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Abstract—In Wireless LANSs, users may adapt their transmis- [2], but many other algorithms have been proposed in the
sion rates depending on the radio conditions of their linkss as to  |iterature to replace ARF, see e.g. [3], [4], [5]. One of the
maximize their throughput. Recently, there has been a sigficant key limitation of the tracking approach is that the channel

research effort in developing distributed rate adaptationschemes. has to b tant duri ket t - that
Unlike previous works that mainly focus on channel tracking this as 1o be constant during many packet transmissions so tha

paper characterizes the optimal reaction of a rate adaptatin pro- ~ the tracking algorithm is able to converge to the optimag.rat
tocol to the contention information received from the MAC. We This can be alleviated using channel measurements to infer
formulate this problem analytically. We study both compettive the optimal rate from the measured SNR (see e.g. [6], [7],
and cooperative user behaviors. In the case of competitiomsers 18], [9]). In all cases, the rate adaptation protocols oj#en
selfishly adapt their rates so as to maximize their own througput, ’ L ' . . o .

whereas in the case of cooperation they adapt their rates scsa the transm|§5|on rat_e as |f_a link was in |solat|on and_ they
to maximize the overall system throughput. We show that the dO not consider the interaction of the rate adaptation v t
Nash Equilibrium reached in the case of competition is ineflient  scheduling.

(i.e. the price of anarchy goes to infinity as the number of  An important challenge in designing rate adaptation

users increases), an_d provide insightfu_l properties of theocially schemes stems from the fact that transmitters may not be
optimal rate adaptation schemes. We find that recently propeed able to distinguish between the causes of transmission fail
collision-aware rate adaptation algorithms decrease the fice of 9

anarchy. We also propose a novel collision-aware rate adaation Ur€s. Transmissior! failures_ are Ca_lused _bY_ Collision_s_ and/o
algorithm that further reduces the price of anarchy. channel errors. Without thidoss differentiationcapability,

both DCF and rate adaptation schemes may make wrong
o ) ) decisions. Channel errors can lead to an unnecessary access
Distributed scheduling and rate adaptation are two keyspaghopapility decrease when the network is lightly loaded éwh
of the IEEE 802.11 MAC layer. Users share the radio resourggg network is congested, collisions may be interpreted as
in a distributed manner using the mandatory contentiognannel errors and lead users to decrease their transmissio
resolution scheme DCF (Distributed Coordination Funqtionates, which in turn increases the packet transmissiortiduga
This scheme specifies how users should adapt their chanfigl further exacerbates the network congestion. Researche
access probability when they experience transmissiour&sl nhayve proposed several ways of differentiating channelrerro
When the network is perceived as congested, under the DGRy collisions, and of exploiting this information in thesitgn
userscooperativelydecrease their access probability, whicRt ate adaptation schemes, see e.g. [10], [11], [5], [1&], [
in turn limits the number of collisions and keeps the overgi 3] Most often, the proposed rate adaptation algorithnes a
network efficiency at a satisfying level. DCF is time-cric j55ed on heuristic arguments and numerical experiments.
and it is implemented in hardware. Us_ers cannot qu|fy it In this paper,our aim is to provide understanding of the
_|IEEE 802.11 standards support multiple transmission ratgseraction between rate adaptation protocol and IEEE 802.
eight or more different rates in the case of 802.11a/g abF in a network with multiple nodes from an analytical
proprietary extensions, and more than twenty in case @bwpoint We assume that all nodes implement the standard
802.11p [1]._Each I|nk.should adapt its modulation and.c_gd|rDC|: (with or without loss differentiation), but can modify
rate to identify the optimal trade-off between the transmis i eir rate adaptation algorithms. We aim at characteribing
rate and the packet losses due to channel errors. The o®jecfisers should optimally select a transmission rate depgrain
pf rate adaptatlon_ algor_lthms is to estimate the channquug,eir state in the DCF scheme (i.e., their back-off stagpdere
ity and to find this optimal trade-off. These algorithms arganing the level of congestion in the network. We also study
typically implemented in software and can be modified. IEEfpe jmpact of loss differentiation on the system perforneanc
802.11 standards do not specify any rate adaptation aigorit  Rate adaptation can be done in a cooperative or competitive
Today, the prevalent approach to rate adaptation is t0 rglnner. In the former scenario, the rate adaptation scheme
channel quality based on packet losses and to adapt the fatgesigned so as to maximize the total throughput of the
accordingly. This approach was initially proposed in  ARReqwork while guaranteeing a certain degree of fairnessamo

P. Chaporkar’s work is supported bydia-UK Advanced Technology Centre users, thus achlevmg a social optlm_um. In the Iattgr sw,nar.
(IU-ATC) of Excellence in Next Generation Networks SystenisServices each user designs its rate adaptation strategy with the aim

I. INTRODUCTION



of maximizing its own throughput without accounting for itRate AdaptationThe radio conditions for link: is character-
impact on the system performance. If there is a single greedged by the signal-to-noise ratiS NR,, at the receiver. We
user, selfishly trying to adapt its rate, this user could piisdly —are interested in the interaction of the rate adaptation and
receive a higher throughput than that obtained in the socs&heduling, and we do not study how to track channel changes.
optimal. However, if all users compete, the system may @volTherefore, we focus on the rate adaptation protocols that ca
to an inefficient Nash Equilibrium (NE) where all users wouldneasure the channel SNR (see e.g. [6], [7], [8], [9]) and we
receive a lower throughput than that in the social optimurassume that th&§ NR,, is known at the transmitter of link
The performance gap between the social optimum and NashWe also assume slow fading, such that the SNRs can be
Equilibria is called theprice of anarchy{14]. assumed constant for the duration of the analysis. This mode
The main contributions of this paper are as follows: is reasonable abstraction for networks in which user mybili
¢ We formulate the problem of designing optimal rate adags limited, e.g., office WLANS.
tation algorithms analytically in networks with slowly yémg To send a packet, each transmittecan select a rate from
fading. We develop a generic framework that enables us acsetR using certain rate adaptation strategy. Formally,
consider both cooperative and competitive user behavimis & rate adaptation strategy, is a map from{0,...,/} to R,
the ability or inability of users to distinguish collisiofi|om and thusp, (i) denotes the transmission rate for usefin
channel errors. the i*? back-off stage. A strategy,, is said to beconstantif
e We show that the competitive scenarios lead to inefficient (i) = pn(i + 1) for all i < I. When a packet is sent at
Nash equilibria. In particular, when the number of links isate R € R, the transmission duration i = ¢/R, whereo
large, competition yields zero network throughput. is the fixed packet size. We use raig(i) and transmission
e We find that, although collision awareness does not elirsinadurationT;, (i) = o/p, (i) interchangeably to denote the rate
the starvation when the number of competing users is higha@aptation strategy.
increases the efficiency of the competitive equilibria.ded ~ The probability that a packet sent at rakeis lost due
not increase the performance of the cooperative optimum. to channel error is a functiom(2, SNR) of the rate and
e We propose a novel way of reacting to channel errors callfée SNR. For brevity, we denote,(R) = e(R,SNRy).
ROCE(Return to 0 on Channel Errors). We show that it furthéf/e use the model for channel loss from [19, Section II.C],
reduces the price of anarchy, although it does not alleiee €n(R) = 1—exp (—(e7% —1)/k,), wherex,, depends on the
starvation in large competitive networks. link n quality (the received SNR) ang depends on different
The above findings are obtained through a mix of analyticystem parameters (such as the bandwidth) but not on the link
and numerical results. Our paper is novel in two aspecfality. Optimal operation points of a wireless network ere
in [15], [16], the authors have proposed an analytical modallow channel loss regime. Hence, we can simplify the above
for the interaction of DCF and rate adaptation schemes, tftuation using the first order approximation:
they haven’t considered improved adaptation algorithrs; t TR _ 1
possible selfish behavior of users in adapting their ratarely en(R) = o (1)
co.n5|dered (in [17], .[18]’ the aut.hors provide prellmlnar;a!- . This model is also similar to the models used in [20]. We
ysis of rate adaptation games in WLANs where transmissign . o .
. also verify that it fits well to the data measured in [9] (see
failures due to channel errors are not modeled). . sy
The paper is organized as follows. Section Il presents t ection V). We also use the form,(T') = (e 1)/ fin:
. e LA ote that functiore,,(T") is convex inT'.
models. We present a generic stationary analysis is given In
Section Ill. Competitive scenarios are discussed in Sediio Collisions. The duration of a collisionT:,; is either the
and cooperative scenarios in Section V. Numerical resunéts anaximum duration of the packet transmissions involved & th
presented in Section VI. The proofs are in the appendix. collision when RTS/CTS is not used, or simply the duration
of RTS/CTS signalingl’rrs when RTS/CTS is used. It is
Il. MODELS difficult to analyze the former, wheré,,; depends on the
We consider a network ot = {1,..., N} links. All links duration of different transmissions. However, we obseha t
tin a well designed system the collision rate should be small
(e.g. less than 10% [21]) and we can ignore it. In this paper we
will assume a constant duration of a collisioh..;; = Trrs.
Scheduling All transmitters implement the same distributed his is an exact model in the case of networks with RTS/CTS
random back-off scheduling mechanism to access the chanaeld a reasonable approximation otherwise.
e.g. DCF, that cannot be changed. This mechanism is modeletive study systems with and without loss differentiation.
as follows. There aré+1 back-off stages: stagec {0,...,I} Systems Without Loss Differentiation (WoLBlgre, collisions
indicates thati consecutive collisions or packet losses havand channel errors can not be distinguished (like in all of
been experienced. In staga node transmits a packet with athe 802.11 standards). Thus, the back-off stage is increzden
fixed probabilityp(:) such thaip(i) > p(i+1) for everyi < I whenever a packet is lost.
(in DCF p(i) = 27p(0)). We optimize the rate adaptationSystems With Loss Differentiation (WLBe also consider the
algorithm for a fixed scheduling mechanism. case where collisions and channel errors can be diffetedtia

interfere with each other, and the corresponding tranersit
always have packets to send.



We consider two families of collision-aware rate adaptatio S"(p) = Z 1-a Zﬂ'l(j)p(j)Tpl(j) + H(l - m)
strategies: il U l

e The first family, called WLDS (where S stands fatandard,

includes the strategies proposed in the literature, e.fL0h + (1 — H(l —p) - Z(l — cl)pl> TrTS-
[11], [5], [12], [8], [13]. If a transmission fails due to didion, 1 1

then the back-off stage is incremented. If it fails due toncte S%(p) = Trrs + Tr(l — cn).

error, then the back-off stage remains the same.

e We propose a second new family of rate adaptation strate ;, Throughput.From the average slot duration, we can

gies, referred to as ROCE (Return to 0 On Channel Erro{*)omputeqsn(p) the stationary throughput of link by:
Here, unlike WLDS, if a transmission fails due to a channel

error, the back-off stage is reset to the minimum vaiue ()). bnlp) = 22 T (D) (L = en(pn(i))) (1 — Cn)' @)

The intuition behind this is that since the loss was not cause S(p)

by collision, there is no reason to remain in a high-contmti  Stationary distributions and residual time3o compute

DCF state. If a transmission fails due to a collision, thekbacthe link throughputs, we need to evaluate the stationary

off stage is increased, as in all other schemes. distribution = and the collision probabilitieg. In order to

Competition vs. Cooperatiorn this paper, we aim at charac-characterize the best response of a user, we also define the

terizing the performance of systems where users eitherttendaverage residual timé,, (i, p) as the average time needed by

maximize their own throughputs (selfish) or they jointly oplink n to transmit a packet, given that it is in stagand the

timize a network-wide performance metric (cooperativd)e T rate adaptation strategies are defineddbyHere we compute

selfish behavior of transmitters is modeled as a pure sicateg, ¢ andJ,, (i, p), first for WoLD systems, and then for WLDS

rate adaptation game. This means that each transmitte\N" and ROCE systems.

adopts a deterministic strategy with the aim of maximizing 1) WoLD systemsGiven that transmitter of link: is in

its own throughput. We will investigate the existence arel tistage:, it can either successfully transmit and move to state

properties of Nash Equilibria in this game. In the coopegati 0 with probability p(i)(1 — ¢,,)(1 — e, (pn(i))), Or experience

scenario we will consider Pareto optimal strategies as th& mof transmission failure with probability(:)(1 — (1 — ¢,)(1 —

general way to model socially optimal strategies. en(pn(i)))) or remain idle with probabilityl — p(7). Then we
classically deduce that (fdr < i < I):

i—1
I1l. STATIONARY ANALYSIS (i) = PO Mol — (1 ;(:)”)(1 — e”(p”(k))))wn(()%
We start the analysis by studying the steady state behalvior O, (1) = p(0) i:(lJ(l = (1= cn)(1 = enlpn(k)))) 7 (0).
systems where transmitterc A" uses a given rate adaptation p(I)(1 = cn)(1 = enlpn(l)))
strategyp,,. This analysis will be used to examine the systemihe average residual transmission times are given by:
performance in both competitive and cooperative scenarios .
We denote by, (i) the stationary probability that transmitter Ju(i, p) = 1- p(l)sn(p) + 57 @ (p)

n is in the back-off stage, by p,, = Y, m,(i)p(i) the average p(i) o

transmission probability of link, and byc,, = 1-[],,,.,,(1— + (1= (1 =cn)I —enlpn(i)n(i+1,p),
pm) the probability that linke will collide with any other link, [(1=p(I)/p(D)]S™(p) + Sgn(l) (p)
given that it transmits. We also define = (m,)nen,p = In(l,p) = 0 =)0 —enlpnD))

(pn)n€N7 c= (Cn)nGNa P = (pn)nej\/- 1 . ] ] . o
Average slot durationWe considewirtual slots as defined Where%»g”s"(p) is the average time the link is idle before
in [21]: a slot may correspond to a slot where the channelti@nsmitting for the first timeS7: ) (p) is the average time the
idle (no transmission occurs), to a successful transmissio link transmits (regardless of the success of the transamipsi
to a collision. All links “see” the same virtual slots. Demot and if the transmission is unsuccessful (with probability-
by S(p), S™(p), and S%(p) the expected slot duration when(1—cn)(1—exn(pn(i)))) the average time to transmit the packet
transmitters use rate adaptation strategiesnconditioned on is J»(i + 1, p) as the link moves to staget- 1.
n, given that transmitten is silent, and given that transmitter 2) WLDS systemsGiven that transmitten is in stagei, it
n is transmitting a packet at rai®, respectively. We have can either move to stager 1 if it encounters a collision with
probability p(i)c,, or it can remain in stagewith probability
1 —p(i) + p(i)(1 — cn)en(pn(i)) (either it remains silent or
it encounters a channel error), or it can return to stage B wit
+ 1:[“ —n) probabilityp(i) (1 — cn)(1— en(pn(i))). We have (for < i <
1):

+ <1 - H(l _pl) - Z(l - Cl)pl) TrTS, Wn(l) _ _ p(O)C; 7Tn(0)
L L p(l) H;c:l(l - (1 - Cn)en(pn(k))) 7

Slp)=>_(1—c) > mi)p(i) T
l J




() = We are looking for a fixed point of the following system
[p(0)/p(I)]cL 7, (0) of the following systent,, = I';,(A1(c1),...,An(cn)). The
= . mapping is continuous so a fixed point exists. From Lemma 2
(1= en)(1 = en(pn(I)) ITj=a (1= (1 = en)en(pn (k) we have thatA,(c) is monotonically decreasing and that

and for the average transmission residual times: (1 =¢)(1 —Ay,(c)) is monotonous. Then from [22, Theorem
1= p(i) 5.3] we have that the fixed point is unique. ]
In (B, p)(1=(1 — ep)en(pn(i))) = —=S"(p) Observe that the conditions of Theorem 1 are satisfied in the
p(0) practical system. For example, in 802.11 we have 2 and to
+ 50 »(P) + endn(i+ 1, p), satisfy the conditions of the theorem we neagd,x < 5/8.
[(1—p(D)/p(D)]S™(p) + S5 () A typical 802.11 link does not operate with a channel error
Jn(l,p) = =) —en(p(D) : rate larger thare s x.

3) ROCE systemsGiven that transmitter is in stagei,
it can either move to stage+ 1 if it encounters a collision
with probabilityp(i)c,, or it can remain silent with probability ~ In this section, we analyze systems with selfish but rational
1—p(4), or it can return to stage 0 with probabilipyi)(1—c,) Uusers, who want to maximize their respective throughpues. W
(regardless of channel errors). We then have (fer ;i < 7): model this scenario as a rate adaptation game with the set

; ; of feasible strategieg,, for any usern, and the throughput

(i) = p(O).cn (0), () = p(0)cy, (0. it achieves being its pay-off for a givep. We study the

(i) p(I)(1 = cn) existence of pure Nash Equilibria for this game, and provide
Also note that unlike in WoLD and WLDS systems, the stai0me structural properties of these equilibria. We reistig
tionary distributions does not depend on the rate adaptatigiftention to scenarios where users play pure strategies (do
schemep in ROCE systems, nor on the link qualities (thafot randomized their rate adaptation decisions). We prove

is 7, = m, for all m,n € N). The average transmissionthe following: (a) pure NEs exist; (b) we establish certain
residual times are given by: properties of NEs to gain insights into the system behaviour

. 0 and to reduce the complexity of computing these equilibria
- —P\V) an n - : i ici
Jn(i, p) = S"(p) +Spn(i)(p) +endn(i+1, p) for WoLD and WLDS systems; (c) we provide an explicit

IV. COMPETITION

p(i) procedure to compute NEs in ROCE system.
+ (1 = cn)en(p(d))Jn (0, p), Because of the analytical difficulties, we make the follow-
1—pI), . ing assumptions in this section: (1) For WoLD and WLDS
Jn(L,p)(1 = cn) = o) S*(p)+ S, n(p) systems, we consider non-atomic game, i.e., the number of
users is large so that the strategy change of one user does not
+ (1 = en)en(p(1)) (0, p). J 9y chand

change the system statistics, specifically it does not affec

In each of the cases, we use the above expressions to obkdin a precise definition of non-atomic games, refer to [23].
the collision probabilities: as a fixed point of the following This assumption is not required for ROCE as under ROCE
expressionsp,, = Zf:o T (D)p(0), o = 1= 1,0 (1 = Pi)- and hence: does not depend op. (2) For all the systems, let
We next show that there exists a unique fix point of the abo¥e = [0, Ruax], WhereR.. is finite. We verify the results for
system (we give the result here only for WoLD, the other tw@n atomic setting (small number of nod¥$ using simulations
cases are similar). in Section VI.

Proposition 1: Let us assume for all, e; < eprax, p(i +
1)/p(i) = a, p(0) > (1 + 2a + 2a’epax)/(1 —a) and1 + A. Best Response Correspondence

a—2a_(1—eMAX) <0. Then, for everyv, (SJ\_fRn)n_eN and_ Let p_ = (pm)mezn, and denote by ¢(p,,p_,) the
any given rate adaptatiop, there exists a unique fixed POINtihroughput of usen when it uses strategy, and others use

(p,c) in WoLD network. _ o _n. Let A = RT*1, and let us define the best response for
Proof: The proof is an extension of the analysis in [szi)nk nasB, : AN"1 — A such that ifp, € Bn(p_n),

and we shall u_sielthe same notation as in [22]. Let us dengign B(pn, p—n) > d(p, p—n) for everyp € A. Observe that
with ¢n (i) = [[j—o(1 — (1 = en)(X = enlpn (k) for i < Iy, "5 Y = 1/J,(0, pn, p—n) and thusp € B, (p_n) only
and¢ (i) = G (I (1= (1= cn)(1 = en(pn (k) ™" fori > I, whenp € argmin,e Ju(0, p, p_n). This shows that the best
and letb; be the mean back-off duration in back-off stage yesponse can be obtained by minimizing the residual times.

(as in [22]). We are then able to get rid ofand link directly Next, we minimize the residual time using MDP formula-

p andc as tion [24]. To this end, denote by* (i, p_,) the minimum
1+ 3%, ¢a(0) expected residual time from® back-off stage given that other
n — An Cn) = OOZ: - ) 3 i H H
p (cn) bo+ 3o bis1Cn(i) (3) users use rate adaptation strategieg. Now, it can be shown

that under WoLD, WLDS (with non-atomic game assumption)
en=Tn(p1,-..,on)=1-— H(l—pm). 4)

m#n 1Throughout this section we also represgnas a tuple(pn, p—n)



and ROCE that/}: (i, p—,,) can be obtained as Proposition 2: In WolLD, WLDS (with non-atomic game
assumption) and ROCE systems, the rate adaptation games
(5) have a pure NE.
o  e'Bu Proof: To prove the existence of pure NE, it suffices to
Gn(R,u) = (1 —cn) {E + < } (6) prove that the correspondengX-) has a fixed point. We use
. i " Kakutani’s fixed point theorem to prove the required. Firsen
In_twt_wely, &M is the average overhead of the packet_ trgngﬁat by constructionA” is a compact, convex and non-empty
mission in stage which is independent of the transmissionhset of the finite dimensional Euclidean space. Moreover,
rate i and v is the average time needed to send a packgt (, ) contains a single point as shown in Lemma 1, hence
if this transmission fails. Depending on the system undg(.) is non-empty and convex. Hence, it suffices to show that
consideration:;, and{* have to be chosen appropriately. B(-) has a closed graph, i.e., i, p',) — (pn, p_n) Such
1—|;anWOLD systemu; = J}(ki,p-n), ai‘d &' = thatp! e B(p’,) for everyt, thenp € B(p_,). To show
=9 (p) + Trrs + (1 - (1= cn)(L+1/kn)) 5 (Kis p—n),  this, it suffices to show that (Y (pn, p_n) is continuous in
wherek; = i+ 1 for i < I and lk_[ = I. For WLDS pn for any givenp_, and (2) ¢(pn, p—n) is continuous in
SyStemui = J;(%p*n)! and gzn = Tmsn(p) + TRTS + P-n for any givenpn_
cndpi(Kis p—n) = (1 = ca) J3 (i, p—n)/in. Note that only be- = g (1) and (2) are straightforward in ROCE system as
cause of the non-atomic game assumptionand 5™(p) IS poth 7+ and ¢ do not depend orp, rather only the packet
independent ofp,,, but can be compliately characterlfed b¥ansmission times and the transmission failure proktasili
o Izmally, for ROCE*systermi = Jn(o’p—j)’ and&l' = \ary continuously with the rate adaptation strategy. States
TS (p)+TRTS+C"Jn(k%’ p—n) = (1=cn)J3(0, p—n)/kn- ment is not true for WoLD and WLDS system in general, and
Let us defineR*(u) = minger Gy(R,u). Then, we note phence we need the non-atomic game assumption in this case.
thatp € Bn(p-») only whenp(i) = R*(u;) for eachi. Thus, gecayse of the assumption, changepindoes not changing
it suffices to study the properties 6f, (R, u) in order to study . o, . Thus, as in ROCE, (1) holds for WoLD and WLDS
the properties of the best response. . as well. Now, we show (2) in these cases. Note thaand
Lemma 1:R*(’l{/) is unique for every, and is amonotone .. gre given as a unique fixed point of @), = S 7 (0)p (i)
decreasing function ofi. Moreover,G,, (R* (u), u) is mono- 444 (i) cn = 1 =], (1 — Pm), wherem, (i) is a function
tone increasing function af. _ _ of ¢,. Note that the graph for (ii) is a monotone continuous
Proof: Note that for a giver: > 0, G, (R, u) is astrictly  gnq is independent gf, but that of (i) depends op causing
convex function ofR in the positive half plane. Thus, it has e fixed point to vary withp. We need to show that fixed
unique minimum (say’(w)) in the positive half plane. Now, point changes continuously with. This will holds if for any
R*(u) is uniquely determined asiin{ R’ (u), Rmax}- ~ givene, 7 varies continuously withp. But this follows as, for
We next need thak* (u) is @ monotone decreasing function, givenc, r,, can be computed using a linear transform from
of u. Let F(R) = yR + rlog(R). We have thatR'(u) i he transition probabilities that vary continuously wjth. m
the unique solution ow = 0, i.e., it is the solution
of F(R) = log(ok,/uy). Note that F'(R) is monotone ~ stryctural property of NE

Jr(i, p_pn) = }%1617’% Gn(R,u;) + &', where

increasing, withF'(0) = —oo and F(co) = oo. Now, if

u1 > u, thenlog(oky, /uy) > log(ck, /u17y). Thus,F(R) will We now give a structural property of the symmetric NEs for
cross levelog(o, /u17y) before crossing levabg(or, /uy). WoLD and WLDS systems. Although this property does not
Hence,R'(u;) < R'(u), which proves the required. fully characterize NEs, it gives a useful insight into thetsyn

For the last part, note that,, (R, u) < G, (R,u1) whenever behaviour and greatly simplifies the complexity of compgtin
u < uy for everyR. Thus,G, (R*(u),u) < G, (R*(u1),u) < these equilibria.
G, (R*(u1),u1). This concludes the proof. [ | Proposition 3: Let p be a pure NE in WoLD or WLDS
non-atomic systems. Thep,, (i) > p,(i + 1) for everyi, n.

Proof: Fix p and the correspondingr, ¢) and letp], =

Itis well known that a mixed strategy NE always exists (foB,,(p_,,). Then, we show thap/, (i) > p (i + 1) for every
finite action space see [25], and for compact action space see I in WoLD and WLDS systems (Lemma 3 in Appendix
[26]). However, a mixed strategy would imply that each useind Lemma 1). Hence, the result follows. ]
implements one rate adaptation strategy for a long time, andrhis result illustrates the following incentive: being in a
then switch to another one with some probability, run it fOIﬁigh back-off state is expensive due to a large back-offhén t
a long time, and so on. This is not feasible from the systegase of WoLD and WLDS it depends on the transmission rate
point of view. Hence, we are interested in a pure strategy Nighether the link will return to state 0 (successful transiois)
where each: implements constant strategy,. or not. Hence, links have an incentive to use lower (othawis

A mixed strategy NE does not always exist, but we provgefficient) rates in the high back-off state to increase the
that it exists our case in an arbitrary network. Unlike [28§ chance to return to state O.
need to establish a fixed point in the space of pure strategiefyext, we consider ROCE systems. Here, we do not need the
and not in the space of mixed strategies. rate adaptation game to be non-atomic. First, we charaeteri

B. Existence of Nash Equilibrium



the properties of NEs in this setting, and provide an explicWhen N is large we havep = O(1/N) [21]. Also, by the
algorithm to compute a NE. assumptions we havg,, — Trrs > €, and hence
Proposition 4: Let p,, = B,(p_»). Then, p,, is constant,

i.e., pn(i) = pn(i + 1) for eachi < I. Moreover, if p* is a yoe /T

NE, thanp* is constant. = np — e10/T — 1 T+ Y T = NTrrs + O(N)
Proof: The fact every best response is constant follows m#n

immediately from (5) and (6): givep_,,, the p, (i) depends B yoe /T T+ O(N

only on u;, and u; is the same for every under ROCE;  kpp—e/T —1 (T'+0(N))

consequently?* (u;) is the same for each Since every best Clearly. th luti f the ab ; d<Tt
response is constant, every NE has to be constant as mell.~ ¢3": fne soltion of fne above equalion tendsite- e

In the ROCE case, unlike in the WoLD and WLDS caseg\,’he_nN goes _Iarge, if the minimum rate is Zero, or to the
rate adaptation strategy does not impact the back—oﬁ,std@n'mumhrars,e if the rates are tf)unded. If the minimum rate
and the rates are the same in all the stages. This makes 'Thgero: thenimy o 2nen &n =0. u

selfish ROCE approach more efficient than the selfish WoLD Similar argument can be made for other types of networks
and WLD. as we illustrate in Section VI. (although the derivation becomes more complex). The basic

observation is that as the number of nodes in the network
D. Convergence to A Nash Equilibrium increases, a single node no more affects the average slot

Here, we look at the convergence of an arbitrary competitigiiration and it tends to optimize its own performance by
network to a Nash equilibrium. In the following propositiorflecreasing the error probability, and hence the rate, to. zer

we prove that any network converges to a Nash equlibrium if o _
all the nodes initially use the highest rates. F. A Note on Distributed Implementation

Proposition 5: Let us consider an arbitrary network. Let One of our main motivation for studying competitive strate-
p?) denote an initial rate adaptation strategies, anp{é?  gies was their amicability for distributed implementatiaiie
be computed iteratively ag" ") = B, (p"")) for everyn. note that for the distributed implementation, each uset wil
Now, if p(® is constant withpﬁlo) (1) = Rmax for everyi and be required to compute the best response to strategies used
n, thenlim,,, _.. p(™ exists (sayp*) and p* is a NE. by other users. Now, it may seem that to compute the best
Proof: We prove the required by showing that™ is a response, a user has to know the strategies of all the other
monotone decreasing sequence (Lemma 4 in Appendim. users. We, however, like to point out that the best response
We also numerically verify that a network always convergesmputation only requires a user to kna$#(p) and c,,
to a unique Nash equilibrium, regardless of the initialestat  both of which can be estimated locally by the user. Thus,
a large number of random configurations we have evaluateghhch user can separately estimate the required quantiies f
certain duration (sa§’ time units), and based on the estimates
computes its rate adaptation strategy. Though, the coemegg
Next, we look at the performance of the network whegs this procedure is not guaranteed for WoLD and WLDS
the number of nodes is large and we show that the selfigfistems, our simulations verify that the procedure indeed
approaches become highly inefficient. We first need a teehnigonyerges (at least in all the cases we considered).
assumption thatr /R, — Trrs = € > 0, which is typically
true because a packet transmission includes an exchange of V. COOPERATION
RTS/CTS signaling messages. We then have . ] . ]
Proposition 6: Consider an arbitrary ROCE network with N this section, we derive a structural property of the sfcia
N links. As N goes to infinity, all links will use the minimum OPtimal rate adaptation strategy that will help us calauiat
available rate in the s&®. In the case whemin R = 0, the The problem is tractable only for ROCE systems because in

E. Inefficiency of Competition

sum of all rates in the systefm v O tends to zero. that case the stationary distributiandoes not depend on the
Proof: Since from Proposition 4 all the rates are the sanf@te adaptatiorp. _ _
and the network is symmetric, eq. (2) simplifies to Proposition 7: Consider an arbitrary ROCE network. Any
1 ) Pareto optimal rate allocation is a constant rate allonatio
b = p(l—¢)(1— e(Pn))7 (pn(i) = pn(j) for all i, j, n).
S(p) Proof: Suppose thap is Pareto optimal and suppose that
S(p) =p(1 —c)(Tn + Z Tp) + (1 =p)V pn(i) # pn(j) for somei, j,n. Let us construct a new rate
m#n allocation policyp’ such that
1—(1—-p)N = Np(l —¢))Trrs. NN N (o
+(1-(1-p p(1 —¢))Trrs ) = T ) = T ()p(0) T (3) + 70 ()P() T (5)
Then the best responge= B(p_,) has to satisfy—2¢ = " " 7n(1)p(i) + 70 (5)p(5)

®(p, p-n) and by derivating:(T) we obtain andp!, (k) = pn(k) forall k £ 4,5 andp’_,, = p_,,. It is easy

yae /TS (p, p_n) to verify thatS(p’) = S(p) hence the rates of all other links

2 _
== knp(1 —c)(1 = (e79/T — 1) /K, butn are unchanged, (p’) = ¢m(p) for m # n).




Next, due to convexity ot,,(T') we have that | Type | p(i) |
| All, cooperative | 23.3, 23.3, 23.3, 23.3, 23.3, 23.3, 23.3

(T (1) < 7 (8)p(i)en (T (4) + mn (7)P()en (T (4)) WoLD, competitive] 16.0, 13.9, 11.9, 10.0, 8.3, 8.3, 8.3
" T (4)p(i) + 0 (4)P(4) WLDS, competitive| 18.6, 18.1, 17.4, 16.3, 15.0, 13.9, 13.9
ROCE, competitive| 18.6, 18.6, 18.6, 18.6, 18.6, 18.6, 14.6

and from (2) we see that,(p’) > ¢.(p), which contradict
the assumption that is Pareto optimal. B Fig. 2. The optimal rate adaptation scheme for a symmetriwor& with

; ; ; = 4 users, SNR = 15 dB for all n. The optimal rate adaptation is
We Ve”fy numerlca”y that the same property apprOXImate%nstant in all cases of the cooperative scenario (WoLD, \&labd ROCE).
holds for WoLD and WLDS as well.

o
©

VI. NUMERICAL EXPERIMENTS

o
o

In this section we present numerical experiments to ilatstr
and validate the theoretical results derived in previostaes,
and to compare the performance of the cases we were not ¢
to treat analytically. In order to obtain realistic resplte take
the error probability functior (R, SN R) from the results of
measurements presented in [9, Figure 2] and we fit the di ]
to our modele, (R) = (7% — 1) /x,,. The data fits well and > 4 6 8 10
we obtainy = 0.17 and k = {29,350,5.2- 10%,1.3 - 10°}  Fig. 3. Relative price of anardhy as a function &F where the relative
for SNR = {57 10, 15, 20, 25} dB. We assume that the ratepric_e of a_ngrchy is the differenc«_a betw_een the cooperatfiktiae competitive
Set — [0, o) is continuous, and we verify that all the rateSHlI. aeq b e conperahe apiru, For catve averge over 10
are in the region where (1) holds.We fix the number of back-
off stages to 7 { = 6) and we take the standard RTS/CTS

signaling parameters to compui@rs. A. Cooperation: Optimal rate adaptation and maximum
We use a gradient descent method to compute the ehroughput

operatively optimal rate adaptation. We seek to maximizeWe start by analyzing cooperative scenarios where users

the sum of log of rates (proportional fairness). We cann@ine their rate adaptation scheme so as to achieve propaitio
theoretically prove that it always converges but we verifigdiness  As an illustration, we first consider a symmetric

that it converged in all the cases we analyzed. To calcufete ttopology where SNR = 15 dB for variousN. The maximum
compeUUv_g equilibria (NE), we iterate over the best rexss. throughput and the corresponding optimal rate adaptation
In Proposition 5 we have proven that t_he process convergesihames are presented in Figure 1 and Figure 2. We make
all cases for ROCE, and in non-atomic cases for WoLD ands fo|1owing observationg1) The throughputs obtained with
WLDS. We observe numerically that this process converggs, oronortionally fair rate adaptation scheme in varigyes

for all N even without the non-atomicity assumption. Thug¢ systems are similar. This indicates that, surprisingig

we are able to obtain the numerical results for all the Cas@épability of differentiating collisions from channel ers does

analyzed in the paper. not bring significant improvements in the cooperative stena
when the SNR is constant and known at the transmitters.

Relative Price of Anarchy
o o
N N

(=]

201 On the contrary, loss differentiation helps the estimatdn
R aratie the channel quality and may improve the system performance
[T S SIS when the SNR is unknown as shown in [10], [11], [5], [12],
S » ST [8], [13]. (2) The socially optimal rate adaptation scheme is
o 16&2\@\ always almost constant and it is almost the same in all the
2 WoiD. Co . cases (WoLD, WLDS, ROCE).
~ ' b TS Also, note that ROCE can be disadvantageous if a MAC
£ 14/ — ~ WolD, Coop SR . . . - .
= . WLDS Com - o is not well design to cope with congestion. For example, if
; . WLDS’ Coop = a packet is lost due to a channel error and a network is
3 124 ROCE, Comp very congested, it may be better not to return to the zero
. ROCE’ Coopp back-off stage and thus ease the congestion. However, this
10 — ‘ ‘ ‘ remedy works only if the channel incurs losses, and implies
2 4 6 8 10 that MAC itself is not well designed (e.g. for reliable chatm

N with no losses). In our numerical evaluation, using 802.11
Fig. 1. The system throughput for a symmetric topology (aks have the DCF parameters, we do not observe this problem and ROCE
same SNR) achieved with the optimal rate adaptation, wheR=-SN5 dB. performs at lease as well than WoLD and WLDS. This impIies
that 802.11 MAC is well designed to deal with congestion, as
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Again, b1 — biy1 is positive because the back-off increaseS. Supporting Lemma for Proposition 5

with the stage, and the sequenigis increasing by construc-  gqr g givenp(™, we compute the/* (i 7p( ), and thereby
tion, hence the second sum is also positive which proves t%hputep(m+l In this, for brevity, we define
A, (c) is decreasing. .

We next prove the monotonicity df,,(c). We haveg; E; < G (Rou) = (1 — ) LN (e —1) u]
(i + 1)ci. We also havee, < epax, hence¢; > ci(1 — ’ "R Kn '
Eg\gx) Extendlng the arguments from [22, Lemma 5.3] W&Iearly,

Gl (R,u) also has the same properties as that
of G,,(R,u) which are described in Lemma 1. Moreover,

AL ()| < (22 binGiEi) (1 + %:Cl) minger Gpn(R,u) = minger G, (R,u) for every u. Now,
(bo + - biv1Gi) note that for ROCE system,
i i)2 —
< b Do) Ur 3 e) ot Sbica) i) = pin GL(R J200p-) + 57
(bo-i-ZbH_lC ) (bo-i-ZbH_lC (1—eMAx) ) ReR Di
<%1—a(1—€MAx) +TRTS+CnJ (kup )
~ bo 1-a ' Recall thatk; = ¢+ 1 for i < I andk; = I. This follows
Now the derivativel” (¢) = —1 4+ A, (c) — A’ (c)(1 —¢) and from (5) and (6) Now, let us consider the value iteration
since A, (c) < %,A;() <0,(1 —¢) >0 we have method for computingJ* (4, p(_n) [24]. Let, for everyi,

(m) th
14 a— 2021 — eatax) JIne(i, p2)) denote the value off-function in ¢** iteration

Fl(e)< -1+ bl —a) for usern in stagei. Then,J, ¢41(4, p(_";;)) is computed using
0 , the following recursion.
ConsequentlyF,, (¢) is monotone ifl +a—2a*(1—eprax) < 0 (m) . (m)
andby > (1 +a — 2a(1 — earax))/(1 — a). el ply) = min G (R, Jue(0, 7)) + Trrs
B. Supporting Lemma for Proposition 3 N 1—pi Sn( )+ Cané(kz,p_n) (7)
y2

Lemma 3:Fix any given p, and let (w,c) denote the
steady state probability and the collision probabilitiespec-  From results in MDP theorylim,_. Jp (%, p(_"fl)) =
tively, when the users use rate adaptation profileThen, J(i,p_,) for every i starting from any intial condition.
Jn(i,p_n) < Ju(i+1,p_,) for everyi > 0 in WoLD and Moreover, if we letp(™ (¢) to be the rate adaption policy
WLDS system. in the ¢ iteration, thenlim/_. o p§m) ptm,

Proof: We focus of WoLD systems. The proof for WLDS Lemma 4:Let p() be the constant such that (i) = Rmax
systems follows similarly. With some abuse of notatiorfor everyn andi. Then,p(™ > p(™+1 for everym.
let us defineJ,(i, R, p_,) = Gn(R,u;) + &7, and thus Proof: The proof is by induction. Clearlyp(® > p(1).
J¥(i, p—pn) = minger Jn(i, R, p_p). By induction hypothesis, we assume that) > p(*) >

We prove the required by induction. Lét; be such that --- > p(™). Now, we show thatp(™ > p(m+1), To show
Jn(i, Ri, p—n) = J5 (i, p—r) for everyi. Now, note that this, by Lemma 1, it suffices to show tha: (0, p"" ") <
Ju(I, Ry, p) — Ju(I —1,Ry, p) J%(0, ). We show this by showing that, ,(i, p". ") <
— e Ine(i ,p(_"fl)) for every i, n and ¢ starting from the initial
l—pr 1—pr, condition Tno(i, P = Jao(i, p™)) = 0 for all 4, n.
= ( — ) S"(p). Clearly, the required holds fdr= 0. By induction hypothesis,
pr br—1 let the required hold untif** iteration. Now, we consider the
Sincep; < pr—1, we conclude thatl,, (I, Rr, p—n) > Jn(I — (¢ +1)*" iteration and observe that for every

1, Ry, p—n). ConsequentlyJ;(I,p_) = Ju(I,Rr, p-n) > ) (m1)
Jo(I =1, Rr,p_p) > J(I—1,p_). Ine41(8,p20 ) — o1 (i, p55 )
By induction hypothesis, lef* (i, p_,) < JX(i + 1, p_y) G (R (m) N (m—1)
AN n ’ = ne(0,p0))) — G (R, Jne(0, p2
for everyi > j. Now, consider glem n(Bs Jne(0,950) Rer i 20,0=0 )
_ (=)@ —1) F fincn (m) (m—1)
= P +c {Jn,f-ﬁ-l(kia pl) — Jnes1(ki, po, )} .
(Jn(G + 1, B, p—n) = Jn(j, Bjs p—n)) Note thatJn,g(O,p(,"Zl)) > ng(o,p(,”ffl)) by the induction
n (1 -pj 1 —pj1> S (p). hypothesis or?. Thus, the first term in the above expression
Dy Pj—-1 is non-negative by Lemma 1. The second term is also non-

Again note thap; > p;_1, and alsoJ,,(j + 1, R, p_n) > negative asp™ < p(™=1 py the induction hypothesis on

Jn(j, R;, p—n) by induction hypothesis. Thus, it follows that/- Finally, the third term is also non-negative by induction
TG pn) = TG —1,p_0). m hypothesis off. Thus, the required follows. [ ]



