
Journal on Satisfiability, Boolean Modeling and Computation 1 (2007) 187–207

Interpolant based Decision Procedure

for Quantifier-Free Presburger Arithmetic

Shuvendu K. Lahiri shuvendu@microsoft.com

Microsoft Research, Redmond

Krishna K. Mehra kmehra@microsoft.com

Microsoft Research India, Bangalore

Abstract

Recently, off-the-shelf Boolean SAT solvers have been used to construct ground decision
procedures for various theories, including Quantifier-Free Presburger (QFP) arithmetic.
One such approach (often called the eager approach) is based on a satisfiability-preserving
translation to a Boolean formula. Eager approaches are usually based on encoding integers
as bit-vectors and suffer from the loss of structure and sometime very large size for the
bit-vectors.

In this paper, we present a decision procedure for QFP that is based on alternately
under and over-approximating a formula, where Boolean interpolants are used to compute
the overapproximation. The novelty of the approach lies in using information from each
phase (either underapproximation or overapproximation) to improve the other phase. Our
preliminary experiments indicate that the algorithm consistently outperforms approaches
based on eager and very lazy methods, on a set of verification benchmarks. In our experi-
ence, the use of interpolants results in better abstractions being generated compared to an
earlier method based on proofs directly.
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1. Introduction

Decision procedures for quantifier-free theories are the cornerstones of many automated
analysis tools for software and hardware. Software verification tools like SLAM [3] use de-
cision procedures to perform automated predicate abstraction and refinement of programs;
ESC-JAVA [14] uses decision procedures to discharge verification conditions in static anal-
ysis of programs. High-level hardware verification tools including UCLID [6] use decision
procedures for checking first-order formulas arising from bounded model checking or invari-
ant checking for models of microprocessor and cache coherence protocols.

The quantifier-free queries that arise in verification typically have a lot of Boolean
structure in addition to theory constraints. This requires an interplay between a search
algorithm to case split on the Boolean structure and a decision procedure for the ground
theory. In recent years, several approaches have emerged to leverage the rapid improvements
in Boolean Satisfiability (SAT) solving [24]. These techniques differ mainly in how closely
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the SAT solver interacts with theory reasoning. The eager approaches rely on translating
the quantifier-free formula to an equisatisfiable Boolean formula and use a SAT solver to
solve the resultant Boolean formula [6, 33]. The (very) lazy techniques create a Boolean
abstraction of the first-order formula, and refine it based on Boolean assignments that are
inconsistent with the underlying theory [1, 4, 13]. Both these approaches treat the SAT-
solver as a black-box. More recently, the DPLL(T) [25] based approaches have augmented
the Davis, Putnam, Logeman and Loveland (DPLL) [9, 10] algorithm for the Boolean SAT
solvers with theory specific reasoning [25, 5].1.

Quantifier-free Presburger (QFP) arithmetic is the quantifier-free fragment of Pres-
burger arithmetic [27], which deals with linear arithmetic constraints along with Boolean
connectives. This fragment is useful for modeling most arithmetic constraints that arise in
program and hardware verification [12, 2, 30, 6].

Kroening et al. [20] proposed a framework for integrating the Boolean and the theory
reasoning for QFP, based on alternately under and over-approximating the input QFP
formula. The algorithm searches for a satisfying solution in a sequence of increasingly large
domains, lazily increasing the domain size when no satisfying solution is found in a smaller
domain. The proof of unsatisfiability in a domain is used to construct an abstraction of the
original formula. The abstractions are checked using a decision procedure for QFP. They
illustrate that the procedure terminates and therefore constitutes a decision procedure for
QFP.

In this work, we present an alternate implementation of the above framework that
is based on Craig’s interpolants [8, 28] to construct the abstraction, once a formula is
unsatisfiable in a given domain. The main difference between the two approaches lies in
constructing an abstraction of an input QFP formula, once the formula is found unsatisfiable
in a given domain. We believe the use of interpolants provides a much more semantic
abstraction of the input formula that tries to abstract the proof of unsatisfiability from the
particular domain. Although this is also the goal of the proof-based approach of Kroening
et al., the abstractions generated can be heavily influenced by the structure of the input
formula; the abstraction depends not only on the proof of unsatisfiability in a given domain,
but also on maps that depend on the structure of the input formula and design decisions
during implementation. Since these maps are not unique, the quality of the abstractions
can vary.

The algorithm we propose in this paper also differs from the algorithm of Kroening et
al. in other respects. First, we do not require a complete decision procedure for QFP to
check the abstraction. Secondly, we leverage the learning from the search in the smaller
domains when moving to a larger domain. We compare our approach with Kroening et al.’s
work in detail in Section 5.

At a high level, our algorithm works as follows: consider a QFP formula φ. Given a
domain D, it is possible to construct a Boolean formula φu whose satisfiability determines
the existence of a satisfying solution for φ in the domain D. This Boolean formula under-
approximates the original formula φ. If φu is unsatisfiable, then we use Boolean interpolant
generation to construct a formula φo in QFP that is an overapproximation of φ (we de-

1. Although the latter techniques are also referred to as lazy techniques, we mostly refer to the very lazy
techniques [1, 4, 13] that treat the SAT-solver as a black box as lazy in this paper.
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fer the actual details of the procedure to Section 3). Intuitively, the overapproximation
abstracts the reason why φ was unsatisfiable in the particular domain D, in terms of the
constraints in φ. The generated overapproximation of φo serves two purposes: first, if φo

is unsatisfiable, then φ is unsatisfiable and secondly, we can generate some conflict clauses
(tautologies in QFP) from φo that can be added to φ, to prune the search space for future
underapproximations.

The theory of QFP has a small-model property for any formula φ in the theory, i.e., if
φ is satisfiable, then it has a satisfying assignment in a finite domain Dmax determined by
the formula φ. This ensures that we can start with a small domain D and increase the size
lazily until the maximum domain Dmax is reached. The small-model property also allows
us to use an incomplete decision procedure for QFP to check the satisfiability of φo. In our
experience, the maximum domain size Dmax is almost never reached.

We have implemented the algorithm in Zap theorem prover [34] and provide prelim-
inary experimental evaluation of the approach on a set of verification benchmarks. The
algorithm seems to consistently outperform an implementation based on purely eager en-
coding (that use the maximum domain size Dmax to encode an equisatisfiable formula to
SAT). It also outperforms an implementation of the very lazy Verifun [13] approach on
these benchmarks. We have also implemented a variant of Kroening et al.’s approach inside
Zap, to evaluate the quality of abstractions generated by the interpolant-based method and
the proof-based method. Our preliminary evaluation indicates that the interpolant-based
approach constructs much more concise abstractions, which result in improved runtime.

The rest of the paper is organized as follows: In Section 2, we describe the background
material including eager and lazy approaches for leveraging SAT solvers. We also describe
basics of interpolants. In Section 3, we motivate the algorithm and present the details of the
decision procedure for QFP. Section 4 describes the experimental evaluation of the approach.
We describe related work in Section 5 and finally conclude. The Appendix presents a
variation of the algorithm that does not require computing Dmax for completeness.

2. Preliminaries

In this section, we provide some background on the logic QFP, eager and the (very) lazy
approaches for solving QFP along with Boolean interpolants.

2.1 Quantifier-free Presburger (QFP) Arithmetic

Presburger arithmetic is the first-order theory of structure 〈N, 0, 1, +,≤〉, where N denote
the set of natural numbers. Since every integer variable can be expressed as the difference
of two natural numbers, we assume that the underlying domain is the set of integers Z.
Quantifier-free Presburger Arithmetic (QFP) is the quantifier-free fragment of Presburger
arithmetic. Let X be a set of integer variables. An atomic formula (atomic-formula) in this
theory (also refered to as a linear constraint) is an expression of the form:

∑

i

ai ∗ xi ≤ c,
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where xi ∈ X and the coefficients ai and c are constants in Z. A formula in this QFP is a
Boolean combination of atomic formulas:

formula ::= true | false | atomic-formula

| formula ∧ formula | formula ∨ formula | ¬formula

Observe that the other relational operators {=, 6=, <, >,≥} can be expressed in QFP.
A formula φ in QFP is satisfiable if there is an assignment ρ : X → Z that maps each

xi ∈ X to an integer value, such that the evaluation of φ under ρ is true. A formula φ is
unsatisfiable if there is no assignment ρ under which φ evaluates to true.

A monome is a conjunction of atomic formulas and their negation in QFP. Checking the
satisfiability of a monome in QFP is NP-complete [26]. However, efficient algorithms based
on branch-and-bound heuristics are implemented in various Integer Linear Programming
(ILP) solvers like LP SOLVE [22] and commercial tools like CPLEX [17] to solve this
fragment. The complexity of checking the satisfiability of QFP formulas is no worse than
checking satisfiability of a conjunction of atomic formulas. Previous studies have indicated
that ILP solvers do not perform well for QFP formulas with a significant Boolean structure,
that arise from verification problems [30, 20]. To circumvent this problem, two methods
have been proposed in recent years to leverage backtracking search of modern Boolean
satisfiability solvers. We describe the two approaches in the next section.

2.2 Lazy and Eager Methods for solving QFP

2.2.1 Lazy Methods

The lazy methods [1, 29, 4] leverage the backtracking of modern Boolean Satisfiability (SAT)
solvers to case-split on the Boolean structure in the QFP and use a ILP solver to check the
satisfiability of a conjunction of linear constraints. The algorithms can be loosely described
as follows:

1. The QFP formula φ is abstracted to a Boolean formula φa by replacing each atomic
constraint with a Boolean variable.

2. The SAT solver enumerates satisfying solutions over φa and uses the ILP solver to
validate the solution over the QFP theory.

3. If the satisfying solution is consistent with the QFP theory, the procedure returns
satisfiable. Otherwise, the solver returns a conflict clause (a tautology in QFP) that
rules out the current assignment. Typically, the literals that appear in the proof
of unsatisfiability of the current assignment, constitute the conflict clause [4, 13].
This helps towards finding a “minimal” unsatisfiable core to rule out more than just
the present satisfying assignment. The conflict clause is added to φa and Step 2 is
repeated.

It must be clarified here that the method described above belongs to the very lazy class
wherein the theory solvers validate total models returned by the SAT solver. The SAT
solver needs to be restarted from scratch after adding the conflict clause.
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2.2.2 Eager Methods

Eager methods (e.g. implemented in UCLID [21]) are based on translating a QFP formula
φ to an equisatisfiable Boolean formula φbool , such that φ is satisfiable if and only if φbool

is satisfiable. QFP enjoys a small-model property — a QFP formula φ is satisfiable over Z

if and only if it is satisfiable over a finite domain D ⊆ Z. The measure log(D) denotes the
number of Boolean variables to represent the domain D. This means that if a model for the
formula exists, it can be found by encoding each variable in log(D) bits.

Let m be the number of atomic formulas in φ and n be the number of variables in
X. When the set of atomic constraints in φ is restricted to difference logic constraints
(where the atomic formulas are restricted to xi − xj ≤ c), the size of the domain log(D) is
O(log(n) + log(cmax )), where cmax is the absolute value of largest constant c that appears
in any of the constraints. Seshia and Bryant [30] show that for general linear constraints,
log(D) is bound by

log(n) + log(m) + log(cmax ) + k ∗ (log(amax ) + log(w)), (1)

where amax is the maximum absolute value of any coefficient, k is the number of non-
difference atomic formulas in φ and w is the maximum number of variables in any linear
constraint. When the number of non-difference constraints in φ is small, the size of log(D)
is almost logarithmic in n and m. The logarithms above are in base 2.

The above bounds suggest that one can encode each variable x ∈ X using log(D) Boolean
variables and translate φ to a Boolean formula. The arithmetic operator + can be encoded
as an word adder, ∗ is implemented as a shift operator since variables are multiplied only
with constants. Similarly, the relational operator ≤ is encoded as word comparator. The
size of the resultant Boolean formula φbool incur a polynomial blowup (typically log(D)) over
φ. Finally, the resultant formula can be checked using any state-of-the-art SAT solvers. We
refer to this encoding as small-model encoding of a first-order formula.

2.2.3 Comparison of the two methods

In this section, we highlight the main weaknesses of the eager and the lazy approaches, that
limit the scalability of the approaches:

The appeal of small-model based encoding to SAT lies in the fact that it provides only
a polynomial blowup when translating a linear arithmetic formula to a Boolean formula.
However, the blowup can be linear in the size of the number of constraints and variables in
the first-order formula, when the number of non-difference constraints is large. The small
model size also explodes in the presence of large constants in the formula. More seriously,
small-model encoding suffer from a loss of structure of the formula. For example, consider
the simple formula:

φ = x ≤ y ∧ y ≤ z ∧ z < x

There is a polynomial algorithm for deciding the satisfiability of such conjunction of linear
arithmetic formulas, based on negative cycle detection [7]. However, converting to a Boolean
formula requires encoding of relational operators such as ≤ as a circuit and this introduces
a lot of disjunctions in the boolean formula. The encoding of ≤, +, = and other operators
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is quite standard and has not been discussed in this paper. This results in SAT solver to
perform a lot of case splits before detecting unsatisfiability.

The lazy approaches (e.g. Verifun [13]) suffer from the need to invoke a decision pro-
cedure for the first-order theory a very large number of times in the presence of a lot of
Boolean structure (i.e. disjunctions) in the formula. Moreover, since the decision proce-
dures take over only after the SAT solver has found a Boolean model, the monome handed
to the theory can have a lot of theory literals. When the monome is unsatisfiable in the
theory, it often happens because of a very small subset of literals in the monome. Although
the decision procedure can figure out the core reason for unsatisfiability (using the proof of
unsatisfiability), the decision procedure is often overwhelmed with the size of the monome
that it obtains from the SAT solver. This is particularly problematic for the theory of
integer linear arithmetic, for which the decision procedures have exponential worst-case
complexity.

2.3 Boolean Interpolants

Consider two satisfiable Boolean formulas A and B such that A∧B is unsatisfiable. Let V
be the set of Boolean variables shared by both A and B. An (Boolean) interpolant [8] of
the pair of formulas (A, B) is a Boolean formula I, such that:

1. A⇒ I,

2. I ∧B is unsatisfiable, and

3. The set of variables in I is a subset of V .

Pudlak [28] showed that given the proof of unsatisfiability of A ∧ B, an interpolant I
can be obtained in time linear to the size of the proof. A description of the algorithm
when both A and B are present in conjunctive normal form (CNF) has been described by
McMillan [23]. The motivation for using the interpolant I of (A, B) is usually two-fold: (a)
it is an abstraction of A that is sufficient to prove the unsatisfiability with B and (b) it is
over the common variables of A and B.

3. Interpolant-based Decision Procedure for QFP

In this section, we describe an algorithm to decide the satisfiability of a QFP formula φ.
The algorithm alternates between two phases that check the satisfiability of an underap-
proximation and overapproximation of φ, respectively. In the underapproximation phase,
the algorithm creates a formula φu that is an underapproximation of φ by restricting the
domain of each variable that appear in the formula. If the formula φu has a satisfying assign-
ment within the small bounds, it reports satisfiable. Otherwise, it computes an abstraction
φo of φ by using Boolean interpolants. The abstract formula φo is then checked for (un)
satisfiability. If φo is unsatisfiable, then φ is unsatisfiable. Otherwise, we repeat the phases
with an increased domain for the variables. The algorithm adds additional clauses that it
discovers while checking φo to the formula φ, to speed up the underapproximation phase in
the further iterations. We describe the algorithm in details in the next few paragraphs.
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1. [Input]. Given a QFP formula φ.

2. [Encoding]. Construct the Boolean structure of φ by replacing every atomic formula
e with a fresh Boolean variable be in φ. The resultant formula φb will be referred to
as the (Boolean) skeleton of φ. Let atoms(()φ) denote the set of atomic formulas in
φ. We introduce a set of fresh variables B = {be | e ∈ atoms(φ)} and create a formula

φth =





∧

e∈atoms(φ)

be ⇔ e



 ,

called the theory portion of φ. Finally, the formula representing the conjunction of
the Boolean skeleton and the theory component is called φbt :

φbt
.
= φb ∧ φth

3. [Initialize]. Compute the maximum model size Dmax for the variables using Equa-
tion 1. The initial domain for each variable is restricted to a small number D (say 2),
i.e. each variable v ∈ vars(φ) is such that −D < v ≤ D.

4. [Boolean UNSAT]. We first check if the skeleton of φbt is unsatisfiable using the
SAT solver. If φb is unsatisfiable, the algorithm returns UNSATISFIABLE.

5. [Underapproximation]. We construct a Boolean formula for φth by using the small-
model encoding technique described in Section 2.2.2. We use BE (φth ,D) to denote the
Boolean translation. Let the resultant Boolean formula be φu, an underapproximation
of φbt :

φu
.
= φb ∧ BE (φth ,D)

We check if φu is satisfiable using a SAT solver. If φu is satisfiable, the algorithm
returns SATISFIABLE. If φu is unsatisfiable and D ≥ Dmax , we return UNSATISFI-
ABLE.

6. [Overapproximation]. If φu is unsatisfiable, compute the Boolean interpolant φI of
φb and BE (φth ,D). We construct the formula φo which is an overapproximation of
φbt as follows:

φo
.
= φI ∧ φth

We check the satisfiability of φo using a conflict clause generator CCG() for QFP
(described later in this section). If CCG(φo) returns UNSATISFIABLE, the algorithm
returns UNSATISFIABLE. Otherwise, CCG(φo) returns a set of (conflict) clauses φc,
representing tautologies in the theory of QFP.

We augment the conflict clauses φc to φb to create a more constrained Boolean skeleton
of φbt :

φb ← φb ∧ φc
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7. [Repeat]. Increase the bound D for each variable by some predetermined amount
δ > 0, i.e. D = D + δ. Goto step 4.

Let us first observe a couple of points about this algorithm.

• When φu is unsatisfiable in step 5, we know that the two components of φu, namely
φb and BE (φth ,D) are each satisfiable in isolation. This is because step 4 ensures that
φb is satisfiable and BE (φth ,D) is always satisfiable for any domain.

• The common variables in φb and BE (φth ,D) are only the variables from B. This
allows us to construct an interpolant in terms of the B variables, independent of the
integer variables or the variables introduced during translating an integer variable to
a symbolic bit vector.

3.1 Conflict Clause Generator (CCG)

The conflict clause generator algorithm takes as input the QFP formula φo
.
= φI ∧ φth ,

where φI is a Boolean formula over B variables and checks for the unsatisfiability of the
formula:

• If it returns UNSATISFIABLE, then the formula φo is unsatisfiable.

• Otherwise, it returns a conjunction of clauses φc
.
=

∧

i ci, such that φo =⇒ φc and
each ci is a disjunction of literals over B.

The conflict clauses generator can be implemented as a simple variation of a lazy SAT-
based theorem proving framework as follows: Initially, φc is assigned true. The SAT solver
enumerates assignments to B variables that satisfy φI and checks if the assignment satisfies
φth using a (possibly incomplete) decision procedure for a conjunction of linear arithmetic
constraints.

If the assignment is found unsatisfiable by the linear arithmetic decision procedure, the
decision procedure returns a “proof core”, a subset of constraints that are inconsistent.
The negation of the proof core is a clause ci that is added to φc (after mapping an atomic
expression e to the corresponding be variable). The clause ci is also added to the φI to
prevent it from generating the same assignment. However, if the linear arithmetic decision
procedure returns satisfiable, we simply add the negation of the assignment to φI and repeat
the loop. The process is continued until the number of satisfying assignments (that are also
satisfiable in the linear arithmetic theory) does not exceed some threshold. We currently
limit this threshold to be 5, i.e. after obtaining more than 5 satisfying solutions, we return
φc.

The usefulness of the conflict clause generator comes from the fact that it adds some
structure back to the Boolean formula φu. The conflict clauses added aid the SAT-solver
to avoid some case-splits when it is checking the satisfiability of the formula φu in the
subsequent iterations with larger D values.
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3.2 Correctness

It is not hard to show that the algorithm is sound and complete. The algorithm returns
with SATISFIABLE or UNSATISFIABLE in steps 4, 5, and 6. We use the following
invariant on the algorithm:

Lemma 1. At any point in the algorithm, φbt is equisatisfiable with φ. In step 5, φu =⇒
φbt , and in step 6, φbt =⇒ φo.

Proof. The proof follows simply by induction on the number of iterations of the algorithm.
For the first iteration, φbt is equisatisfiable with φ since φ = ∃B : φbt . Since φu simply

restricts the domain of each variable in φbt , clearly φu =⇒ φbt . In step 6, assume φu is
unsatisfiable. Recall that φb is not unsatisfiable because we have ensured that in step 4.
We also know that the formula BE (φth ,D) is satisfiable. This is because it just says that
the value of be is the same as the value of e. There are no constraints on any be variables
or the atomic constraints e. This explains the reason why we have step 4 explicitly in the
algorithm. Moreover, recall that φu is a Boolean formula. Therefore, we can construct a
Boolean interpolant φI for the pair (φb,BE (φth ,D)). Since φb =⇒ φI , φbt =⇒ φo.

Now, let us assume that the lemma holds for some iteration. We want to prove that it
holds for the next iteration. Recall, that the only step in which φb changes is in step 6. We
also know that φo =⇒ φc (from the property of the conflict clause generator), and hence
φbt =⇒ φc. This in turn implies that φbt =⇒ (φbt ∧ φc). Moreover, (φc ∧ φbt =⇒ φbt).
Hence (φc ∧ φbt)⇔ φbt . Therefore, the formula φbt is equivalent across all iterations steps.
This preserves other parts of the lemma.

Theorem 1. The algorithm described above is sound and complete for QFP.

Proof. It is easy to see that the algorithm terminates, since D is monotonically increased and
finally crosses Dmax . Observe that the algorithm returns SATISFIABLE, if and only when
it finds φu SATISFIABLE. Lemma 1 ensures soundness of the algorithm. The algorithm
returns UNSATISFIABLE if and only if a formula weaker than φbt is unsatisfiable. The
weaker formulas in step 4, step 5 and step 6 are φb, φu (only when D ≥ Dmax ) and φo

respectively.

3.3 Example

In this section, we illustrate the working of the algorithm on a simple example. Consider
the following formula φ:

φ
.
= (x < y) ∧ (y < z) ∧ (z < w ∨ z < x) ∧ (2)

(¬ (z < w) ∨ x < 2 ∗ w + 1) ∧ (¬ (z < w) ∨ ¬ (x < 2 ∗ w + 1))

Let us introduce Boolean variables {bx<y, by<z, bz<w, . . .} for the atomic constraints in
φ. Let φth denote the constraint [

∧

e be ⇔ e] as before and φb be the Boolean skeleton of φ.
Let us start with a domain D where each variable takes values in {0, 1}. The underap-

proximation of φ created by restricting each variable to D is unsatisfiable. Let

φI = (bx<y ∧ by<z ∧ (bz<w ∨ bz<x))
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be the interpolant generated in step 6 of the algorithm. In this domain, the formula
(x < y ∧ y < z ∧ (z < w ∨ z < x)) is unsatisfiable. The monome x < y ∧ y < z ∧ z < w
can’t be satisfied because each variable can only take two values, and the monome x <
y ∧ y < z ∧ z < x is always unsatisfiable.

Now φo
.
= φI ∧ φth is fed to the conflict clause generator. Even though φo is satisfiable,

it generates a conflict clause

φc
.
= (¬bx<y ∨ ¬by<z ∨ ¬bz<x) .

Once we add the conflict clause φc to φb, we obtain unsatisfiable in the Boolean skeleton.
This example illustrates the interesting case where the unsatisfiability of φ is detected in
step 4 of the algorithm.

3.4 Discussion

In this section, we illustrated a decision procedure for QFP (or in general for a theory T )
that uses a sound procedure for deciding a formula in QFP (or in theory T ) as part of
the conflict clause generator. The CCG() decision procedure need not be complete for the
theory. One can use a fast decision procedure for a subset of integer linear arithmetic (e.g.
based on negative cycle detection algorithms), coupled with simple rules for more general
arithmetic. This enables us to plug in any fast decision procedure for a subset of QFP (e.g.
difference logic) as the CCG(). To ensure the completeness of the procedure, we need to
compute the small-model size Dmax for a formula in the theory and search this domain in
the worst case.

However, we can avoid the need to compute the small-model size Dmax , if we have a
sound and complete decision procedure for QFP as the conflict clause generator. In this
case, one can ensure that the sequence of overapproximations φ1

o, φ
2
o, . . . , (where φi

o denotes
the overapproximation generated during the iteration i of the above algorithm) for the input
formula φ, will eventually converge to φ. Details of such a decision procedure is described
in the Appendix.

4. Experiments

We have implemented a prototype of the technique in the theorem prover Zap [34]. We
compare the following four variants of eager and lazy decision procedure implemented in
Zap. Since the C# implementation of Zap and SharpSAT introduces some slowdown over
other tools (e.g. Mathsat [5] or Barcelogic tools [25]), it is difficult to draw many conclusions
about the techniques by comparing the results for their specific implementations. Hence,
we evaluate the techniques by benchmarking against the following variants implemented in
Zap:

Verifun: This is the implementation of the lazy proof-explicating theorem prover described
in Section 2.2.1 based on the Verifun architecture [13]. The linear arithmetic is re-
stricted to Unit Two Variable Per Inequality (UTVPI) constraints [18], for efficiency.
We do not consider examples where Verifun returns satisfiable because of the incom-
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pleteness of the procedure. The UTVPI decision procedure suffices to prove a lot of
examples of our example set even in the presence of more linear arithmetic.

Eager. This implements a small-domain encoding of a quantifier-free formula to a Boolean
formula [6] using the eager encoding technique mentioned in Section 2.2.2. For en-
coding QFP, it uses the small model size computed by Seshia et al. [30] reported in
Equation 1.

EaZI. This is the implementation of the algorithm Eager Zap with Interpolants (EaZI)
described in Section 3. The initial size of the domain is restricted to assign 3 bits
for each integer variable. Each subsequent iteration increases the number of bits per
variable by 2. For the CCG() generation, it uses the Verifun procedure described
above. Observe that since the Verifun procedure is restricted to UTVPI, CCG() is
not complete for general linear arithmetic.

Proof. This option implements a variant of the EaZI approach, where the only difference
lies in how the overapproximation is generated from the proof of unsatisfiability in
a given domain. The overapproximation phase uses the approach by Kroening et
al. [20]; the proof of unsatisfiability from the SAT solver is used directly to select a
subset of clauses in the input formula, instead of the use of interpolants in EaZI. The
input formula has to be first converted to a clausal form, and a suitable mapping from
each clause in the propositional formula (resulting from the small model encoding) to
a clause in the original formula is maintained. More details of the mapping can be
found in earlier work [20]. The main purpose of the comparison with this approach is
to evaluate the quality of the abstractions generated by the two methods.

In all the variants, we used SharpSAT as the Boolean SAT solver. SharpSAT is a variant
of ZChaff [24] developed by Lintao Zhang at Microsoft. We ran the experiments on a 3GHz
machine running Windows with 1 GB of memory. A timeout of 300 seconds was set for
each benchmark.

We have performed preliminary experiments on two sets of verification benchmarks: (1)
Mathsat: This a set of QFP benchmarks obtained from the timed automata verification
problems [1]. An analysis of the formulas in a previous study [11] suggests that the co-
efficients of the QFP formulas are restricted to {−1, 0, 1} (with more than two variables
though), with the number of integer variables ranging from around 10 to around 150. Most
of the variables in these benchmarks are Boolean variables. (2) SAL: This set of bench-
marks [11] consists of formulas derived from bounded model checking of linear and hybrid
systems and from test-case generation for embedded systems. Most of the benchmarks have
significant linear arithmetic constraints and the number of integer variables range from tens
to hundreds of variables.

4.1 Results

In this section, we present the results of running the different approaches on the Mathsat
and SAL benchmarks. We analyze the results for different options:
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Figure 1. Eager vs. Verifun on Mathsat and Sal benchmarks.

4.1.1 Verifun vs. Eager

Figure 1 compares the Verifun and the Eager approach on the benchmarks. Verifun scales
better than Eager on the Mathsat benchmarks whereas Eager outperforms Verifun on SAL
benchmarks. We believe the difference in performance of Verifun on the two sets of bench-
marks can be explained by the number of times it invokes a theory decision procedure.
Column 3 of Figure ?? (marked “# Verifun Loops” for “Verifun”) shows that the number
of calls to the theory decision procedure for SAL benchmarks is at least an order greater
than in the case for Mathsat benchmarks. The results suggest that neither Eager nor Verifun
is robust enough for a large set of benchmarks.
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Figure 2. Eazi vs. Eager and Verifun on Mathsat Benchmarks.

4.1.2 Verifun vs. EaZI

Figure 2 and Figure 3 compares EaZI with Eager and Verifun on Mathsat and SAL bench-
marks respectively.

EaZI outperforms Verifun consistently on both the set of benchmarks. To understand the
improvement, we extracted some information for a subset of benchmarks. Table 1 compares
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Figure 3. Eazi vs. Eager and Verifun on SAL Benchmarks.

Table 1. Analysis of EaZI vs. Verifun on Mathsat and SAL. A “TO” indicates a timeout of 300
seconds.

Example # Verifun Loops Avg. Monome size Total theory time (secs) Total time (secs)

Verifun EaZI Verifun EaZI Verifun EaZI Verifun EaZI
SAL

Carpark2-t1-4 200 2 755 1 222.27 0.06 259.13 26.31
fischer3-mutex-5 372 72 399 66 116.84 2.45 153.70 8.84
fischer6-mutex-3 143 18 426 19 39.28 0.17 57.19 2.92
fischer9-mutex-3 221 40 603 15 107.14 0.25 146.44 8.45

inf-bakery-invalid-10 180 0 211 - 47.90 - 59.25 3.45
inf-bakery-mutex-9 426 66 200 38 149.77 1.11 210.02 5.04

lpsat-goal-12 233 45 2019 19 87.75 0.34 294.49 92.64
windowreal-safe2-4 254 8 328 23 19.14 0.17 38.04 3.00

MATHSAT
FISCHER10-5-fair 19 3 969 49 30.46 0.34 TO 64.7
FISCHER11-5-fair 21 25 1072 113 42.54 11.53 TO 72.20
FISCHER3-8-fair 93 0 478 - 66.89 - 127.66 28.81
FISCHER5-7-fair 81 52 682 93 108.69 8.85 TO 94.46
FISCHER8-6-fair 36 40 935 108 94.72 14.29 TO 77.78

PO3-9-PO3 38 3 618 20 25.53 0.07 250.58 94.32

the two approaches in terms of three metric (a) number of times a theory decision procedure
was invoked (“# Verifun Loops”), (b) the average size of the number of constraints involved
in the monome passed to the decision procedure (“Avg. Monome size”), (c) total time spent
in the theory decision procedure (“Total theory time (secs)”), and (d) total time spent by
the procedure (“Total time (secs)”). An example where “# Verifun Loops” is 0 for the EaZI
option (e.g. inf-bakery-invalid-10) corresponds to a satisfiable instance where EaZI found a
satisfying assignment within the initial domain size (three bits for each variables). In these
cases, the average monome size and the time spent in the theory decision procedures are
not applicable.

We observed the following characteristics across a wide set of benchmarks:
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• The number of times a theory decision procedure is invoked is usually much smaller
in the case of EaZI. This can be explained because the abstraction of the original
formula φo has lot more conflicts in the Boolean structure and thus comes to theory
less often.

• The size of monome and the total time spent in the theory is reduced at least by an
order of magnitude in most cases. This is because the abstraction φo contains a lot
fewer constraints than φ.

• The main bottleneck of the EaZI method shifts from the theory decision procedure
to SAT. In most cases, the interpolant generation consumes more than 80% of the
total time. We believe the performance of our algorithm will further improve with
improvement in the interpolant generation implementation in SharpSAT.

4.1.3 Eager vs. EaZI

Figure 2 and Figure 3 indicate that EaZI also outperforms the Eager method in most of
the examples in this set.

The small model size for the most examples calculated by Equation 1 requires the Eager
method to encode each variable with more than 15 bits in most case. In some cases with large
number of non-difference constraints, the number of bits to encode each variable exceeds
100 bits. Although the EaZI method relies on the small-model size for completeness, it
never reaches this maximum domain size for either proving unsatisfiability or satisfiability.
For satisfiable instances, it finds a satisfying solution using a small number of bits for most
examples. For unsatisfiable cases, the procedure exits from the CCG() procedure with
UNSATISFIABLE, or the conflict clauses generated from CCG() makes the Boolean part
of the formula φbt unsatisfiable. Even for the unsatisfiable instances, we need to increase
the number of bits to at most 8 in most cases.

The Eager approach outperforms the EaZI approach on some of the SAL benchmarks.
This is primarily because the number of bits to encode each variable is less than 20 and the
overhead of computing interpolants in EaZI offsets the advantage of learning from smaller
domain size.

4.1.4 EaZI vs. Proof

Figure 4 compares EaZI over the Proof [20] approach. The results indicate that the use
of interpolants consistently outperforms our implementation of the proof-based method for
constructing an abstraction of the input formula. Table 2 shows (on a representative set
sampled) that the average size of the theory monomes and the number of verifun loops
determine the relative efficiency of the two approaches.

We conjecture that the difference in the quality of abstractions generated in the two
approaches can be partly explained by the “semantic” nature of the abstraction generated
in the case of the interpolants. The proof-based approach can be seen as one particular
heuristic to choose a subset of clauses from the original formula. The abstraction generated
by the proof-based approach relies on the mapping from each clause in the propositional
formula (generated after performing the small-model encoding) to a clause in the input
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Figure 4. Comparing interpolant-based and proof-based abstractions.

Table 2. Analysis of EaZI vs. Proof on Mathsat and SAL.

Example Total time (secs) # Verifun Loops Avg. Monome size

Proof EaZI Proof EaZI Proof EaZI
sal fischer3-mutex7 267.21 37.38 1347 79 573 263

gasburner-prop3-5 88.76 10.35 47 38 151 28
infbakery-mutex-16 168.32 33.56 1021 295 386 78

pursuit-safety-5 235.82 65.18 563 186 368 115
mathsat fischer5-6-fair 292.93 64.03 24 3 564 39

po3-7-po3 57.98 2.33 3 3 460 19
fischer8-2-fair 17.84 4.14 2 2 343 27

formula. This mapping is not unique since a clause in the propositional formula can result
from multiple clauses in the original formula. We have implemented the particular mapping
scheme proposed by Kroening et al. to make the comparison fair. The use of auxiliary
variables introduced during the CNF translation has the potential of introducing redundant
clauses from the original formula in the abstraction. For the case of interpolants, there are
two clear advantages (i) we do not need to start with a clausal representation of the input
formula, and more importantly (ii) the abstraction generated only depends on the proof of
unsatisfiability of the formula in a given domain. These factors make the EaZI approach
more robust and less dependent on a particular encoding.

4.1.5 Adding Conflict Clauses

We conjectured that the advantage of EaZI over Eager comes from the fact that we add more
structure (the conflict clauses from CCG()) to φb and thereby helps the SAT solver to prune
away the search space efficiently. Figure 5 compares the EaZI approach with and without
the conflict clauses from CCG(). The conflict clauses make marked difference in the results
for the SAL benchmarks. Since the dominant time in the SAL experiments is in solving the
Boolean formula φu, addition of the conflict clauses help the SAT solver. However, adding
the conflict clauses made almost no difference for the Mathsat examples. For most of the
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Mathsat examples, we found that the abstraction φo was proved unsatisfiable by the conflict
clause generator after the first iteration. Hence the conflict clauses do not play a part in
most of these examples.
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Figure 5. Effect on conflict clauses in Eazi for SAL and Mathsat Benchmarks.

5. Related Work

In this section, we compare the interpolant based decision procedure for QFP for other
decision procedures for QFP or its restricted fragments. The use of interpolants has been
recently explored for finite-state model checking [23] and in refining the abstractions for
software verification [16, 19].

Eager approaches for translating a QFP formula to an equisatisfiable Boolean formula
employ either the small-model encoding discussed in Section 2.2.2 or add all the theory
constraints to the formula [33]. The latter approach can result in an exponential number
of constraints being added to the original formula. This translation is often the bottleneck
in the method. In [31], the authors encode disjoint set of constraints in a formula using
either the small-model encoding or by adding all the theory constraints. The approach was
restricted to the difference logic fragment of QFP, and use the number of constraints in
the formula to determine the encoding. In contrast, our approach uses small-encoding but
increases the size of encoding lazily starting from a small size. Beside, we only add a very
small set of theory constraints as conflict clauses in a more lazy manner.

Lazy approaches [4, 13] use the lazy proof-explicating framework described in Sec-
tion 2.2.1. The main bottleneck of these approaches appear to be the large number of
invocations of the theory decision procedure. The monomes passed to the decision pro-
cedure are often large, even though the reason for unsatisfiability of the monome is often
simple and small. Our approach addresses this problem by creating an abstraction of the
original formula by using the interpolants and using the lazy approach as a mean to gen-
erate conflict clauses. Our experiments indicate that the size of the monome passed to the
decision procedure is reduced by more than an order of magnitude and the time spent in
the theory decision procedure is reduced considerably. Mathsat [1] use a layered approach,
where a sequence of increasingly complete (and therefore more complex) decision procedures
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are used to decide a monome. However, to our knowledge, the approach still suffers from
passing large monomes to the linear arithmetic decision procedures.

DPLL(T) based approaches [15, 25, 5] use a closer integration of the theory decision
procedure with the SAT solver. In addition to the Boolean constraint propagation in the
SAT solver, the theory participates in the constraint propagation by adding all the theory
facts implied by the theory in the current context. This enables DPLL(T) to detect unsatis-
fiability earlier than the lazy approaches. However, the decision procedures for the theories
become more complex as they need to support the generation of all the facts that are implied
by a set of constraints. This may increase the complexity of the ILP decision procedures
that already have an exponential worst-case complexity. A promising approach has been
suggested by Sheini and Sakallah [32], where they integrate an UTVPI decision procedure
in DPLL(T) framework and use the general ILP solver in a lazy framework. Currently, im-
plementations based on DPLL(T) framework are most competitive on the SMT-LIB QFP
benchmarks.

The approach closest to our work is Kroening et al.’s [20] work on deciding QFP formulas
using Boolean proof of unsatisfiability. Kroening et al. construct an equisatisfiable clausal
representation of the original QFP formula by introducing additional variables. The clausal
form is encoded to a Boolean formula by performing small-model encoding starting with
a small size. An abstraction of the original clausal formula is constructed by choosing a
subset of clauses that appear in the proof of unsatisfiability of the Boolean formula. This
abstraction is checked using a sound and complete decision procedure for QFP. The sequence
is repeated with increasing small-model encoding size. Although similar in many aspects,
our approach differ from this work in several ways. First, this method appears to require
a clausal representation of the original formula (that can introduce auxiliary variables and
destroy some of the structure of the original formula), and the abstraction is limited to
be a subset of the clauses in this representation. The abstraction is obtained in a fairly
syntactic fashion, by considering the subset of clauses for which there is a corresponding
clause in the proof of unsatisfiability for the Boolean formula. We believe that the use of
interpolants results in a more semantic method to construct the abstraction. This often
results in more concise abstractions being generated. Secondly, unlike their approach we
do not require a complete decision procedure for QFP (for checking the abstraction) to
ensure the completeness of the procedure. Their experiments (although on a different set of
benchmarks) indicate that the lazy decision procedure for ILP dominates the total time of
the procedure. Finally, we add conflict clauses from the abstractions generated from smaller
domain sizes; this allows us to prune the search space when searching in a larger domain.

6. Conclusion

In this paper, we present a framework for using simultaneous under and over approximations
to decide a quantifier-free first-order formula. The small-model encoding is used to create
the underapproximation of the formula and the interpolant generation from the proofs of
unsatisfiability gives an overapproximation of the formula. The use of interpolants provide
a semantic and usually a robust way to compute abstractions of an input QFP formula,
compared to earlier approach. The method also demonstrates a mechanism to leverage
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some conflict clauses learned during searching in a smaller domain size, to prune the search
space during the later search.
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Appendix A. Termination in the absence of Dmax

In the previous section, the termination argument required computing a maximum domain
size Dmax . When D ≥ Dmax , then the formula φu is equisatisfiable with φbt , and therefore
also with φ. In this section, we show that we can modify the algorithm slightly to ensure
that the computation terminates even in the absence of an upper bound.

The main change required from the previous algorithm is to replace the conflict clause
generator (CCG) with a sound and complete lazy SAT-based decision procedure for QFP.
Since the conflict clauses generated from the CCG are simply adding more structure to φb

and not required for completeness, we only required a sound decision procedure QFP for
the previous algorithm.

The new algorithm is identical to the previous algorithm except for step 3 (where we do
not compute Dmax ), step 6 and step 7. The new step 6 and step 7 becomes (for simplicity,
we ignore the conflict clauses φc):

• [Overapproximation]. If φu is unsatisfiable, compute the Boolean interpolant φI of
φb and BE (φth ,D). We construct the formula φo which is an overapproximation of
φbt as follows:

φo
.
= φI ∧ φth
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We check the satisfiability of φo using a lazy SAT-based decision procedure for QFP.
If the decision procedure returns UNSATISFIABLE, the algorithm returns UNSAT-
ISFIABLE. If the decision procedure returns SATISFIABLE, it also returns D′, the
maximum value of any variable in the satisfying assignment. If φI ⇔ φb, return
SATISFIABLE.

• [Repeat]. Make D = D′ and go to step 4.

Lemma 2. For any two distinct iterations i and j of the above algorithm, let φi
I and φj

I be
the interpolants computed in step 6 of the algorithm in iterations i and j respectively. Then
φi

I 6⇔ φj
I .

Proof. Let us assume φi
I ⇔ φj

I . Let us assume w.l.o.g. that i < j. Let Dk and D′
k be the

value of D at the start of the iterations k (for k ∈ {i, j}). Let us also assume that both the
iterations reach step 6. This means that φk

I ∧ BE (φth ,Dk ) (for k ∈ {i, j}) is unsatisfiable.

Moreover φi
I ∧BE (φth ,D ′

i) is satisfiable. Since j > i, Dj ≥ D′
i. Therefore φj

I ∧BE (φth ,Dj )

is clearly satisfiable, and therefore φj
I can’t the interpolant during the iteration j. Hence

we reach a contradiction.

Theorem 2. The algorithm described in this section that does not precompute Dmax is
sound and complete for QFP.

Proof. Since there can only be a finite number of distinct Boolean functions over |B| vari-
ables and φb =⇒ φI for any iteration, Lemma 2 ensures that the algorithm above termi-
nates. Therefore, by Theorem 1, the modified algorithm is sound and complete.

In the above algorithm, we have assumed that the decision procedure for QFP used in
the overapproximation step (step 6) can construct a satisfying assignment (and therefore
provide D′). We can relax this restriction and only increase D by a fixed amount δ as
before and still obtain termination. This is because, using the same idea as Lemma 2,
we can ensure that if φi

I is the interpolant at step i, and j > i + (D′
i − Di)/δ, then φj

I

is distinct from φi
I . Although this does not allow us to bound the number of iterations

(without refering Dmax ), we can ensure that in the limit some interpolant φI is going to be
identical to φb for some finite iteration.
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