
FlowMouse: A Computer Vision-Based Pointing and
Gesture Input Device

 Andrew D. Wilson and Edward Cutrell

Microsoft Research
One Microsoft Way, Redmond, WA

awilson@microsoft.com, cutrell@microsoft.com

Abstract. We introduce FlowMouse, a computer vision-based pointing device
and gesture input system. FlowMouse uses optical flow techniques to model
the motion of the hand and a capacitive touch sensor to enable and disable in-
teraction. By using optical flow rather than a more traditional tracking based
method, FlowMouse is exceptionally robust, simple in design, and offers op-
portunities for fluid gesture-based interaction that go well beyond merely emu-
lating pointing devices such as the mouse. We present a Fitts law study exam-
ining pointing performance, and discuss applications of the optical flow field
for gesture input.

1 Introduction

Today’s computing environments are strongly tied to the availability of a high resolu-
tion pointing device, and, more fundamentally, to the notion of a single, discrete two-
dimensional cursor. Modern GUIs (graphical user interfaces) combined with devices
such as mice and track pads are extremely effective at reducing the richness and vari-
ety of human communication down to a single point. While the utility of such devices
in today’s interfaces cannot be denied, there are opportunities to apply other kinds of
sensors to enrich the user experience. For example, video cameras and computer
vision techniques may be used to capture many details of human shape and movement
[24]. The shape of the hand may be analyzed over time to manipulate an onscreen
object in a way analogous to the hand’s manipulation of paper on a desk. Such an
approach may lead to a faster, more natural, and more fluid style of interaction for
certain tasks [10], [28].

The application of video cameras and computer vision techniques as an interface
component to today’s computing architecture raises many questions. Should the new
device be designed to replace the mouse? In what ways might such a device comple-
ment the mouse? Will the added functionality of the new device be incorporated into
today’s computing experience [15], [27] or does the entire interface need to be re-
thought [16], [26]?

Unfortunately, most computer vision-based user interface systems are poorly suited
to the task of emulating the mouse. To begin, the resolution of video-based tech-
niques is far less than today’s mouse. While it is difficult to directly compare the

resolution of an optical mouse to a computer vision-based tracking system, we note
that a typical optical mouse has a resolution of about 400 dpi and frame rate of 120
Hz. A typical video camera produces 640×480 pixel images at 30 Hz. Assuming a
full view of a 9” wide mousing surface, a computer vision tracking algorithm with
tracking precision equal to that of the input image yields a resolution of only about 71
dpi.

The lack of spatial and temporal resolution is not the only difficulty. Often with
computer vision-based user interfaces, it is difficult to determine the precise relation-
ship between the object being tracked and the resulting output position information.
For example, in tracking the hand, which part of the hand should indicate cursor posi-
tion? If the tip of the finger is chosen, which point is exactly the “tip” of the finger?
A lack of agreement between the user and the sensing system on what is being tracked
further limits resolution and can be the source of breakdowns in interaction. A num-
ber of related works pursue finger tracking approaches to recover absolute finger
position [25], [21], [15], [19]. Another approach is to design a handheld prop which
is tracked unambiguously [7], [4].

A related issue is that vision-based systems often have difficulty in providing natu-
ral ways for the user to enable or disable the device. Mice and trackpads both provide
unambiguous and simple mechanisms that require little or no thought on the part of
the user. It is important for vision-based systems to adopt mechanisms that are simi-
larly natural and failsafe, or the trouble of unintentional input will outweigh any bene-
fit provided by the interface.

Finally, many vision techniques make strong assumptions about the appearance of
the tracked object and the background or are sensitive to lighting conditions. In the
case of computer vision systems trained on hands, often much effort is placed on de-
veloping models of skin color and hand shape. The segmentation problem of separat-
ing foreground from background, based on color or otherwise, is very difficult in
general. While the field of computer vision has techniques that can address these prob-
lems, the resulting systems can be complex and provide no guarantee on robustness.

In this paper we present a pointing device and gesture input system based on com-
puter vision techniques. To capture the motion of the hand, FlowMouse uses optical
flow techniques rather than traditional absolute position-based tracking methods, and
so avoids many of the difficulties mentioned above. In a laptop configuration, a natu-
ral mode switching mechanism is provided by a touch-sensitive strip placed on the
mouse button just below the keyboard. The flow computation performed at each point
in the input image is roughly analogous to that performed by a typical optical mouse
sensor, in which mouse velocity is determined by image correlation between succes-
sive captured images. In aggregate these individual motion estimates provide a robust
estimate of the relative motion of the hand under the camera. This approach avoids
the fragility of absolute tracking techniques as discussed above.

Flow fields are able to express patterns of motion beyond a simple translation of
the hand, and in that capability there is opportunity to explore new interaction scenar-
ios while maintaining support for traditional two-dimensional pointing. Our goal is to
demonstrate that FlowMouse is a capable pointing device for today’s interfaces while
outlining its potential to simultaneously support novel interactions that take advantage
of the richness and subtlety of human motion.

In the following, we outline the configuration of the device, detail the image proc-
essing used, present a Fitts law analysis of FlowMouse pointing performance, and
discuss how FlowMouse enables interaction scenarios beyond traditional two-
dimensional pointing.

2 FlowMouse

Figure 1 illustrates a FlowMouse prototype installed on a laptop computer. A USB
web camera is attached to the top of the display such that the camera image contains a
view of the laptop keyboard and the user’s hands when they are on the keyboard and
mouse buttons. When FlowMouse is enabled, images are acquired from the camera
and processed to determine motion information useful for pointing and gesture. In our
experiments, we have relied on ambient office lighting for illumination, but we envi-
sion that future implementations may include light emitting diodes (LEDs) to be used
when ambient light levels are inadequate.

It is important to have a reliable and natural mode switch which can be used to en-
able and disable FlowMouse, such that only intentional gesturing is processed by the
system, but also to allow for a “clutching” action that a relative pointing scheme re-
quires [5]. In our prototype, a touch sensor is affixed to the surface of the left mouse
button. We chose this placement based on the desire to find a mode switch method
that requires very little modification of the user’s behavior: we have observed that
while moving the cursor using keyboard-integrated devices (e.g., a trackpad or isomet-
ric joystick), most users rest their left thumb or left forefinger on the left mouse button
so that they are prepared to quickly click the mouse button. We believe that touching
the left mouse button is an adequate indicator for using the mouse rather than the
keyboard. A similar application of touch sensors is presented in [11] and [22].

The loading of the mode switch on the left mouse button also avoids the problem
that many vision-based user interface designs face: if the hand used for positioning is
also used to effect a click action, the motion for the click action may be confused with

Figure 1 Left: FlowMouse prototype with screen-mounted camera facing down on keyboard
and user’s hands, and touch sensitive strip on left mouse button. Right: Example image cap-
ture from camera.

the motion used for positioning. In this case, the clicking action is likely to bump the
cursor off the target just as the user has finished positioning the cursor.

In our prototype, a simple capacitance-based touch sensor relies on a copper elec-
trode taped to the mouse button. Such a sensor can also be placed under the plastic
shell of the mouse button itself.

3 Image Processing

While the user touches the left mouse button, FlowMouse sensing is enabled. During
this time, grayscale images are acquired from the USB camera attached to the top of
the display. These images are then processed in real time to determine the optical
flow field corresponding to the motion of the hand under the camera. Optical flow is a
standard representation used in computer vision which indicates the direction and
magnitude of motion at each point on a regular grid defined on the input image [1],
[2].

Part of the goal of FlowMouse is to explore the advantages of optical flow over a
more traditional approach based on segmentation of hands against the keyboard and
subsequent absolute position tracking processes. Optical flow computations make
very few assumptions about the nature of the input images and typically only require
that there be sufficient local texture on the moving object. We avoid the difficulties of
developing a reliable absolute position-based tracker by only computing simple statis-
tics that summarize the flow field and restrict ourselves to computing relative motion
information. As with traditional mice and track pads, a key to the success of this ap-
proach is the effectiveness of the clutching mechanism.

During the time the user touches the left mouse button, optical flow is computed
from the most recently acquired image and the previous image. There are a number of
methods to compute optical flow. Our prototype uses a simple block matching tech-
nique in which, for each point),(yx on a regular grid in the image, the integer vector

quantity),(dydx is determined such that the image patch centered on),(yx at time

1−t most closely matches the image patch centered on),(dyydxx ++ at time t . In

this calculation, image patches are compared by computing the sum of pixelwise abso-
lute differences (low values indicate close match). For a given patch in the image, we
select),(dydx that minimizes

∑
∈

− ++−
patch,

1),(),(
yx

tt dyydxxIyxI (1)

Our current implementation acquires 640×480 pixel grayscale images at 30Hz.
Flow vectors are computed every 32 pixels on a regular grid, yielding a 20×15 flow
field. Each of dx and dy are allowed to vary by 6 pixels in either direction on 16×16

pixel patches, and the optimal),(dydx for each grid point is found by exhaustive

search over this range. The flow field is computed at full frame rate (30Hz) on a
1.1GHz Pentium III Mobile. An example flow field for hand motion is illustrated in
Figure 2.

There are a few details to note about the optical flow computation. First, correct
values),(dydx are attainable only if there are adequate features such as edges or

corners in the image patch under consideration. In practice, it is necessary to deter-
mine the merit of the computed),(dydx at a patch. We compare the match score

corresponding to 0),(=dydx against the best score for any),(dydx and discard the

flow information at this patch if the best score is not significantly better than that cor-
responding to 0),(=dydx . This typically avoids the problem of spurious flow vec-

tors computed on regions of the image without adequate texture, such as may be found
on the smooth area on the back of the hand.

A second consideration is that this method finds integer values for dx and dy .

This would seem to limit the overall precision of motion information derived from the
flow, but typically a hand under the camera will generate many valid flow observa-
tions. While a single flow observation may be a noisy estimate of motion, when aver-
aged together the collection of flow vectors result in a more stable estimate of motion.

Figure 2 Example optical flow field, with hand undergoing translation left and down.

4 FlowMouse as Pointing Device

4.1 Mouse Acceleration Profile

A simple averaging of the nonzero flow field vectors may be used to obtain a grand
mean),(dydx suitable for cursor movement. In our experience it is necessary to

transform this raw velocity to incorporate acceleration such that it is possible to finely
position the mouse cursor. Whereas in previous studies such velocity transfer func-
tions are motivated by minimizing the range of motion [14], we adopt an acceleration
profile in an attempt to mitigate the lack of resolution of the camera compared to the
mouse.

We adopt a sigmoidal (logistic) acceleration profile, where the speed s is computed
as the norm of),(dydx . The acceleration factor scales input),(dydx to obtain mouse

movement offsets),(yx mm on a display of resolution 1024×768:

22)7.0()5.0(dydxs += (2)

),(
1

80
),(

6.0/)4(
dydx

e
mm

syx 







+
= −−

(3)

where the scaling factors on dx and dy were added to differentially scale movement

in the horizontal and vertical directions, respectively, to account for the fact that verti-
cal motion of the hand in the plane of the keyboard appears to be more difficult than
horizontal motion. This disparity is probably due to the rotation of the wrist as a
component of horizontal movement.

This acceleration profile is more aggressive than the usual profile used in Windows
XP [3]. This change reflects the fact that FlowMouse has significantly less sensor
resolution than a typical mouse, we require fine positioning of the cursor as well as the
ability to move the cursor across the entire screen with little or no clutching.

5 Laboratory User Study

To objectively evaluate the performance of FlowMouse used as a pointing device, we
performed a user study using a Fitts Law task. Fitts Law is a standard method for
evaluating, optimizing, and studying properties of pointing devices and techniques
that is well-accepted by the HCI community [20], [9]. We tested the FlowMouse
against the default trackpad included in the laptop the prototype was installed on.

5.1 Hypotheses

Because the FlowMouse technique is quite novel for most users and the prototype is
not highly optimized for pointing (as opposed to the trackpad), we expected that the
performance of FlowMouse would be significantly worse than the trackpad. Neverthe-
less, we thought that inexperienced users would be able to complete all trials with
little difficulty. In addition, we expected that the performance difference between
FlowMouse and the trackpad would be considerably less for users who have a bit
more experience. That is, experienced users would show substantially improved per-
formance over novice users.

5.2 Participants

We recruited 6 participants between the ages of 30 and 55 from coworkers. All had
extensive experience using trackpads on laptop computers, and none had ever used the
FlowMouse. All rated themselves as advanced computer users and had normal or
corrected to normal vision with no color blindness. In addition, all were right handed
and used the mouse in their right hand. Two other participants who had several hours
practice using FlowMouse were recruited to compare the effect of experience on per-
formance.

5.3 Method

The Fitts Law task was administered using a modified version of WinFitts (courtesy of
the Dept. of Computer & Information Science, University of Oregon). For each de-
vice, participants performed a block of practice trials to familiarize them with the task
and device. They then performed a block of trials for that condition. Each block con-
sisted of 2 trials for each of the 12 distance-width combinations at 8 different target
angles for a total of 192 trials per block. Error conditions (where a target was missed)
were repeated in a random order at the end of the block. The Fitts parameters used in
the experiment were: Width: 5, 10, 20 mm; Distance: 20, 40, 80, 160 mm; Angle: 0,
45, 90, 135, 180, 225, 270, 315 degrees from start point. This yielded Fitts index of
difficulty measures ranging from 1 to 5.04 bits (according to the formula
ID=log2(D/W +1)).

5.4 Results

All data analyses for movement times were performed on the log transformed move-
ment times to normalize the typical skewing associated with response time data. These
were converted back to normal time for all figures below to make the results more
intelligible. Movement times were first cleaned by removing error trials and outliers
(movement times greater than 4 standard deviations larger than the mean for each
condition), about 2% of all trials. We collapsed across angle to yield the means of 16

repetitions of each distance-width combination for each participant. The error rate was
very low: 1.7% for the trackpad and 2.2% for FlowMouse.

We performed a 2 (Condition) x 4 (Distance) x 3 (Width) Repeated Measures
ANOVA on the log-transformed movement data. The typical finding of increased
movement time as D increases and W decreases was confirmed (i.e., as the task got
more difficult: for D, F(3, 15) = 709, p<<0.01; for W, F(2, 10) = 275, p<<0.01).
There was also a small interaction between Distance & Width, F(6, 30)=8.9, p<0.01—
as D decreased, the size of the target, W, had a smaller effect on movement time. As
hypothesized, there was large difference between conditions; the trackpad was faster
than FlowMouse by 700 ms, F(1, 5) = 555, p<<0.01 (see Table 1).

Because FlowMouse was quite novel for our participants, we were interested in the
performance of users with a bit more experience in using the device. Therefore, we
looked at two other users who had several hours of practice using FlowMouse. As we
hypothesized, a bit of practice resulted in a substantial improvement in performance,

Table 1 Fitts index of performance (IP, the inverse slope of each line in) and the mean
movement time (±SEM) for each condition. Note the large improvement in IP for the
FlowMouse with a small amount of practice.

 FlowMouse Trackpad Exp. Flow Exp. Track

IP (bits/s) 2.15 3.70 2.76 3.84

Move Time (s) 1.70 (±0.11) 1.00 (±0.07) 1.33 (±0.15) 0.93 (±0.10)

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6

M
ov

em
en

t T
im

e
(s

)

Index of Difficulty

FlowMouse

Trackpad

Exp. Flow

Exp. Track

Figure 3 Mean movement time (±SEM) versus Fitts index of difficulty (ID=log2(D/W +1))..
Circle & squares represent performance for the 6 novice users of FlowMouse. Triangles &
diamonds represent the performance for the 2 experienced users of FlowMouse.

reducing the mean difference in conditions almost in half (only 400 ms difference for
the experienced users, see Table 1).

To better characterize FlowMouse, we calculated the Fitts Index of Performance
(IP) for FlowMouse and the Trackpad. Fitts Law states that movement time is related
to the distance and width of the target being acquired (MT = a + b log2(D/W +1),
where a and b are device-dependent empirically derived constants. The inverse slope,
1/b, is referred to as the Index of Performance (IP) for a given device. This is often
used to compare the “bandwidth” of different devices (see [20] and [9] for more de-
tails). Figure 3 plots the mean movement time versus ID for each device and partici-
pant group (the 6 novice and 2 experienced users). IP was calculated from a linear
regression on each line (see Table 1).

Note that the performance on the trackpad is very similar for both novice and ex-
perienced FlowMouse users. This is not surprising because both groups were very
experienced at using the trackpad. However, a few hours’ practice resulted in a sub-
stantial improvement for the FlowMouse. This is very encouraging, as it suggests that
a combination of device optimization and modest practice could result in performance
similar to that of the trackpad.

Participants made several interesting subjective observations after using Flow-
Mouse. All noted that it took a little while to “get the hang” of using it, but after 5
minutes or so, all of them found it quite intuitive. Surprisingly, the most common
complaint was not with the FlowMouse per se, but the implementation of the touch
sensor used to turn it on and off. The sensor was somewhat noisy and participants
often had a hard time maintaining contact when they intended to.

Perhaps related to this issue with the touch sensor, the main difficulty for most us-
ers was in clutching. Most initially tried to clutch in the same way they would do so
with a mouse or trackpad, but because the system tracked the movement of their hand
as they clutched, this technique was generally frustrating. Most used the left hand
touch sensor to turn off tracking during the clutch motion, but this coordination was
somewhat difficult and unintuitive. One novice and both experienced participants
adopted a different behavior for clutching. By exploiting the acceleration profile, it
was possible to use differential slow and fast movement of the pointing hand to reset
the hand position relative to the cursor. This was more intuitive and seemed to result
in a generally better performance.

6 Beyond Pointing

For two-dimensional pointing tasks, it is sufficient to collapse the flow field informa-
tion to a single direction and magnitude by averaging all nonzero points of the flow
field. This average indicates the translation of the hand. But flow fields are able to
express patterns of motion beyond translation and have been shown to be useful in
gesture recognition tasks [8]. Figure 4 shows flow field motions other than a simple
translation. We consider a variety of interaction scenarios that are enabled by simple
calculations on the flow field:

Freeform rotation, scaling, translation An onscreen object may be simultaneously
rotated, scaled and translated in 2D by constructing the transform matrix for a
graphics object as the composition of rotation, scaling and translation parameters. In
the appendix we present a mathematical framework for computing the simultaneous
rotation, scaling and translation of the hand by computations on the flow field. If an
application requires it, one or more of the three transforms may be ignored. For
example, general object manipulation in a CAD program may make use of all
transforms simultaneously, while rotating an onscreen knob may require only rotation
information.

Change in hand height to zoom By the same mathematical technique a change in the
height of the hand over the keyboard can be detected as a scaling of the flow field.
This may be useful for interfaces with zooming functionality, such as mapping
programs or other spatial displays.

Tilt By extension of the mathematical framework presented in the appendix, it may be
possible to extract the hand’s tilting in and out of the plane of the keyboard. This
could be useful for “open” or “reveal” gestures, as well as with CAD object
manipulation. Tilt could be used to change the attitude of the user’s viewpoint in a
virtual environment for navigation, including games in which the player controls a
vehicle (e.g., airplane). See [4] for related mathematical techniques for extracting
object pose in a controller device setting more generally.

Two-dimensional scrolling or panning FlowMouse may be used for pointer based
interactions that are complementary to cursor control. For example, the average

),(dydx may be mapped to two-dimensional scrolling. This panning mode may be

triggered by detecting that the user has spread the hand fully, to effect a rather direct
analogue of the hand icon found in many drawing and mapping applications.

Figure 4 Flow fields represent more than translation. Left: Flow field generated by clockwise
rotation of the hand. Note how the flow field vectors lie along circles about the point of rota-
tion. Right: Flow field generated by hand raising over keyboard. Here the flow vectors indi-
cate an expansion about a point.

Scrolling or panning with FlowMouse with the non-dominant hand may complement
simultaneous use of the conventional mouse for precise selection tasks [12].

Gesture modulation based on size or shape The approximate size of the moving
object under the camera may be determined by counting the number of nonzero points
in the flow field. Many of the interactions discussed here may be modulated based on
detected size of the moving object. For example, the mouse acceleration profile may
be related to object size: smaller motion patterns resulting from the movement of a
single finger can yield small amounts of acceleration, while whole hand motion results
in the greatest acceleration. This corresponds with the notion that in the real world,
gross positioning of an object may be accomplished by whole-hand grasping, while
precise positioning may be better accomplished by a gentle nudge with a finger or
two.

Simple gesture recognition Strong motion patterns detected over a short duration of
time may be set to trigger application commands such as “next”, “previous”, “up”,
“down”, “delete”, “dismiss”, “minimize”, “reveal”, etc. [27]. Simple gestures may
have their use in short fleeting interactions that do not warrant the burden of fully
acquiring the mouse and keyboard, such as in advancing a slide during a presentation,
changing the track or volume on media playback, and in other “casual” computing
settings.

Marking menus Marking menus typically arrange menu options in a circular fashion
around a given point on the screen, like slices of a pie, and so do not require precise
cursor positioning along the usual menu items [17]. As such, the coarse relative
motion provided by FlowMouse may be well suited to marking menus. The
application of marking menus to vision-based UIs is discussed in [18].

Two handed interactions Simple clustering techniques on the position of flow
vectors or on their dominant directions of movement (as in [8]) may be used to detect
the motion of two hands under the camera. Various two-handed interactions would
thus be enabled (see [6] and [12] for examples).

Finally we note that the camera enables a variety of other camera-based interaction
scenarios not limited to optical flow. For example, visual tags or barcodes placed on
documents on other objects may be recognized [23]. For a fixed camera looking at
the keyboard, it would be possible to detect which key the user is about to press and
exploit that in some interaction, perhaps in presenting tooltips or status. A camera that
can be re-oriented can be used in video conferencing scenarios.

7 Conclusion

FlowMouse is a computer vision-based pointing and gesture input device which relies
on optical flow computation where most previous related works uses more fragile
object tracking techniques. FlowMouse makes few assumptions regarding the appear-
ance or color of the user’s hand, but instead is driven by analysis of the motion pat-
terns indicated in the optical flow field.

The relative motion indicated by the optical flow field may be used for cursor posi-
tioning tasks much in the same manner that an optical mouse recovers velocity by
image correlation techniques. Our first FlowMouse prototype relies on a touch sensor
on the left mouse button for a clutching mechanism. We conducted a Fitts law study
which demonstrated that while pointing performance with FlowMouse was signifi-
cantly worse than with a trackpad, subjects were able to use FlowMouse successfully.
Encouragingly, there is some indication that users are able to improve performance
dramatically with practice.

The optical flow field derived from hand motion is able to express more than sim-
ple translation. We outline a number of interaction scenarios which make use of the
rich motion information present in the optical flow field, such as rotation and scaling
effects. Furthermore, we note some scenarios where FlowMouse may complement the
mouse, such as simultaneously pointing and panning.

In the same way that today’s pointing devices are the product of years of engineer-
ing refinement, FlowMouse can take advantage of numerous technical improvements
to enhance pointing performance. For example, faster cameras are available today,
and better optical flow techniques can be used to obtain flow fields of higher quality.
However, we believe that FlowMouse and related devices will ultimately make the
most impact in providing a channel of input that is richer and more expressive than
that of today’s pointing devices. FlowMouse in particular is focused at capturing the
richness and subtlety of human motion for novel interactions while offering a kind of
“backwards compatibility” with today’s point-and-click interfaces. By way of extend-
ing today’s interfaces, rather than replacing them completely, we hope that novel de-
vices such as FlowMouse will find easier paths to adoption and present opportunities
for significant user interface innovation.

References

1. Anandan, P., A Computational Framework and Algorithm for the Measurement of Visual
Motion. International Journal of Computer Vision, 1989. 2: p. 283-310.

2. Barron, J., D. Fleet, S. Beauchemin, and T. Burkitt. Performance of Optical Flow Tech-
niques. in Computer Vision and Pattern Recognition. 1992.

3. Bathiche, S., Pointer Ballistics for Windows XP, in
http://www.microsoft.com/whdc/device/input/pointer-bal.mspx. 2002.

4. Bradski, G., V. Eruhimov, S. Molinov, V. Mosyagin, and V. Pisarevsky. A Video Joystick
from a Toy. in Proceedings of the 2001 Workshop on Perceptive User Interfaces. 2001.

5. Buxton, W. A Three-State Model of Graphical Input. in INTERACT '90. 1990.

6. Buxton, W., and B. Meyers. A Study in Two-Handed Input. in Proc. of CHI '86: ACM
Conference on Human Factors in Computing Systems. 1986.

7. Cao, X., and R. Balakrishnan. VisionWand: Interaction Techniques for Large Displays
Using a Passive Wand Tracked in 3D. in ACM Symposium on User Interface Software and
Technology. 2003.

8. Cutler, R., and M. Turk. View-based Interpretation of Real-time Optical Flow for Gesture
Recognition. in IEEE Conference on Automatic Face and Gesture Recognition. 1998.

9. Douglas, S., A. Kirkpatrick, and I. S. MacKenzie. Testing Pointing Device Performance
and User Assessment with the ISO 9241, Part 9 Standard. in Proc. CHI'99. 1999.

10. Fitzmaurice, G.W., H. Ishii, and W. Buxton. Bricks: Laying the Foundations for Graspable
User Interfaces. in Proceedings of CHI 1995. 1995.

11. Hinckley, K., and M. Sinclair. Touch-Sensing Input Devices. in ACM CHI 1999 Confer-
ence on Human Factors in Computing Systems. 1999.

12. Hinckley, K., R. Pausch, D. Proffitt, and N. Kassell. Interaction and Modeling Techniques
for Desktop Two-Handed Input. in ACM UIST 1998 Symposium on User Interface Soft-
ware & Technology. 1998.

13. Horn, B.K.P., Closed Form Solution of Absolute Orientation Using Unit Quaternions.
Journal of the Optical Society, 1987. 4(4): p. 629-642.

14. Jellinek, H.D., and S. K. Card. Powermice and User Performance. in SIGCHI Conference
on Human Factors in Computing Systems. 1990.

15. Kjeldsen, R., and J. Kender. Interaction with On-Screen Objects Using Visual Gesture
Recogntion. in CVPR '97. 1997.

16. Krueger, M., Artificial Reality II. 1991: Addison-Wesley.
17. Kurtenbach, G., and W. Buxton. The Limits of Expert Performance Using Hierarchic

Marking Menus. in Proceedings of InterCHI '93. 1993.
18. Lenman, S., L. Bretzner, and B. Thuresson. Using Marking Menus to Develop Command

Sets for Computer Vision Based Hand Gesture Interfaces. in Proceedings of the Second
Nordic Conference On Human-Computer Interaction. 2002.

19. Letessier, J., and F. Berard. Visual Tracking of Bare Fingers for Interactive Surfaces. in
ACM Symposium on User Interface Software and Technology. 2004.

20. MacKenize, I.S., Fitts' Law as Research and Design Tool in Human-Computer Interac-
tion, in Human-Computer Interaction 1992. 1992. p. 91-139.

21. Quek, F., T. Mysliwiec and M. Zhao. FingerMouse: A Freehand Computer Pointing Inter-
face. in Proc. of Int'l Conf. on Automatic Face and Gesture Recognition. 1995.

22. Rekimoto, J. ThumbSense: Automatic Mode Sensing for Touchpad-based Interactions. in
CHI 2003 Late Breaking Results. 2003.

23. Rekimoto, J., and Y. Ayatsuka. CyberCode: Designing Augmented Reality Environments
with Visual Tags. in Designing Augmented Reality Environments (DARE 2000). 2000.

24. Turk, M., and G. Robertson, Perceptual User Interfaces. Communications of the ACM,
2000.

25. Wellner, P., Interacting with Paper on the DigitalDesk. Communications of the ACM,
1993. 36(7): p. 86-97.

26. Wilson, A. TouchLight: An Imaging Touch Screen and Display for Gesture-Based Interac-
tion. in International Conference on Multimodal Interfaces. 2004.

27. Wilson, A., and N. Oliver. GWindows: Towards Robust Perception-Based UI. in First
IEEE Workshop on Computer Vision and Pattern Recognition for Human Computer Inter-
action. 2003.

28. Wu, M., and R. Balakrishnan. Multi-finger and Whole Hand Gestural Interaction Tech-
niques for Multi-User Tabletop Displays. in ACM Symposium on User Interface Software
and Technology. 2003.

Appendix

We present a technique where a flow field may be characterized as simultaneous rota-
tion in the image plane, uniform scaling, and two-dimensional translation. If the hand
is mostly rigid, this technique can be used to determine change in the hand orientation
in the image plane, change in height above the keyboard, and so on.

For the flow field described by []T
iii yx=x and []T

iii dydx=dx , each point ix

moves to [] ii
T

iii yx dxxx +=′′=′ by rotation θ in the image plane, uniform scaling

s and translation t :








 −
=

θθ
θθ

cossin

sincos
R

(4)

tRxx +=′ ii s (5)

We first solve for rotation. With means ∑=
i

iN
xx

1
and ∑ ′=′

i
iN

xx
1

we may solve

for θ [13]:









′−′−+′−′−
′−′−−′−′−

=
))(())((

))(())((
arctan

yyyyxxxx

xxyyyyxx

iiii

iiiiθ
(6)

Scaling factor s and translation []Tyx tt=t may be recovered by least squares:

[]Tyx tts=z (7)









=

1

0

0

1
ii RxM

(8)

zMx ii =′ (9)

1−
















 ′= ∑∑
i

i
T

i
i

i
T

i MMMxz
(10)

It may not be obvious that this formulation allows for rotation and scaling about
any point. For example, consider rotation about a point Rt :

tRx

tttxRx

′+=
++−=′

i

RRii

s

s))((

(11)

where with ttRtt ++−=′
RR ss we arrive at the original form of equation 5.

