject 2 (right)
that infers the likelihood of their forgetting that a meeting exists, based on the
attributes of the meeting and surrounding context.

to matter for predicting whether the user has forgotten about the details of a
meeting.

Figure 4 compares two Bayesian networks learned individually for Subjects
1 and 2 for predicting their likelihood of forgetting that a meeting exists. Al-
though the models for predicting the likelihood of forgetting a meeting share
some prominent common attributes such as the recurrence pattern of a meet-
ing, whether a response was requested, and whether the invitation was sent to
a distribution list, many of the attributes appear in two models are distinct.
The duration, location and day of a meeting emerge as important attributes of
Subject 1’s model, whereas the organizer of a meeting, the number of attendees
and user’s role in the meeting are chosen to appear in Subject 2’s model. This
comparison highlight the fact that the way people forget may differ, and thus
building predictive models that can learn about these personal characteristics
may be crucial for the success of an context-sensitive reminder system.

4.2 Attendance and Priority Models

Jogger borrows predictive components from the Coordinate system [10] for pre-
dicting the relevance and the importance of a meeting. A list of past meetings
of a user is converted into a draft training set by applying a set of heuristics
about attendance based on observations including user’s desktop activity. The
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Figure 5: Relevance model learned for Subject 1 for predicting meeting atten-
dance and meeting priority based on the selected attributes of a meeting.

draft is provided to users for them to manually correct attendance fields and to
specify whether a meeting is low, medium or high priority.

Based on the training data, a model is constructed for predicting the like-
lihood of a user attending a meeting and the priority of a meeting based on
the attributes of a meeting. These selected attributes include the day, time,
location, organizer and attendees of a meeting, the role of the user, whether the
user was invited by name or a distribution group and the user’s response to the
invitation. A Bayesian network generated for Subject 1 for predicting meeting
attendance and meeting priority is presented in Figure 5.

4.3 Interruptibility Models

Jogger uses a two-layer approach to estimate the cost of interrupting a user. It
brings together the activity-based predictions of the cost of interruption inferred
by BusyBody and the meeting-based interruptability prediction model of the
Coordinate system. By doing so, we are able to infer the cost of interrupting
a user when the user is in her office by observing office activity, and when the
user is in a meeting based on the importance of the meeting.

Jogger accesses BusyBody to find out whether a user is in her office at the
time of inference. If so, it makes a query to BusyBody to infer the cost of
interrupting her based on her office activity. The BusyBody system collects
evaluations from users about their costs of disruption as dollar amounts they
are willing to pay to avoid an interruption in different states of interruptability.
The system monitors a user by observing whether the user is typing on the
computer, using the mouse, the applications used by the user, whether the user
is engaged in a conversation. The system performs supervised learning of the
cost of interruption by using a value of information analysis to guide probes
of the users state via a pop up query. Given user assessments and contextual
evidence collected, the system learns a personalized Bayesian network model
with a Bayesian learning procedure. Given p(I;|E) is the probability of being

10



in interruptability state I; given evidence E, and C(I;) is the associated cost of
interrupting in state I;, COI, the cost of interruption, is computed as below,

COI =Y p(I;|E) C(I;) (5)

J

When a user is not in her office, Jogger accesses Coordinate’s meeting priority
prediction model to estimate the cost of interruption based on the meeting the
user may be attending. Given that ¢, ¢ ¢l are user-assessed costs for being
interrupted in high, medium and low priority meetings, COI is calculated as,

COI = p(m™|E) ¢! +p(m™|E) ¢} +p(m"|E) ¢} (6)

If there exists more than one meeting appointment in a user’s calendar for
the moment of inference, COI is calculated with respect to the meeting with
the highest attendance probability. If there are no meetings associated with the
time of inference, the cost of interruption is assigned to a predetermined small
cost value.

5 Jogger Architecture

The Jogger prototype computes the expected value of a reminder and weights
this with the cost of interruption. Jogger accesses inferences from its relevance,
memory, priority, and interruption models to determine whether to deliver a
reminder to a user. A systematized overview of the system is presented in
Figure 1. The system includes a data collection component, a collection of pre-
dictive models, an interface to users’ calendars, a utility-based decision-making
model and a notification layer that interrupts users when needed and delivers
reminders.

The data collection component is designed to gather relevant information
about the context that a user is in. The component accesses a user’s calendar,
monitors computer activity, and detects video and audio signals and acquires
user input. The information collected from the data collection component is
used for inferences needed to compute the net expected value of reminders.
The models are used to predict whether a meeting is important, whether a user
intends to attend the meeting, whether the user has forgotten about the meeting,
and the cost of interrupting the user based on her current context. These
inferences of these models are combined with user assessed costs as described
by Equation 2 to form the expected value of a reminder.

The Jogger system actively checks users’ calendars to identify reminder op-
portunities. For each reminder opportunity, the system accesses the data col-
lection component and gathers information about the current state of the user.
Based on the data collected, the system infers the expected value of reminding
the user and interrupts and reminds the user only if the associated value is
positive.

11



6 Locations, Travel, and Traffic

Reminder systems are traditionally designed to refresh users’ memory about
a task or a meeting. Increasing connectivity of computing devices enables to
design reminders as information delivery tools. More valuable reminder systems
can be designed when cues about future tasks are accompanied with information
that will make it easier to accomplish the tasks. For instance, a reminder for
a meeting can also deliver up-to-date information about the traffic conditions
on the route to the meeting, if the location of the meeting is available, so that
users may have higher chance of being at the meeting on time. We now discuss
an extension of Jogger to reason about the value of delivering real-time travel
information and travel directions via reminder notifications.

Several research projects [7] and real-world systems (e.g., Clearflow traffic-
sensitive directions on Bing Maps) provide estimates of time-dependent travel
times to destinations. We use tj;,. to represent the estimate for the duration
of travel to a meeting. We shall use tezpected as the expected travel duration
under regular traffic conditions. We consider At, the difference between ¢,
and teppected, as the estimated error in user’s prediction of the duration of travel
to the meeting location.

The error in a user’s prediction of traffic conditions affect whether the user
will be on time for a meeting. For instance, if the road heading to a meeting
location is congested due to an accident and the live travel estimate is 10 minutes
more than expected, the estimated utility of delivering a reminder with live
travel estimates should integrate avoiding the extra 10 minute cost for being
late. Consequently, the EVR calculations are updated as given below to consider
this additional cost.

EVR(m) =p(A™|E)
(p(F™|E) cua + p(D™|E) C(D™, E)
+ (1= p(F™|B) — p(D™|B)) C(R™, E))
— COI(m,E)

(7)

The expected cost for being in state D™ is represented as C(D™, FE), in
which c is the minute cost for arriving at the meeting location early, and ¢ and
¢, are defined as given in Section 3.1.

(t+At) e if (t+At)>0

C(Dm,E){ (—t—At)c if t+AH) <0 ®)

The expected cost for being in state R™ is represented as C(R™, E). A user
in state R™ may incur costs for not knowing about live traffic predictions.

At ¢ if At >0

C(R™,E) = { (=At) ¢ otherwise 9)

12



6.1 Timing of Reminders

The timing of reminders is important to maximize the benefit that users receive
from reminder systems. The expected utility of a reminder changes in time as
expected cost of interruption changes. For example, a user talking on phone
may not be available to receive a notification but may benefit from receiving
the reminder when she finishes talking a few minutes later.

The challenge of timing reminders ideally based on changing traffic condi-
tions and cost of interruption is a complex problem on its own; we do not focus
on that challenge here. Jogger employs a set of heuristic rules to time reminders.
The prototype searches through time to find the moments that satisfy three con-
ditions: (1) the expected utility of reminder is positive, (2) user has sufficient
time to get to a meeting location after receiving the reminder, (3) the time of
the reminder is as close as possible to expected trip initiation time so that the
user’s memory about the meeting is fresh at the departure time.

Jogger uses the predictions of traffic services to find the optimal time for
reminding the user, with the assumption that the cost of interruption is constant
through time. If the user’s expected travel duration is higher than the live
estimate, the user should be reminded before t,, — tezpected S0 that the user can
postpone her take off according to the live estimate. If the live estimate of travel
duration higher than the user’s expectation, the reminder needs to be scheduled
before t,, — tjjve, SO that the user can move the departure time earlier to be on
time for the meeting. Given that ¢,, is the start time of meeting m, t,fser is
the preferred interval between receiving a reminder for m and starting a trip to
m, the optimal reminder time, t*, is calculated as below,

* tm — tezpected - toffset texpected = tijve
t = . (10)
tin — tiive — toffset otherwise

Jogger reminds a user about meeting m at time t*, if EV R(m) value com-
puted at time t* is positive. If that’s not the case, Jogger searches the interval
t*, t* + tosfser to find a time with positive EV R(m) value. If no such moment
exists, Jogger does not send a reminder about meeting m.

7 Empirical Evaluation

Empirical evaluation of the Jogger system with real-world users requires long-
term deployment of the system in offices that are equipped with special software
and hardware components for sensing the state of a user correctly (e.g., Busy-
Body uses a microphone system to detect conversations). This section presents
a proof of concept analysis of the system based on real-world data. This study
analyses the value offered to users with the Jogger system under varying domain
conditions.

We activated Jogger for a user in our organization (referred as Subject 1 in
Section 4.1) that sits in an office equipped with the necessary infrastructure.
Jogger generated memory, attendance and priority models based on training
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data collected from the user. It accessed to the BusyBody component that per-
forms real-time inference about the cost of interrupting the user. We asked the
user to assess costs for being late to low-medium-high priority meetings, costs
for missing low-medium-high priority meetings, and to estimate the number of
minutes she would be late to a meeting if she forgot the details. Jogger stayed
active for a 2 week period on the user’s machine and performed EVR calcula-
tions for 103 distinct reminder opportunities in real-time. The system kept a
log file that reports the EVR value for each reminder opportunity and the out-
put of each predictive model. Jogger delivered a reminder to the user for every
reminder opportunity with positive EVR. Since location information was not
available for all meetings in the user’s calendar, the evaluation used the simple
version of the system that does not reason about about live traffic predictions.

M Traditional
reminder system

Total Value

Context-sensitive
reminder system

Col/2 col COI*2 1*4

Cost of Interruption

Figure 6: Comparison of the effectiveness of the context-sensitive reminder sys-
tem and the traditional reminder system for increasing costs of interruption.

Our first set of evaluations analyze the value generated by reminder systems
under the assumption that the EVR values computed by the system are accurate
2. The analysis compares the performance of two distinct reminder systems
to the baseline of not having any reminders: A traditional reminder system
that sends reminders for every meeting on a calendar without considering the
value of a reminder, and our context-sensitive reminder system that delivers a
reminder to a user if the expected value of a reminder is positive. The total
value generated by the traditional reminder system is the sum of EVR values for
all reminder opportunities. The total value generated by Jogger is calculated
as the sum of EVR values for all reminders sent to the user (for all reminder
opportunities with positive EVR).

The analysis shows that even the traditional reminder system generates pos-
itive value for the user. The user is better off having a traditional reminder
system instead of not having any reminders. On the other hand, having Jogger,

2We are currently working on a follow-up study that evaluates the accuracy of EVR values
based on user feedback.
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a context-sensitive reminder system, instead of a traditional reminder system in-
creases the total value generated by reminder systems by 19.5% while decreasing
the total number of interruptions by 46.6%.
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Figure 7: Ratio of the reminders sent by the context-sensitive system to all
reminder opportunities for increasing costs of interruption.

To further illustrate the adaptability of the context-sensitive reminder sys-
tem, we performed simulations on data collected from our study. These sim-
ulations evaluated the effect of cost of interruption on the effectiveness of the
traditional and context-sensitive reminder systems. We varied the cost of inter-
ruption from the half of the original value to the four times of the value. Figure
6 reports the values generated with traditional and context-sensitive reminders
systems for varying costs of interruption when compared with the baseline of not
delivering any reminders. The value generated with the traditional system drops
fast as the cost of interruption increases. The cost of the traditional system be-
comes more than its benefit when the cost of interruption is high. However,
Jogger can successfully trade off the cost of a reminder with its benefit and thus
adapt itself to increasing costs of interruption. The context-sensitive reminder
system generates positive value for the user for all costs of interruption values.
It manages to do so by dynamically reducing the number of reminders sent to
the user as the cost of interruption increases as shown in Figure 7.

The decisions made by Jogger are based on a set of predictions performed
by probabilistic models. Although these models are reported to have relatively
high accuracies 3, errors in these predictions may occasionally result in incorrect
decisions, such as delivering a reminder that is not valuable, or not delivering
a valuable reminder. We performed a set of simulations on the collected data
to analyze the sensitivity of the effectiveness of the context-sensitive reminder
system to imperfections in the prediction models. We added some noise to the
predictions made by each probabilistic model, and compared the decisions made
by the system under this noise to the ground truth - the decisions of the orig-

3The prediction accuracies of the probabilistic models are reported in Section 4.1 and in
previous work [10, 9].
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Figure 8: Sensitivity of the effectiveness of the context-sensitive reminder system
to imperfections in the prediction models.

inal system with no noise added. The added noise is randomly sampled from
a Gaussian distribution for each reminder opportunity. The distribution used
for generating noise for each probabilistic model has zero mean and a standard
deviation proportional to the sample standard deviation calculated from the
predictions performed by the model for a subset of reminder opportunities. The
added noise represents the possible errors made by the probabilistic models.
Figure 8 reports the total value generated by the reminder system as distribu-
tions with larger standard deviations are used to sample noise to be added to
predictions of the models. The reported values are averaged over 1000 trials.
As predicted, the analyses indicate that the effectiveness of the system drops
as the model predictions become less accurate. However, the effectiveness of
the context-sensitive reminder system is still higher than the traditional system
even when the predictions of the probabilistic models are very noisy - when noise
added to each prediction model is sampled from a distribution with high stan-
dard deviation (as high as the standard deviation of predictions obtained from
the model). These results highlight the fact that having multiple prediction
models contributing to the reminder system enables the system to be robust to
prediction errors, and to generate value for users even when prediction models
are noisy.

8 Conclusion and Future Work

We have focused on identifying opportunities and challenges for developing a
context-sensitive reminder system that distinguishes valuable reminders from
the ones that are not, and thus reduces the disruptive effects of reminder sys-
tems. We presented methods and models in Jogger, a prototype focusing on
meeting reminders. Jogger employs multiple predictive models of users’ mem-
ory and interruptability, and meeting relevance, and performs decision-theoretic
reasoning to capture the value of a reminder. We analyzed the value of context-
sensitive alerting in changing interruptibility conditions in real-world data. Al-
though the Jogger prototype focuses on meeting reminders, the proposed meth-
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ods and models are general.

For future work, we are exploring several extensions, which include (1) de-
ploying Jogger in the real-world with multiple users and evaluating system per-
formance, (2) improving the predictive models employed in Jogger with real-
time user feedback and active learning, (3) enriching the library of predictive
models used in Jogger by modeling factors that may contribute to the expected
value of a reminder, (4) developing more sophisticated decision-making models
for better timing context-sensitive reminders, and (5) applying the models and
methods presented in this work to building reminder systems for complex task
domains. We believe that machine learning and reasoning hold great promise
for the development of personalized reminder systems that come to understand
the nuances of users’ memories, situations, and needs for memory jogging, and
that such systems may one day provide great value to people in the course of
daily life.
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