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Abstract

In this paper, we report a study on performance comparisons
of discriminative training methods for phone recognition us-
ing the TIMIT database. We propose a new method of phone-
discriminating minimum classification error (P-MCE), which
performs MCE training at the sub-string or phone level in-
stead of at the traditional string level. Aiming at minimizing
the phone recognition error rate, P-MCE nevertheless takes ad-
vantage of the well-known, efficient training routine derived
from the conventional string-based MCE, using specially con-
structed one-best lists selected from phone lattices. Extensive
investigations and comparisons are conducted between the P-
MCE and other discriminative training methods including maxi-
mum mutual information (MMI), minimum phone or word error
(MPE/MWE), and the other two MCE methods. The P-MCE
outperforms most of experimented approaches on the standard
TIMIT database in terms of the continuous phonetic recognition
accuracy. P-MCE achieves comparable results with the MPE
method which also aims at reducing phone-level recognition er-
rors.

Index Terms: phonetic recognition, minimum classification er-
ror, discriminative training

1. Introduction

Discriminative training (DT) has been an active research area in
speech recognition for many years. The popular DT methods
can be classified into three categories: minimum classification
error (MCE) [1, 2, 3], maximum mutual information (MMI) [4],
and minimum phone/word error (MPE/MWE) [5]. Remarkable
success is reported on both small vocabulary tasks (e.g., TIDIG-
ITS) and large vocabulary tasks (e.g. WSJ). In the past several
years, (continuous) phonetic recognition has become attractive
in light of recent surge in the interest of new applications such
as spoken document indexing/retrieval and spontaneous speech
recognition. However, the effects of DT methods on phonetic
recognition have not been studied in a systematic manner in the
past. Because the phones as the recognition units in phonetic
recognition are much smaller than the word units used in con-
tinuous speech recognition, it is not clear whether the effective-
ness of the DT methods can be transferred directly to phonetic
recognition tasks.

In the research reported in this paper, we conduct exten-
sive investigation and comparisons of various DT methods on
the standard phonetic recognition task defined in the TIMIT
database [6, 7]. We select the MCE method as the core algo-
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rithm in this discussion because it elaborates on the most di-
rect connection between the Bayes decision rule and the speech
recognition performance (i.e., empirical error rate). In particu-
lar, given the nature of the traditional string-level MCE [1] [8]
which optimizes the sentence error rate instead of the desired
phone error rate, we develop a new version of the MCE method,
which is named phone-discriminating MCE (P-MCE).

The MCE method for any specific application can be for-
mulated by the following steps [9]:

1. Define the performance objective and the corresponding
task evaluation measure;

2. Specify the target event (i.e., the correct label), compet-
ing events (i.e. the incorrect hypotheses resulting from
the recognizer), and the corresponding models (as well
as the organization of the training events);

3. Construct the objective function and set values of the
hyper-parameters;

4. Choose a suitable optimization method to estimate
model parameters.

For phonetic recognition, the performance measure is the
phone recognition accuracy naturally. The objective function
can be written as the empirical expectation of the smoothed
error accordingly and the optimization method can be either
gradient-based methods such as the generalized probabilistic
descent (GPD) [1] method or extended Baum-Welch (EBW) al-
gorithm [10, 3]. While the selection of competing events ap-
pears to be trivial theoretically after the classification error is
defined, it requires careful considerations in the algorithm im-
plementation, which forms the essence of the issue discussed
in this paper. In phonetic recognition tasks, there are two pos-
sible MCE schemes to determine the competing events. First,
the conventional string-based MCE using N-best lists treats a
whole utterance (i.e. a string) as a training “token”, where
there is no need to specify the phone boundaries explicitly. This
leads to the improvement of string, instead of phone, recogni-
tion accuracy. In the second scheme, the competing events can
be selected using phone lattices, which contain a richer search
space and cover more competing candidates than N-best lists.
In this case, for any specific phone in the transcription, an ideal
scheme of competing events selection for continuous phonetic
recognition would be to generate a phone lattice and take the
arcs with identical segmentation but different identities. How-
ever, the segmentation in phone lattices is neither reliable nor
strongly consistent with that for the labeled phones. One com-
promised solution would be to relax the segmentation-boundary
constraint, which we have found often leads to inaccurate phone
error calculation.
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The weaknesses of both schemes above for selecting the
competing events are overcome by the novel technique of P-
MCE introduced in this paper. While both P-MCE and MPE [5]
focus on phone discrimination, P-MCE does not require a num-
ber of heuristics used in MPE in defining the phone recognition
accuracy. In essence, P-MCE selects competing events from the
phone lattice, forms a large number of one-best lists each con-
taining only a single phone error from the reference, and then
carries out the optimization procedure in the same way as in the
conventional string-based MCE training. In this way, assign-
ment of phone boundaries are no longer needed, in contrast to
MPE which relies on such assignment.

The rest of the paper is organized as follows. We will de-
scribe details of the P-MCE method in Section 2. Compara-
tive experimental results among different discriminative train-
ing methods are presented in Section 3. And in Section 4, con-
clusions are drawn and the planned future work are discussed.

2. Phone-Discriminating MCE Technique

We now follow the four-step procedure discussed above to in-
troduce the P-MCE method. Since the performance measure
is phone recognition accuracy by definition, we start from the
second step.

2.1. Target and competing events

Figurel illustrates the principle of our novel competing-token
selection in the P-MCE method. Assume the target phone se-
quence (as the labeled transcription provided by the database) is
“ ABC ” and a possible recognized phone sequence is “ A’'B’C’
”. This competing sequence may be the top-one output from the
recognizer or be extracted from the phone lattice generated by
the recognizer. As the figure shows, our goal is to create a com-
peting utterance which differs in only one phone from the tran-
scription. That is, for each phone in the transcribed target utter-
ance, we form a new phone sequence which is identical to the
target utterance except for that phone. For instance, the compet-
ing phone sequence for the first phone “A” is “ A’BC . Conse-
quently, we can conduct a conventional string-based MCE over
“ABC” and “ A’BC ”. But since the target and competing se-
quences differ in only one phone ("A” vs. ” A’ ), the training
of model parameters will be focused on the discrimination of
phone "A” vs. ” A’ , reaching the goal of phone-level discrim-
ination. The major advantage for the above P-MCE method is
that the statistics used for updating the underlying phone pa-
rameters are not contaminated by other models, and that there
is no need for estimating the phone boundary explicitly in order
to compute the necessary likelihoods. In the current implemen-
tation of the P-MCE technique, we only form one competing
phone sequence (for each incorrect phone in the original mis-
recognized phone sequence) and conduct one-best MCE train-
ing. The competing phone “ A’ (or “ B’ ” or “ C’ ) is chosen
from a pre-generated phone lattice. If there is no suitable com-
petitor found in the phone lattice, a competitor is selected using
a phone confusion matrix generated from the baseline recog-
nizer.

2.2. The objective function and the optimization method

The objective function of the P-MCE is very similar to that of
the string-based MCE, which is
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Figure 1: Illustration of creating competing training tokens for
P-MCE.

where R’ is the total number of training utterances. Note the
number of R’ is no longer the original number of utterances in
the training set. According to the procedure described in the
preceding subsection, the total number of P-MCE training to-
kens is expanded from the original R to R’ = Zle Ny, in
which N, is the number of phones in the rth utterance. In
Eq.1, I(.) is the sigmoid loss function and d,(.) is the mis-
classification measure, both are defined in the same way as in
the conventional MCE training [1]. Naturally, the optimization
method can be the GPD method or more advanced gradient de-
scent methods such as Quickprop [11].

In this paper, we use a modified EBW algorithm proposed
in [3], which gives a solid theoretical basis, stable convergence,
and is well suited for the large-scale batch-mode training pro-
cess essential in large-scale speech recognition and other pat-
tern recognition applications. Here, we provide a brief review
for optimizing the objection function of Eq.(1).

For one-best MCE, we define s, € {Sr, sr,1}, where S is
the correct label sequence for the rth utterance and s, 1 is the
best competitor (normally the best recognized string not equal
to S;-). We can have a misclassification measure function

dr(Xr|A) = —log p(X;, Sr|A) 4+ 1og p(Xr, sr1|A)  (2)

Note that we use the total likelihood log p(X,|A) instead
of the likelihood of the best state sequence log p(X,, g|A) in
calculating Eq. (2). Consequently, no Viterbi alignment [1]
is needed, in contrast to the conventional [1] which requires
Viterbi alignment before computing gradient. This eliminates
any problem arising from the inaccurate phone segmentation.

We now define

'Ym,r,sr(t) :p(qﬁi = m‘X’NSTyA/) (3)
as the posterior probability of being in state m in the corre-
sponding HMM at time ¢ given utterance r for word string ;..
In Eq. (3), q is the state sequence and A’ is the HMM parameter
set in the previous iteration, and ., r,s,.(¢) is computed by the
standard forward-backward algorithm.

We further define

Ay (t) p(Sr| X, ANp(sr1| X, ) -

(ymor, 50 (8) = Ymor,s1 (1)) )

According to [3], the parameter updating equations are as
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where i, and X, are the HMM parameters from the previous
iteration of the algorithm. In Eq. (6), D, takes the following
functional form:
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where FE is set to be 2 in all the experiments.

2.3. N-best vs. lattice in selecting competing tokens

One critical issue related to the P-MCE implementation is the
selection of competing events using N-best lists versus using
phone/word lattices. Conventionally, we adopted the phone lat-
tice or lattice approach for two reasons. First, “N-best lists” are
at the level of competing utterances, from which it is difficult to
identify the desired phone/word competitors. Second, lattices
contain a richer search space than N-best list. One weakness of
the phonetic lattice approach, however, is the often unreliable
arc segmentation in the lattice. Another weakness is the pos-
sibility of having a sub-string with two or more phones are so
acoustically cohesive that they should be adjusted as a single
unit. These problems are particularly severe for phone recogni-
tion because the duration of phones are much shorter than that
of words and hence the phone boundary inaccuracy will have a
direct negative impact on the quality of the selected competing
events.

For the P-MCE training algorithm, however, all of the
above problems are reduced. The algorithm performs discrim-
inative training on an arbitrary sub-string, as long as an appro-
priate competing utterance can be selected. (We showed the se-
lection of phone-level competing “utterances” at the beginning
of this section.) For full exploration of the rich search space af-
forded by the lattice, we can create N-best lists from the lattice
instead of the one-best lists as we have currently implemented
the P-MCE algorithm. With a large value of N for selecting
competing phones or substrings from a phone lattice, the rich-
ness of the search space in the phone lattice would not be wasted
as in the current simplistic implementation. How to optimally
organize the competing events in the P-MCE framework is a
future research direction.

3. Experiments and Results

All experiments reported in this section are carried out on the
TIMIT database and we use the standard experimental setup
as specified in [6, 7]. We experimented with and compared
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the performance of various discriminative training techniques
including the conventional string-based MCE, the P-MCE, the
MMI, and the MPE methods. The phone lattice in the train-
ing are generated using the tool of HVite in the HTK toolkit
(http://htk.eng.cam.ac.uk/) by setting n 3 (maximum 3 to-
kens at one frame) p = 0 (no phone insertion penalty), and
s = 8 (language model scale factor).

3.1. Baseline system

A high-quality baseline system is built using the HTK, with
carefully constructed decision trees to establish triphone HMMs
using bigram. A total of 48 monophone units used follow the
exact definition as in [6, 7]. Triphone HMMs are built by
maximum likelihood training using 39 MFCC feature vectors
(12MFCC +12A+12AA+3 log energy values). All models ex-
cept for the short pause unit “sp” are 3-state left-to-right HMMs.
Each state has 16 Gaussians except for “sil” which contains
28 Gaussians. The short pause model “sp” has only one state
with 16 Gaussians. There are a total of 224077 logical triphone
models and 7496 physical triphone models, with 917 physical
states after automatic decision-tree tying. Excluding the “sa”
utterances in TIMIT, we use a total of 3696 training utterances
and 192 core-test utterances according to the standard setup de-
scribed in [7].

In the phonetic recognizer’s evaluation, we merge the 48
monophones into 39 monophones according to the standard
mapping described in [6, 7] and the confusion among the
merged phones is not considered as errors.

3.2. P-MCE and Other MCE Methods

Table 1 shows the comparison between the conventional string-
based MCE, the lattice-based MCE [2][9] on phone lattices and
P-MCE, both using the EBW optimization method of [3]. The
number of training iterations is fixed to be five.

The results in Table 1 show that while the string-based
MCE reduces phone recognition errors in the training set (com-
pared with the baseline system), it does not achieve the same for
the test set. In contrast, the P-MCE technique outperformed the
other two MCE methods in terms of phone recognition accuracy
on the test set, although for the training set the improvement is
not as much as the string-based MCE.

Table 1: Phone recognition accuracy (percent %) for the con-
ventional string-based MCE, lattice-based MCE and P-MCE

| | Train | Test |

Baseline 87.60 | 72.54
String-based MCE | 90.03 | 70.82
Lattice-based MCE | 89.90 | 72.80

P-MCE 89.64 | 73.01

3.3. MMI and MPE

The MMI and MPE methods are implemented by the
newest HTK3.4 toolkit. The I-smoothed MMI configura-
tion is used for the MMI training, which sets the parame-
ter ISMOOTHTAU=100. The recommended ‘“approximate-
error” MPE training (MPE=TRUE, CALCASERROR=TRUE,
INSCORRECTNESS=-0.9) is used for the MPE implementa-
tion. To make sure MMI and MPE work correctly, we followed
the exact procedures on the HTK tutorial and recorded the val-
ues of their objective functions over each training iterations.



These values are shown in Table 2 as a function of the train-
ing iteration. Consistent increases of the objective functions
suggest that the parameters of the algorithms are unlikely to be
incorrectly set.

Table 2: Objective functions of MMI and MPE
| [ iter 1 [ iter2 [ iter 3 [ iter 4 [ iter 5 ‘
MMI | 0.815 | 0.923 | 0.930 | 0.949 | 0.955
MPE | 0.882 | 0916 | 0.918 | 0.930 | 0.941

Table 3 shows the phonetic accuracy results on the core test
set after five iterations of MMI and MPE training. The per-
formance of the P-MCE method on the test set is better than
the performance of the MMI method but slightly worse than
the one of the MPE method. We examined the earlier work
on MMI training [4] for the same TIMIT phonetic recognition
task. With a much lower baseline performance of phone accu-
racy of 66.07%, MMI training only improved the accuracy to
67.50%. Based on the trend of the result figures in [4] and ex-
trapolating them to our comparable higher baseline accuracy of
72.54%, very limited improvement from MMI training would
be obtained. So our results reported in Table 3 appear to be
consistent with those in [4].

Table 3: Phone recognition accuracy for the conventional
string-based MMI and MPE

| | Train | Test |

Baseline | 87.60 | 72.54
MMI 89.48 | 72.85
MPE 89.12 | 73.03

P-MCE | 89.64 | 73.01

4. Conclusions and future work

In this paper, we introduce a novel MCE training method, P-
MCE, which aims at the phone-level discriminative training
based on the MCE criterion defined specifically for minimiz-
ing phone recognition errors. P-MCE provides a new scheme
for selecting competing tokens for each mis-recognized phone
in the training utterances, and it takes advantage of the merits
associated with both N-best lists and phone lattices. A modi-
fied EBW optimization method is described for optimizing the
P-MCE objective function.

The conventional wisdom suggests that the MPE criterion
is superior to the string-based MCE method as it localizes the
training errors more accurately. The P-MCE method allows
only one error each utterance, which in fact converts the tra-
ditional string-based MCE to a phone-based MCE. Though in
our experiments P-MCE shows better performance than MMI
and two other MCE methods, while being about the same as the
MPE method, the improvement over the (high quality) baseline
is lower than expected. One possible cause is the use of 48
phone classes in the training while after folding them into 39
new phone classes, the confusion among the merged phones is
not counted as errors [7]. This wastes much of the power in
discriminative training, particularly among the phones that are
eventually merged into the same class. To correct this problem,
a new evaluation standard without phone folding needs to be
established.
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Our future work will involve extending the current one-best
selection of competing tokens (from the lattice) to the richer
N-best one within the same P-MCE framework described in
this paper. Another obvious improvement of P-MCE will in-
volve training of selective substrings instead of uniformly single
phones as reported in this paper. Finally, we plan to incorporate
discriminative margins into P-MCE training. This incorporation
can be more easily formulated in the P-MCE framework than in
other frameworks such as MPE and MMI.
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