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Božidar Radunović
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Abstract—In Wireless LANs, users may adapt their transmis-
sion rates depending on the radio conditions of their links so as to
maximize their throughput. Recently, there has been a significant
research effort in developing distributed rate adaptationschemes.
Unlike previous works that mainly focus on channel tracking, this
paper characterizes the optimal reaction of a rate adaptation pro-
tocol to the contention information received from the MAC. We
formulate this problem analytically. We study both competitive
and cooperative user behaviors. In the case of competition,users
selfishly adapt their rates so as to maximize their own throughput,
whereas in the case of cooperation they adapt their rates so as
to maximize the overall system throughput. We show that the
Nash Equilibrium reached in the case of competition is inefficient
(i.e. the price of anarchy goes to infinity as the number of
users increases), and provide insightful properties of thesocially
optimal rate adaptation schemes. We find that recently proposed
collision-aware rate adaptation algorithms decrease the price of
anarchy. We also propose a novel collision-aware rate adaptation
algorithm that further reduces the price of anarchy.

I. I NTRODUCTION

Distributed scheduling and rate adaptation are two key parts
of the IEEE 802.11 MAC layer. Users share the radio resources
in a distributed manner using the mandatory contention-
resolution scheme DCF (Distributed Coordination Function).
This scheme specifies how users should adapt their channel
access probability when they experience transmission failures.
When the network is perceived as congested, under the DCF,
userscooperativelydecrease their access probability, which
in turn limits the number of collisions and keeps the overall
network efficiency at a satisfying level. DCF is time-critical
and it is implemented in hardware. Users cannot modify it.

IEEE 802.11 standards support multiple transmission rates,
eight or more different rates in the case of 802.11a/g and
proprietary extensions, and more than twenty in case of
802.11n [1]. Each link should adapt its modulation and coding
rate to identify the optimal trade-off between the transmission
rate and the packet losses due to channel errors. The objective
of rate adaptation algorithms is to estimate the channel qual-
ity and to find this optimal trade-off. These algorithms are
typically implemented in software and can be modified. IEEE
802.11 standards do not specify any rate adaptation algorithm.

Today, the prevalent approach to rate adaptation is to track
channel quality based on packet losses and to adapt the rate
accordingly. This approach was initially proposed in ARF
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[2], but many other algorithms have been proposed in the
literature to replace ARF, see e.g. [3], [4], [5]. One of the
key limitation of the tracking approach is that the channel
has to be constant during many packet transmissions so that
the tracking algorithm is able to converge to the optimal rate.
This can be alleviated using channel measurements to infer
the optimal rate from the measured SNR (see e.g. [6], [7],
[8], [9]). In all cases, the rate adaptation protocols optimize
the transmission rate as if a link was in isolation and they
do not consider the interaction of the rate adaptation with the
scheduling.

An important challenge in designing rate adaptation
schemes stems from the fact that transmitters may not be
able to distinguish between the causes of transmission fail-
ures. Transmission failures are caused by collisions and/or
channel errors. Without thisloss differentiationcapability,
both DCF and rate adaptation schemes may make wrong
decisions. Channel errors can lead to an unnecessary access
probability decrease when the network is lightly loaded. When
the network is congested, collisions may be interpreted as
channel errors and lead users to decrease their transmission
rates, which in turn increases the packet transmission durations
and further exacerbates the network congestion. Researchers
have proposed several ways of differentiating channel errors
and collisions, and of exploiting this information in the design
of rate adaptation schemes, see e.g. [10], [11], [5], [12], [8],
[13]. Most often, the proposed rate adaptation algorithms are
based on heuristic arguments and numerical experiments.

In this paper,our aim is to provide understanding of the
interaction between rate adaptation protocol and IEEE 802.11
DCF in a network with multiple nodes from an analytical
viewpoint. We assume that all nodes implement the standard
DCF (with or without loss differentiation), but can modify
their rate adaptation algorithms. We aim at characterizinghow
users should optimally select a transmission rate depending on
their state in the DCF scheme (i.e., their back-off stage) repre-
senting the level of congestion in the network. We also study
the impact of loss differentiation on the system performance.

Rate adaptation can be done in a cooperative or competitive
manner. In the former scenario, the rate adaptation scheme
is designed so as to maximize the total throughput of the
network while guaranteeing a certain degree of fairness among
users, thus achieving a social optimum. In the latter scenario,
each user designs its rate adaptation strategy with the aim
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of maximizing its own throughput without accounting for its
impact on the system performance. If there is a single greedy
user, selfishly trying to adapt its rate, this user could potentially
receive a higher throughput than that obtained in the social
optimal. However, if all users compete, the system may evolve
to an inefficient Nash Equilibrium (NE) where all users would
receive a lower throughput than that in the social optimum.
The performance gap between the social optimum and Nash
Equilibria is called theprice of anarchy[14].

The main contributions of this paper are as follows:
• We formulate the problem of designing optimal rate adap-
tation algorithms analytically in networks with slowly varying
fading. We develop a generic framework that enables us to
consider both cooperative and competitive user behaviors and
the ability or inability of users to distinguish collisionsfrom
channel errors.
• We show that the competitive scenarios lead to inefficient
Nash equilibria. In particular, when the number of links is
large, competition yields zero network throughput.
• We find that, although collision awareness does not eliminate
the starvation when the number of competing users is high, it
increases the efficiency of the competitive equilibria. It does
not increase the performance of the cooperative optimum.
• We propose a novel way of reacting to channel errors called
ROCE(Return to 0 on Channel Errors). We show that it further
reduces the price of anarchy, although it does not alleviatethe
starvation in large competitive networks.

The above findings are obtained through a mix of analytical
and numerical results. Our paper is novel in two aspects:
in [15], [16], the authors have proposed an analytical model
for the interaction of DCF and rate adaptation schemes, but
they haven’t considered improved adaptation algorithms; the
possible selfish behavior of users in adapting their rate is rarely
considered (in [17], [18], the authors provide preliminaryanal-
ysis of rate adaptation games in WLANs where transmission
failures due to channel errors are not modeled).

The paper is organized as follows. Section II presents the
models. We present a generic stationary analysis is given in
Section III. Competitive scenarios are discussed in Section IV
and cooperative scenarios in Section V. Numerical results are
presented in Section VI. The proofs are in the appendix.

II. M ODELS

We consider a network ofN = {1, . . . , N} links. All links
interfere with each other, and the corresponding transmitters
always have packets to send.

Scheduling.All transmitters implement the same distributed
random back-off scheduling mechanism to access the channel,
e.g. DCF, that cannot be changed. This mechanism is modeled
as follows. There areI+1 back-off stages: stagei ∈ {0, . . . , I}
indicates thati consecutive collisions or packet losses have
been experienced. In stagei a node transmits a packet with a
fixed probabilityp(i) such thatp(i) ≥ p(i+1) for everyi < I
(in DCF p(i) = 2−ip(0)). We optimize the rate adaptation
algorithm for a fixed scheduling mechanism.

Rate Adaptation.The radio conditions for linkn is character-
ized by the signal-to-noise ratioSNRn at the receiver. We
are interested in the interaction of the rate adaptation and
scheduling, and we do not study how to track channel changes.
Therefore, we focus on the rate adaptation protocols that can
measure the channel SNR (see e.g. [6], [7], [8], [9]) and we
assume that theSNRn is known at the transmitter of link
n. We also assume slow fading, such that the SNRs can be
assumed constant for the duration of the analysis. This model
is reasonable abstraction for networks in which user mobility
is limited, e.g., office WLANs.

To send a packet, each transmittern can select a rate from
a setR using certain rate adaptation strategyρn. Formally,
a rate adaptation strategyρn is a map from{0, . . . , I} to R,
and thusρn(i) denotes the transmission rate for usern in
the ith back-off stage. A strategyρn is said to beconstantif
ρn(i) = ρn(i + 1) for all i < I. When a packet is sent at
rateR ∈ R, the transmission duration isT = σ/R, whereσ
is the fixed packet size. We use rateρn(i) and transmission
durationTn(i) = σ/ρn(i) interchangeably to denote the rate
adaptation strategy.

The probability that a packet sent at rateR is lost due
to channel error is a functione(R, SNR) of the rate and
the SNR. For brevity, we denoteen(R) = e(R, SNRn).
We use the model for channel loss from [19, Section II.C],
en(R) = 1−exp

(
−(eγR − 1)/κn

)
, whereκn depends on the

link n quality (the received SNR) andγ depends on different
system parameters (such as the bandwidth) but not on the link
quality. Optimal operation points of a wireless network arein
a low channel loss regime. Hence, we can simplify the above
equation using the first order approximation:

en(R) =
eγR − 1

κn
(1)

This model is also similar to the models used in [20]. We
also verify that it fits well to the data measured in [9] (see
Section VI). We also use the formen(T ) = (eγσ/T − 1)/κn.
Note that functionen(T ) is convex inT .

Collisions. The duration of a collisionTcoll is either the
maximum duration of the packet transmissions involved in the
collision when RTS/CTS is not used, or simply the duration
of RTS/CTS signalingTRTS when RTS/CTS is used. It is
difficult to analyze the former, whereTcoll depends on the
duration of different transmissions. However, we observe that
in a well designed system the collision rate should be small
(e.g. less than 10% [21]) and we can ignore it. In this paper we
will assume a constant duration of a collision,Tcoll = TRTS .
This is an exact model in the case of networks with RTS/CTS
and a reasonable approximation otherwise.

We study systems with and without loss differentiation.
Systems Without Loss Differentiation (WoLD).Here, collisions
and channel errors can not be distinguished (like in all of
the 802.11 standards). Thus, the back-off stage is incremented
whenever a packet is lost.
Systems With Loss Differentiation (WLD).We also consider the
case where collisions and channel errors can be differentiated.
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We consider two families of collision-aware rate adaptation
strategies:
• The first family, called WLDS (where S stands forStandard),
includes the strategies proposed in the literature, e.g. in[10],
[11], [5], [12], [8], [13]. If a transmission fails due to collision,
then the back-off stage is incremented. If it fails due to channel
error, then the back-off stage remains the same.
• We propose a second new family of rate adaptation strate-
gies, referred to as ROCE (Return to 0 On Channel Error).
Here, unlike WLDS, if a transmission fails due to a channel
error, the back-off stage is reset to the minimum value (i = 0).
The intuition behind this is that since the loss was not caused
by collision, there is no reason to remain in a high-contention
DCF state. If a transmission fails due to a collision, the back-
off stage is increased, as in all other schemes.

Competition vs. Cooperation:In this paper, we aim at charac-
terizing the performance of systems where users either tendto
maximize their own throughputs (selfish) or they jointly op-
timize a network-wide performance metric (cooperative). The
selfish behavior of transmitters is modeled as a pure strategic
rate adaptation game. This means that each transmittern ∈ N
adopts a deterministic strategyρn with the aim of maximizing
its own throughput. We will investigate the existence and the
properties of Nash Equilibria in this game. In the cooperative
scenario we will consider Pareto optimal strategies as the most
general way to model socially optimal strategies.

III. STATIONARY ANALYSIS

We start the analysis by studying the steady state behavior of
systems where transmittern ∈ N uses a given rate adaptation
strategyρn. This analysis will be used to examine the system
performance in both competitive and cooperative scenarios.
We denote byπn(i) the stationary probability that transmitter
n is in the back-off stagei, by pn =

∑
i πn(i)p(i) the average

transmission probability of linkn, and bycn = 1−
∏

m 6=n(1−
pm) the probability that linkn will collide with any other link,
given that it transmits. We also defineπ = (πn)n∈N , p =
(pn)n∈N , c = (cn)n∈N , ρ = (ρn)n∈N .

Average slot duration.We considervirtual slots, as defined
in [21]: a slot may correspond to a slot where the channel is
idle (no transmission occurs), to a successful transmission, or
to a collision. All links “see” the same virtual slots. Denote
by S(ρ), Sn(ρ), andSn

R(ρ) the expected slot duration when
transmitters use rate adaptation strategiesρ, unconditioned on
n, given that transmittern is silent, and given that transmitter
n is transmitting a packet at rateR, respectively. We have

S(ρ) =
∑

l

(1 − cl)
∑

j

πl(j)p(j)Tρl(j) +
∏

l

(1 − pl)

+

(
1 −

∏

l

(1 − pl) −
∑

l

(1 − cl)pl

)
TRTS ,

Sn(ρ) =
∑

l 6=n

1 − cl

1 − pn

∑

j

πl(j)p(j)Tρl(j) +
∏

l

(1 − pl)

+

(
1 −

∏

l

(1 − pl) −
∑

l

(1 − cl)pl

)
TRTS .

Sn
R(ρ) = TRTS + TR(1 − cn).

Link Throughput.From the average slot duration, we can
computeφn(ρ) the stationary throughput of linkn by:

φn(ρ) =

∑
i πn(i)p(i)(1 − en(ρn(i)))(1 − cn)

S(ρ)
. (2)

Stationary distributions and residual times.To compute
the link throughputs, we need to evaluate the stationary
distribution π and the collision probabilitiesc. In order to
characterize the best response of a user, we also define the
average residual timeJn(i, ρ) as the average time needed by
link n to transmit a packet, given that it is in stagei and the
rate adaptation strategies are defined byρ. Here we compute
π, c andJn(i, ρ), first for WoLD systems, and then for WLDS
and ROCE systems.

1) WoLD systems:Given that transmitter of linkn is in
stagei, it can either successfully transmit and move to state
0 with probabilityp(i)(1− cn)(1− en(ρn(i))), or experience
of transmission failure with probabilityp(i)(1− (1− cn)(1−
en(ρn(i)))) or remain idle with probability1− p(i). Then we
classically deduce that (for0 < i < I):

πn(i) =
p(0)

∏i−1
k=0(1 − (1 − cn)(1 − en(ρn(k))))

p(i)
πn(0),

πn(I) =
p(0)

∏I−1
k=0(1 − (1 − cn)(1 − en(ρn(k))))

p(I)(1 − cn)(1 − en(ρn(I)))
πn(0).

The average residual transmission times are given by:

Jn(i, ρ) =
1 − p(i)

p(i)
Sn(ρ) + Sn

ρn(i)(ρ)

+ (1 − (1 − cn)(1 − en(ρn(i)))Jn(i + 1, ρ),

Jn(I, ρ) =
[(1 − p(I))/p(I)]Sn(ρ) + Sn

ρn(I)(ρ)

(1 − cn)(1 − en(ρn(I)))
.

where 1−p(i)
p(i) Sn(ρ) is the average time the link is idle before

transmitting for the first time,Sn
ρn(i)(ρ) is the average time the

link transmits (regardless of the success of the transmission)
and if the transmission is unsuccessful (with probability(1−
(1−cn)(1−en(ρn(i)))) the average time to transmit the packet
is Jn(i + 1, ρ) as the link moves to stagei + 1.

2) WLDS systems:Given that transmittern is in stagei, it
can either move to stagei+1 if it encounters a collision with
probabilityp(i)cn, or it can remain in stagei with probability
1 − p(i) + p(i)(1 − cn)en(ρn(i)) (either it remains silent or
it encounters a channel error), or it can return to stage 0 with
probabilityp(i)(1−cn)(1−en(ρn(i))). We have (for0 < i <
I):

πn(i) =
p(0)ci

n

p(i)
∏i

k=1(1 − (1 − cn)en(ρn(k)))
πn(0),
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πn(I) =

[p(0)/p(I)]cI
nπn(0)

(1 − cn)(1 − en(ρn(I)))
∏I−1

k=1(1 − (1 − cn)en(ρn(k)))
.

and for the average transmission residual times:

Jn(i, ρ)(1−(1 − cn)en(ρn(i))) =
1 − p(i)

p(i)
Sn(ρ)

+ Sn
ρn(i)(ρ) + cnJn(i + 1, ρ),

Jn(I, ρ) =
[(1 − p(I))/p(I)]Sn(ρ) + Sn

ρn(I)(ρ)

(1 − cn)(1 − en(ρ(I)))
.

3) ROCE systems:Given that transmittern is in stagei,
it can either move to stagei + 1 if it encounters a collision
with probabilityp(i)cn, or it can remain silent with probability
1−p(i), or it can return to stage 0 with probabilityp(i)(1−cn)
(regardless of channel errors). We then have (for0 < i < I):

πn(i) =
p(0)ci

n

p(i)
πn(0), πn(I) =

p(0)cI
n

p(I)(1 − cn)
πn(0).

Also note that unlike in WoLD and WLDS systems, the sta-
tionary distributionπ does not depend on the rate adaptation
schemeρ in ROCE systems, nor on the link qualities (that
is πn = πm for all m, n ∈ N ). The average transmission
residual times are given by:

Jn(i, ρ) =
1 − p(i)

p(i)
Sn(ρ) + Sn

ρn(i)(ρ) + cnJn(i + 1, ρ)

+ (1 − cn)en(ρ(i))Jn(0, ρ),

Jn(I, ρ)(1 − cn) =
1 − p(I)

p(I)
Sn(ρ) + Sn

ρn(I)(ρ)

+ (1 − cn)en(ρ(I))Jn(0, ρ).

In each of the cases, we use the above expressions to obtain
the collision probabilitiesc as a fixed point of the following
expressions:pn =

∑I
i=0 πn(i)p(i), cn = 1−

∏
m 6=n(1− pm).

We next show that there exists a unique fix point of the above
system (we give the result here only for WoLD, the other two
cases are similar).

Proposition 1: Let us assume for alli, ei ≤ eMAX , p(i +
1)/p(i) = a, p(0) ≥ (1 + 2a + 2a2eMAX)/(1 − a) and1 +
a−2a(1−eMAX) < 0. Then, for everyN , (SNRn)n∈N and
any given rate adaptationρ, there exists a unique fixed point
(p, c) in WoLD network.

Proof: The proof is an extension of the analysis in [22]
and we shall use the same notation as in [22]. Let us denote
with ζn(i) =

∏i−1
k=0(1 − (1 − cn)(1 − en(ρn(k)))) for i ≤ I

andζn(i) = ζn(I)(1− (1− cn)(1−en(ρn(k))))i−I for i > I,
and letbi be the mean back-off duration in back-off stagei
(as in [22]). We are then able to get rid ofπ and link directly
p andc as

pn = ∆n(cn) =
1 +

∑∞
i=0 ζn(i)

b0 +
∑∞

i=0 bi+1ζn(i)
, (3)

cn = Γn(p1, . . . , pn) = 1 −
∏

m 6=n

(1 − pm). (4)

We are looking for a fixed point of the following system
of the following systemcn = Γn(∆1(c1), . . . , ∆n(cn)). The
mapping is continuous so a fixed point exists. From Lemma 2
we have that∆n(c) is monotonically decreasing and that
(1 − c)(1 − ∆n(c)) is monotonous. Then from [22, Theorem
5.3] we have that the fixed point is unique.

Observe that the conditions of Theorem 1 are satisfied in the
practical system. For example, in 802.11 we havea = 2 and to
satisfy the conditions of the theorem we needeMAX ≤ 5/8.
A typical 802.11 link does not operate with a channel error
rate larger thaneMAX .

IV. COMPETITION

In this section, we analyze systems with selfish but rational
users, who want to maximize their respective throughputs. We
model this scenario as a rate adaptation game with the set
of feasible strategiesρn for any usern, and the throughput
it achieves being its pay-off for a givenρ. We study the
existence of pure Nash Equilibria for this game, and provide
some structural properties of these equilibria. We restrict our
attention to scenarios where users play pure strategies (do
not randomized their rate adaptation decisions). We prove
the following: (a) pure NEs exist; (b) we establish certain
properties of NEs to gain insights into the system behaviour
and to reduce the complexity of computing these equilibria
for WoLD and WLDS systems; (c) we provide an explicit
procedure to compute NEs in ROCE system.

Because of the analytical difficulties, we make the follow-
ing assumptions in this section: (1) For WoLD and WLDS
systems, we consider non-atomic game, i.e., the number of
users is large so that the strategy change of one user does not
change the system statistics, specifically it does not affect c.
For a precise definition of non-atomic games, refer to [23].
This assumption is not required for ROCE as under ROCEπ

and hencec does not depend onρ. (2) For all the systems, let
R = [0, Rmax], whereRmax is finite. We verify the results for
an atomic setting (small number of nodesN ) using simulations
in Section VI.

A. Best Response Correspondence

Let ρ−n = (ρm)m 6=n, and denote1 by φ(ρn, ρ−n) the
throughput of usern when it uses strategyρn and others use
ρ−n. Let A = RI+1, and let us define the best response for
link n as Bn : AN−1 → A such that ifρn ∈ Bn(ρ−n),
thenφ(ρn, ρ−n) ≥ φ(ρ, ρ−n) for everyρ ∈ A. Observe that
φ(ρn, ρ−n) = 1/Jn(0, ρn, ρ−n) and thusρ ∈ Bn(ρ−n) only
whenρ ∈ argminρ∈A Jn(0, ρ, ρ−n). This shows that the best
response can be obtained by minimizing the residual times.
Next, we minimize the residual time using MDP formula-
tion [24]. To this end, denote byJ⋆

n(i, ρ−n) the minimum
expected residual time fromith back-off stage given that other
users use rate adaptation strategiesρ−n. Now, it can be shown
that under WoLD, WLDS (with non-atomic game assumption)

1Throughout this section we also representρ as a tuple(ρn, ρ
−n)
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and ROCE thatJ⋆
n(i, ρ−n) can be obtained as

J⋆
n(i, ρ−n) = min

R∈R
Gn(R, ui) + ξn

i , where (5)

Gn(R, u) = (1 − cn)

[
σ

R
+

eγRu

κn

]
. (6)

Intuitively, ξn
i is the average overhead of the packet trans-

mission in stagei which is independent of the transmission
rate R and u is the average time needed to send a packet
if this transmission fails. Depending on the system under
considerationui, andξn

i have to be chosen appropriately.
For WoLD system ui = J⋆

n(ki, ρ−n), and ξn
i =

1−pi

pi
Sn(ρ) + TRTS + (1 − (1 − cn)(1 + 1/κn))J⋆

n(ki, ρ−n),
where ki = i + 1 for i < I and kI = I. For WLDS
systemui = J⋆

n(i, ρ−n), and ξn
i = 1−pi

pi
Sn(ρ) + TRTS +

cnJ⋆
n(ki, ρ−n) − (1 − cn)J⋆

n(i, ρ−n)/κn. Note that only be-
cause of the non-atomic game assumption,cn and Sn(ρ) is
independent ofρn, but can be completely characterized by
ρ−n. Finally, for ROCE systemui = J⋆

n(0, ρ−n), andξn
i =

1−pi

pi
Sn(ρ)+TRTS +cnJ⋆

n(ki, ρ−n)−(1−cn)J⋆
n(0, ρ−n)/κn.

Let us defineR⋆(u) = minR∈R Gn(R, u). Then, we note
thatρ ∈ Bn(ρ−n) only whenρ(i) = R∗(ui) for eachi. Thus,
it suffices to study the properties ofGn(R, u) in order to study
the properties of the best response.

Lemma 1:R⋆(u) is unique for everyu, and is a monotone
decreasing function ofu. Moreover,Gn(R⋆(u), u) is mono-
tone increasing function ofu.

Proof: Note that for a givenu > 0, Gn(R, u) is a strictly
convex function ofR in the positive half plane. Thus, it has a
unique minimum (sayR′(u)) in the positive half plane. Now,
R⋆(u) is uniquely determined asmin{R′(u), Rmax}.

We next need thatR⋆(u) is a monotone decreasing function
of u. Let F (R) = γR + r log(R). We have thatR′(u) is
the unique solution of∂Gn(R,u)

∂R = 0, i.e., it is the solution
of F (R) = log(σκn/uγ). Note that F (R) is monotone
increasing, withF (0) = −∞ and F (∞) = ∞. Now, if
u1 > u, thenlog(σκn/uγ) > log(σκn/u1γ). Thus,F (R) will
cross levellog(σκn/u1γ) before crossing levellog(σκn/uγ).
Hence,R′(u1) < R′(u), which proves the required.

For the last part, note thatGn(R, u) ≤ Gn(R, u1) whenever
u < u1 for everyR. Thus,Gn(R⋆(u), u) ≤ Gn(R⋆(u1), u) ≤
Gn(R⋆(u1), u1). This concludes the proof.

B. Existence of Nash Equilibrium

It is well known that a mixed strategy NE always exists (for
finite action space see [25], and for compact action space see
[26]). However, a mixed strategy would imply that each user
implements one rate adaptation strategy for a long time, and
then switch to another one with some probability, run it for
a long time, and so on. This is not feasible from the system
point of view. Hence, we are interested in a pure strategy NE,
where eachn implements constant strategyρn.

A mixed strategy NE does not always exist, but we prove
that it exists our case in an arbitrary network. Unlike [25],we
need to establish a fixed point in the space of pure strategies
and not in the space of mixed strategies.

Proposition 2: In WoLD, WLDS (with non-atomic game
assumption) and ROCE systems, the rate adaptation games
have a pure NE.

Proof: To prove the existence of pure NE, it suffices to
prove that the correspondenceB(·) has a fixed point. We use
Kakutani’s fixed point theorem to prove the required. First note
that by construction,AN is a compact, convex and non-empty
subset of the finite dimensional Euclidean space. Moreover,
Bn(ρ−n) contains a single point as shown in Lemma 1, hence
B(·) is non-empty and convex. Hence, it suffices to show that
B(·) has a closed graph, i.e., if(ρℓ

n, ρℓ
−n) → (ρn, ρ−n) such

that ρℓ
n ∈ B(ρℓ

−n) for every ℓ, thenρ ∈ B(ρ−n). To show
this, it suffices to show that (1)φ(ρn, ρ−n) is continuous in
ρn for any givenρ−n and (2) φ(ρn, ρ−n) is continuous in
ρ−n for any givenρn.

Both (1) and (2) are straightforward in ROCE system as
both π and c do not depend onρ, rather only the packet
transmission times and the transmission failure probabilities
vary continuously with the rate adaptation strategy. Such state-
ment is not true for WoLD and WLDS system in general, and
hence we need the non-atomic game assumption in this case.
Because of the assumption, change inρn does not changing
π or c. Thus, as in ROCE, (1) holds for WoLD and WLDS
as well. Now, we show (2) in these cases. Note thatπ and
c are given as a unique fixed point of (i)pn =

∑
i πn(i)p(i)

and (ii) cn = 1 −
∏

m 6=n(1 − pm), whereπn(i) is a function
of cn. Note that the graph for (ii) is a monotone continuous
and is independent ofρ, but that of (i) depends onρ causing
the fixed point to vary withρ. We need to show that fixed
point changes continuously withρ. This will holds if for any
givenc, π varies continuously withρ. But this follows as, for
a givenc, πm can be computed using a linear transform from
the transition probabilities that vary continuously withρm.

C. Structural property of NE

We now give a structural property of the symmetric NEs for
WoLD and WLDS systems. Although this property does not
fully characterize NEs, it gives a useful insight into the system
behaviour and greatly simplifies the complexity of computing
these equilibria.

Proposition 3: Let ρ be a pure NE in WoLD or WLDS
non-atomic systems. Then,ρn(i) ≥ ρn(i + 1) for every i, n.

Proof: Fix ρ̂ and the corresponding(π, c) and letρ′n =
Bn(ρ̂−n). Then, we show thatρ′n(i) ≥ ρ′n(i + 1) for every
i < I in WoLD and WLDS systems (Lemma 3 in Appendix
and Lemma 1). Hence, the result follows.

This result illustrates the following incentive: being in a
high back-off state is expensive due to a large back-off. In the
case of WoLD and WLDS it depends on the transmission rate
whether the link will return to state 0 (successful transmission)
or not. Hence, links have an incentive to use lower (otherwise
inefficient) rates in the high back-off state to increase the
chance to return to state 0.

Next, we consider ROCE systems. Here, we do not need the
rate adaptation game to be non-atomic. First, we characterize
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the properties of NEs in this setting, and provide an explicit
algorithm to compute a NE.

Proposition 4: Let ρn = Bn(ρ−n). Then,ρn is constant,
i.e., ρn(i) = ρn(i + 1) for eachi < I. Moreover, if ρ⋆ is a
NE, thanρ

⋆ is constant.
Proof: The fact every best response is constant follows

immediately from (5) and (6): givenρ−n, the ρn(i) depends
only on ui, and ui is the same for everyi under ROCE;
consequentlyR⋆(ui) is the same for eachi. Since every best
response is constant, every NE has to be constant as well.

In the ROCE case, unlike in the WoLD and WLDS cases,
rate adaptation strategy does not impact the back-off state,
and the rates are the same in all the stages. This makes the
selfish ROCE approach more efficient than the selfish WoLD
and WLD, as we illustrate in Section VI.

D. Convergence to A Nash Equilibrium

Here, we look at the convergence of an arbitrary competitive
network to a Nash equilibrium. In the following proposition
we prove that any network converges to a Nash equlibrium if
all the nodes initially use the highest rates.

Proposition 5: Let us consider an arbitrary network. Let
ρ

(0) denote an initial rate adaptation strategies, and letρ
(m)

be computed iteratively asρ(m+1)
n = Bn(ρ

(m)
−n ) for every n.

Now, if ρ
(0) is constant withρ(0)

n (i) = Rmax for every i and
n, then limm→∞ ρ

(m) exists (sayρ⋆) andρ
⋆ is a NE.

Proof: We prove the required by showing thatρ
(m) is a

monotone decreasing sequence (Lemma 4 in Appendix).
We also numerically verify that a network always converges

to a unique Nash equilibrium, regardless of the initial state, in
a large number of random configurations we have evaluated.

E. Inefficiency of Competition

Next, we look at the performance of the network when
the number of nodes is large and we show that the selfish
approaches become highly inefficient. We first need a technical
assumption thatσ/Rmax − TRTS = ǫ > 0, which is typically
true because a packet transmission includes an exchange of
RTS/CTS signaling messages. We then have

Proposition 6: Consider an arbitrary ROCE network with
N links. AsN goes to infinity, all links will use the minimum
available rate in the setR. In the case whenminR = 0, the
sum of all rates in the system

∑
n∈N φn tends to zero.

Proof: Since from Proposition 4 all the rates are the same
and the network is symmetric, eq. (2) simplifies to

φn =
p(1 − c)(1 − e(ρn))

S(ρ)
,

S(ρ) = p(1 − c)(Tn +
∑

m 6=n

Tm) + (1 − p)N

+ (1 − (1 − p)N − Np(1 − c))TRTS .

Then the best responseρ = B(ρ−n) has to satisfy− ∂e
∂T =

Φ(ρ, ρ−n) and by derivatinge(T ) we obtain

T 2 =
γσeγσ/T S(ρ, ρ−n)

κnp(1 − c)(1 − (eγσ/T − 1)/κn
.

When N is large we havep = O(1/N) [21]. Also, by the
assumptions we haveTm − TRTS > ǫ, and hence

T 2 =
γσeγσ/T

κnp − eγσ/T − 1



T +
∑

m 6=n

Tm − NTRTS + O(N)





=
γσeγσ/T

κnp − eγσ/T − 1
(T + O(N))

Clearly, the solution of the above equation tends toT = ∞
when N goes large, if the minimum rate is zero, or to the
minimum rate if the rates are bounded. If the minimum rate
is zero, thenlimN→∞

∑
n∈N φn = 0.

Similar argument can be made for other types of networks
(although the derivation becomes more complex). The basic
observation is that as the number of nodes in the network
increases, a single node no more affects the average slot
duration and it tends to optimize its own performance by
decreasing the error probability, and hence the rate, to zero.

F. A Note on Distributed Implementation

One of our main motivation for studying competitive strate-
gies was their amicability for distributed implementation. We
note that for the distributed implementation, each user will
be required to compute the best response to strategies used
by other users. Now, it may seem that to compute the best
response, a user has to know the strategies of all the other
users. We, however, like to point out that the best response
computation only requires a user to knowSn(ρ) and cn,
both of which can be estimated locally by the user. Thus,
each user can separately estimate the required quantities for
certain duration (sayT time units), and based on the estimates
computes its rate adaptation strategy. Though, the convergence
of this procedure is not guaranteed for WoLD and WLDS
systems, our simulations verify that the procedure indeed
converges (at least in all the cases we considered).

V. COOPERATION

In this section, we derive a structural property of the socially
optimal rate adaptation strategy that will help us calculate it.
The problem is tractable only for ROCE systems because in
that case the stationary distributionπ does not depend on the
rate adaptationρ.

Proposition 7: Consider an arbitrary ROCE network. Any
Pareto optimal rate allocation is a constant rate allocation
(ρn(i) = ρn(j) for all i, j, n).

Proof: Suppose thatρ is Pareto optimal and suppose that
ρn(i) 6= ρn(j) for somei, j, n. Let us construct a new rate
allocation policyρ

′ such that

T ′
n(i) = T ′

n(j) =
πn(i)p(i)Tn(i) + πn(j)p(j)Tn(j)

πn(i)p(i) + πn(j)p(j)

andρ′n(k) = ρn(k) for all k 6= i, j andρ′−n = ρ−n. It is easy
to verify thatS(ρ′) = S(ρ) hence the rates of all other links
but n are unchanged (φm(ρ′) = φm(ρ) for m 6= n).
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Next, due to convexity ofen(T ) we have that

e(T ′
n(i)) <

πn(i)p(i)en(Tn(i)) + πn(j)p(j)en(Tn(j))

πn(i)p(i) + πn(j)p(j)

and from (2) we see thatφn(ρ′) > φn(ρ), which contradicts
the assumption thatρ is Pareto optimal.

We verify numerically that the same property approximately
holds for WoLD and WLDS as well.

VI. N UMERICAL EXPERIMENTS

In this section we present numerical experiments to illustrate
and validate the theoretical results derived in previous sections,
and to compare the performance of the cases we were not able
to treat analytically. In order to obtain realistic results, we take
the error probability functione(R, SNR) from the results of
measurements presented in [9, Figure 2] and we fit the data
to our modelen(R) =

(
eγR − 1

)
/κn. The data fits well and

we obtainγ = 0.17 and κ = {29, 350, 5.2 · 103, 1.3 · 105}
for SNR = {5, 10, 15, 20, 25} dB. We assume that the rate
setR = [0,∞) is continuous, and we verify that all the rates
are in the region where (1) holds.We fix the number of back-
off stages to 7 (I = 6) and we take the standard RTS/CTS
signaling parameters to computeTRTS .

We use a gradient descent method to compute the co-
operatively optimal rate adaptation. We seek to maximize
the sum of log of rates (proportional fairness). We cannot
theoretically prove that it always converges but we verified
that it converged in all the cases we analyzed. To calculate the
competitive equilibria (NE), we iterate over the best responses.
In Proposition 5 we have proven that the process converges in
all cases for ROCE, and in non-atomic cases for WoLD and
WLDS. We observe numerically that this process converges
for all N even without the non-atomicity assumption. Thus
we are able to obtain the numerical results for all the cases
analyzed in the paper.
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Fig. 1. The system throughput for a symmetric topology (all links have the
same SNR) achieved with the optimal rate adaptation, when SNR= 15 dB.

Type ρ(i)

All, cooperative 23.3, 23.3, 23.3, 23.3, 23.3, 23.3, 23.3

WoLD, competitive 16.0, 13.9, 11.9, 10.0, 8.3, 8.3, 8.3
WLDS, competitive 18.6, 18.1, 17.4, 16.3, 15.0, 13.9, 13.9
ROCE, competitive 18.6, 18.6, 18.6, 18.6, 18.6, 18.6, 18.6

Fig. 2. The optimal rate adaptation scheme for a symmetric network with
N = 4 users, SNRn = 15 dB for all n. The optimal rate adaptation is
constant in all cases of the cooperative scenario (WoLD, WLDS and ROCE).
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Fig. 3. Relative price of anarchy as a function ofN , where the relative
price of anarchy is the difference between the cooperative and the competitive
optima, divided by the cooperative optimum. For eachN we average over 10
different topologies and plot the mean and the confidence interval.

A. Cooperation: Optimal rate adaptation and maximum
throughput

We start by analyzing cooperative scenarios where users
tune their rate adaptation scheme so as to achieve proportional
fairness. As an illustration, we first consider a symmetric
topology where SNRn = 15 dB for variousN . The maximum
throughput and the corresponding optimal rate adaptation
schemes are presented in Figure 1 and Figure 2. We make
the following observations:(1) The throughputs obtained with
the proportionally fair rate adaptation scheme in various types
of systems are similar. This indicates that, surprisingly,the
capability of differentiating collisions from channel errors does
not bring significant improvements in the cooperative scenario
when the SNR is constant and known at the transmitters.
On the contrary, loss differentiation helps the estimationof
the channel quality and may improve the system performance
when the SNR is unknown as shown in [10], [11], [5], [12],
[8], [13]. (2) The socially optimal rate adaptation scheme is
always almost constant and it is almost the same in all the
cases (WoLD, WLDS, ROCE).

Also, note that ROCE can be disadvantageous if a MAC
is not well design to cope with congestion. For example, if
a packet is lost due to a channel error and a network is
very congested, it may be better not to return to the zero
back-off stage and thus ease the congestion. However, this
remedy works only if the channel incurs losses, and implies
that MAC itself is not well designed (e.g. for reliable channels
with no losses). In our numerical evaluation, using 802.11
DCF parameters, we do not observe this problem and ROCE
performs at lease as well than WoLD and WLDS. This implies
that 802.11 MAC is well designed to deal with congestion, as
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claimed in previous works (see e.g. [21]).

B. Competition: Symmetric NE and Price of Anarchy

We next consider various heterogeneous networks. For each
N we construct 10 networks ofN links, each link having a
randomly chosen SNR from the set of{5, 10, 15, 20, 25} dB.
For each of these network we calculate the cooperative opti-
mum, the competitive NE, and the relative price of anarchy.
The results are depicted in Figure 3.

We make the following observations:(1) We verify the
finding from Proposition 6 that the price of anarchy increases
with N . (2) The price of anarchy is the largest for WoLD.
Therefore, having loss differentiation helps in the competitive
scenario.(3) ROCE exhibits a smaller price of anarchy than
that in WLDS, and the difference between the two grows with
N . We also verify (see Figure 2) that the optimal strategy
yields rates that decrease with the back-off stage, as shownin
Proposition 3.

VII. C ONCLUSIONS

In this work we analyzed the interaction between medium
access and rate adaptation protocols in a cooperative and a
competitive scenario, for three types of rate adaptation proto-
cols: WoLD, WLDS and a newly proposed ROCE protocols.
In the competitive scenario we proved the existence of a Nash
equlibrium, we characterized structural properties and proved
convergence in some cases. We also gave structural properties
of the cooperative scenarios. We showed that the competitive
scenario yields high inefficiency, but this inefficiency is smaller
in the case of ROCE than the other two types of protocols.
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APPENDIX

A. Supporting Lemma for Proposition 1

Lemma 2:Function ∆n(c), as defined in (3), is mono-
tonically decreasing andFn(c) = (1 − c)(1 − ∆n(c)) is
monotonous.

Proof: Let Ei =
∑i

k=0(1 − ek)/(1 − (1 − cn)(1 − ek))

(whereek = eI for k > I). We have that∂ζn(i)
∂cn

= ζn(i)Ei.
To prove that∆n(c) is decreasing we need to show that the
first derivative is negative, that is

(
∞∑

i=0

ζiEi

)(
b0 +

∞∑

i=0

bi+1ζi

)

<

(
∞∑

i=0

bi+1Eiζi

)(
1 +

∞∑

i=0

ζi

)

or equivalently

∞∑

i=0

(bi+1 − b0)ζiEi +

∞∑

i=0

∞∑

j=0

ζiζjEi(bi+1 − bj+1) > 0.

Since the back-off time increases with the stage, we have
bi+1 > b0 and the first sum is positive. We can rewrite the
second sum as
∑

i=0,j=0

ζiζjEi(bi+1−bj+1) =
∑

i=0,j>i

ζiζj(Ej−Ei)(bj+1−bi+1).
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Again, bj+1 − bi+1 is positive because the back-off increases
with the stage, and the sequenceEi is increasing by construc-
tion, hence the second sum is also positive which proves that
∆n(c) is decreasing.

We next prove the monotonicity ofFn(c). We haveζiEi ≤
(i + 1)ci

n. We also haveek ≤ eMAX , henceζi ≥ ci(1 −
eMAX)i. Extending the arguments from [22, Lemma 5.3] we
have

|∆′
n(c)| ≤

(
∑

bi+1ζiEi) (1 +
∑

ζi)

(b0 +
∑

bi+1ζi)
2

≤

(∑
bi+1(i + 1)ci

n

) (
1 +

∑
ci
n

) (
b0 +

∑
bi+1c

i
n

)2

(b0 +
∑

bi+1ci
n)

2
(b0 +

∑
bi+1ci

n(1 − eMAX)i)
2

≤
2a

b0

1 − a(1 − eMAX)

1 − a
.

Now the derivativeF ′
n(c) = −1 + ∆n(c)−∆′

n(c)(1− c) and
since∆n(c) ≤ 1

b0
, ∆′

n() ≤ 0, (1 − c) ≥ 0 we have

F ′
n(c) ≤ −1 +

1 + a − 2a2(1 − eMAX)

b0(1 − a)
.

Consequently,Fn(c) is monotone if1+a−2a2(1−eMAX) < 0
andb0 > (1 + a − 2a2(1 − eMAX))/(1 − a).

B. Supporting Lemma for Proposition 3

Lemma 3:Fix any given ρ, and let (π, c) denote the
steady state probability and the collision probabilities,respec-
tively, when the users use rate adaptation profileρ. Then,
Jn(i, ρ−n) ≤ Jn(i + 1, ρ−n) for every i ≥ 0 in WoLD and
WLDS system.

Proof: We focus of WoLD systems. The proof for WLDS
systems follows similarly. With some abuse of notation,
let us defineJn(i, R, ρ−n) = Gn(R, ui) + ξn

i , and thus
J⋆

n(i, ρ−n) = minR∈R Jn(i, R, ρ−n).
We prove the required by induction. LetRi be such that

Jn(i, Ri, ρ−n) = J⋆
n(i, ρ−n) for every i. Now, note that

Jn(I, RI , ρ) − Jn(I − 1, RI , ρ)

= ξn
I − ξn

I−1,

=

(
1 − pI

pI
−

1 − pI−1

pI−1

)
Sn(ρ).

SincepI ≤ pI−1, we conclude thatJn(I, RI , ρ−n) ≥ Jn(I −
1, RI , ρ−n). Consequently,J⋆

n(I, ρ−n) = Jn(I, RI , ρ−n) ≥
Jn(I − 1, RI , ρ−n) ≥ J⋆

n(I − 1, ρ−n).
By induction hypothesis, letJ⋆

n(i, ρ−n) ≤ J⋆
n(i + 1, ρ−n)

for every i ≥ j. Now, consider

Jn(j, Rj , ρ) − Jn(j − 1, Rj , ρ)

=
(1 − cn)(eγRj − 1) + κncn

κn
×

(Jn(j + 1, Rj, ρ−n) − Jn(j, Rj , ρ−n))

+

(
1 − pj

pj
−

1 − pj−1

pj−1

)
Sn(ρ).

Again note thatpj ≥ pj−1, and alsoJn(j + 1, Rj, ρ−n) ≥
Jn(j, Rj , ρ−n) by induction hypothesis. Thus, it follows that
J⋆

n(j, ρ−n) ≥ J⋆
n(j − 1, ρ−n).

C. Supporting Lemma for Proposition 5

For a givenρ(m), we compute theJ⋆
n(i, ρ

(m)
−n ), and thereby

computeρ
(m+1). In this, for brevity, we define

G′
n(R, u) = (1 − cn)

[
σ

R
+

(
eγR − 1

)
u

κn

]
.

Clearly, G′
n(R, u) also has the same properties as that

of Gn(R, u) which are described in Lemma 1. Moreover,
minR∈R Gn(R, u) = minR∈R G′

n(R, u) for every u. Now,
note that for ROCE system,

J⋆
n(i, ρ−n) = min

R∈R
G′

n(R, J⋆
n(0, ρ−n)) +

1 − pi

pi
Sn(ρ)

+ TRTS + cnJ⋆
n(ki, ρ−n).

Recall thatki = i + 1 for i < I and kI = I. This follows
from (5) and (6). Now, let us consider the value iteration
method for computingJ⋆

n(i, ρ
(m)
−n ) [24]. Let, for every i,

Jn,ℓ(i, ρ
(m)
−n ) denote the value ofJ-function in ℓth iteration

for usern in stagei. Then,Jn,ℓ+1(i, ρ
(m)
−n ) is computed using

the following recursion.

Jn,ℓ+1(i, ρ
(m)
−n ) = min

R∈R
G′

n(R, Jn,ℓ(0, ρ
(m)
−n )) + TRTS

+
1 − pi

pi
Sn(ρ(m)) + cnJn,ℓ(ki, ρ

(m)
−n ). (7)

From results in MDP theory,limℓ→∞ Jn,ℓ(i, ρ
(m)
−n ) =

J⋆
n(i, ρ−n) for every i starting from any intial condition.

Moreover, if we letρ(m)(ℓ) to be the rate adaption policy
in the ℓth iteration, thenlimℓ→∞ ρ

(m)
ℓ = ρ

(m).
Lemma 4:Let ρ(0) be the constant such thatρn(i) = Rmax

for everyn and i. Then,ρ(m) ≥ ρ
(m+1) for everym.

Proof: The proof is by induction. Clearly,ρ(0) ≥ ρ
(1).

By induction hypothesis, we assume thatρ
(0) ≥ ρ

(1) ≥
· · · ≥ ρ

(m). Now, we show thatρ(m) ≥ ρ
(m+1). To show

this, by Lemma 1, it suffices to show thatJ⋆
n(0, ρ

(m−1)
−n ) ≤

J⋆
n(0, ρ

(m)
−n ). We show this by showing thatJn,ℓ(i, ρ

(m−1)
−n ) ≤

Jn,ℓ(i, ρ
(m)
−n ) for every i, n and ℓ starting from the initial

condition Jn,0(i, ρ
(m−1)
−n ) = Jn,0(i, ρ

(m)
−n ) = 0 for all i, n.

Clearly, the required holds forℓ = 0. By induction hypothesis,
let the required hold untilℓth iteration. Now, we consider the
(ℓ + 1)th iteration and observe that for everyi

Jn,ℓ+1(i, ρ
(m)
−n ) − Jn,ℓ+1(i, ρ

(m−1)
−n )

=

[
min
R∈R

G′
n(R, Jn,ℓ(0, ρ

(m)
−n )) − min

R∈R
G′

n(R, Jn,ℓ(0, ρ
(m−1)
−n ))

]

+
pi

1 − pi

(
Sn(ρ(m)) − Sn(ρ(m−1))

)

+ c
[
Jn,ℓ+1(ki, ρ

(m)
−n ) − Jn,ℓ+1(ki, ρ

(m−1)
−n )

]
.

Note thatJn,ℓ(0, ρ
(m)
−n ) ≥ Jn,ℓ(0, ρ

(m−1)
−n ) by the induction

hypothesis onℓ. Thus, the first term in the above expression
is non-negative by Lemma 1. The second term is also non-
negative asρ(m) ≤ ρ

(m−1) by the induction hypothesis on
m. Finally, the third term is also non-negative by induction
hypothesis ofℓ. Thus, the required follows.


