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ABSTRACT 

Many developing countries are suffering from air pollution, 

especially the Particulate Matter with diameter of 2.5 

micrometers or less (PM2.5). While quite a few air quality 

monitoring stations have been built by governments in a 

city’s public areas, the indoor PM2.5 has not yet been 

monitored and dealt with effectively. Though many office 

buildings have an HVAC (heating, ventilation, and air 

conditioning) system, PM2.5 is not considered as a factor 

when the system circulates fresh air from outdoors. This 

paper introduces a real system that we have deployed in the 

offices of four Microsoft campuses in China. This system 

instantly monitors indoor air quality on different floors of a 

building (including office areas, gyms, garages, and 

restaurants), enabling Microsoft employees to enquire the 

air quality of a place by using a mobile phone or checking a 

website. The information can guide a user’s decision 

making, e.g., finding the right time to work out in the gym 

or turn on individual air filters in her own office. Through 

analyzing the indoor and outdoor air quality data collected 

over a long period, our system can even offer actionable 

and energy-efficient suggestion to HVAC systems, e.g., 

automatically turning on the system only a few hours earlier 

than usual if it is a heavily polluted day, or identifying the 

filters in HVAC system that should be renewed.   
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INTRODUCTION 

Many developing countries, such as China, India, Mexico, 

and Brazil, are struggling with air pollution, especially 

PM2.5. To protect people’s health from the damage by air 

pollution, many cities have built on-ground air quality 

monitoring stations that inform people the concentration of 

air pollutants in (outdoor) public areas [10]. While people 

stay indoors much longer than outdoors, the indoor PM2.5 

has not yet been monitored effectively. As a result, people 

working in offices have no idea about the air quality around 

them, let alone taking actions to tackle PM2.5 down indoors.  

In contrast to outdoor air pollutions that are difficult to 

tackle [3][12], the indoor PM2.5 can be handled to some 

extent if we manipulate HVAC systems or individual air 

filtering systems timely and correctly. Unfortunately, 

PM2.5 is not considered as a factor when HVAC systems 

circulate fresh air from outdoors. Some research projects 

[5][11] monitor the indoor concentration of CO2; however, 

they do not provide actionable suggestions that can handle 

air quality problems. Additionally, sensing CO2 is different 

from PM2.5, which needs a bigger sensor and a longer 

sensing period. 

To address this issue, we deployed a cloud-based indoor air 

quality monitoring system in the office buildings of four 

Microsoft campuses in China [16] (consisting of Beijing, 

Shanghai, Wuxi, and Suzhou), as illustrated in Figure 1.  

 

Figure 1. The architecture of our System 

We collect the concentration of PM2.5 and PM10 on 

different floors of a building, including office areas, gyms, 

garages, and restaurants, etc. On a floor, we set up a 

monitor (Dylos DC1700) which is connected to a local 

server via a Com-to-USB port. The server receives the air 

quality readings from the monitor every minute and submits 

an average of air quality in every 10 minutes to the cloud. 

The cloud stores the air quality data received from different 

monitors in a cloud database, which will be enquired by end 
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users through a mobile client and a website. The real-time 

air quality information can inform a user’s decision making 

on when to work out in a gym or whether turning on an 

additional air filter in her own office.  

The cloud also collects the outdoor air quality of each 

building and corresponding meteorological data from public 

websites every hour. The information will be displayed on 

the mobile client and website together with the indoor air 

quality. By mining the air quality and meteorological data 

over a long period, we build a model based on artificial 

neural network to suggest the number of hours that an 

HVAC system should be turned on ahead of its original 

schedule. The model considers the current outdoor and 

indoor air quality as well as meteorological data to make an 

inference. The model can also identify the floor where 

HVAC no longer works well, indicating that the air filter 

sheets of this floor should be replaced.  

INDOOR PM2.5 MONITORING 

Sensing 

To detect the indoor concentration of PM2.5, we deploy an 

aerosol particle counter (Dylos DC1700) on each floor, as 

demonstrated in Figure 2 A). The particle counter measures 

the number of particles with a size bigger than 0.5𝜇𝑚 but 

smaller than 2.5𝜇𝑚 in each cube centimeter by using X-ray 

laser. The particle counter is connected to a local server via 

an USB-to-Com port adapter, streaming out the number of 

particles every minute, as illustrated in Figure 2 B). The 

local server then converts the received number into a 

concentration of PM2.5 ( 𝜇𝑔/𝑚3 ) through an empirical 

formula and submits the average concentration of every 10 

minutes to the cloud. 

 
             A) Sensors                B) Number of particles in one day 

Figure 2. Mobile User Interface 

On the cloud, we run a web crawler to collect the outdoor 

concentration of PM2.5 and meteorological data, consisting 

of humidity, wind speed, temperature, and barometer 

pressure, from public websites every hour. The information 

is used to measure the effectiveness of an HVAC system in 

filtering the PM2.5 absorbed from outside and also 

employed as features in our model to infer the number of 

hours to turn on an HVAC ahead of its original schedule. 

Displaying 

Figure 3 A) visualizes the 2D map of Microsoft campus in 

Beijing, where 8 sensors have been deployed on different 

floors of the two towers (four sensors in each tower). The 

figure on each floor represents the location ID of a 

deployed sensor, with a color representing its AQI (Air 

Quality Index) level, e.g. “green” means “good” and 

“yellow” denotes “moderate” in Chinese AQI standard [14]. 

The color of block “T1” stands for the average AQI 

reported by the four sensors deployed in Tower 1. So does 

the color of “T2”. The color of block “MS BJW” shows the 

average AQI level reported by all the 8 sensors in the two 

towers. Additionally, users can add the location they are 

concerned with into a location list demonstrated in Figure 3 

B), by clicking on the floor shown on the 2D map. In Figure 

3 B), each banner represents a location, e.g. Engineering 

Office and Gym. The two numbers associated with each 

banner denote the AQIs of PM2.5 and PM10, respectively. 

The color of a banner is determined according to its AQI 

levels. The outdoor weather information is also exhibited at 

the top. After clicking a specific banner, a user can check 

the trend of indoor and outdoor air quality, as shown in 

Figure 3 C). The effectiveness of the HVAC in filtering 

PM2.5 (or PM10) can be evaluated through the gap 

between outdoor and indoor AQIs at the same timestamp. 

In order to facilitate PC users, we also deploy a website 

showing same information available on the mobile client. 

   
    A) Select a location        B) Location list         C) Trend of air quality 

Figure 3. Mobile User Interface 

SMART SUGGESTION TO HVAC 

Energy-Efficient Control on HVAC 

In recent years, buildings have become one of the major 

energy consumers which account for almost 40 percent of 

energy consumption in the whole society [9]. The HVAC 

system as one of the major energy consumers in a building 

is usually turned off (or partially turned down) in the 

evening and turned on in the morning shortly before people 

start working in the building. In order to provide a healthy 

working environment to employees while saving energy, 

we predict the purification time (PT), i.e. a time period 

needed for an HVAC system to reduce indoor PM2.5 to an 

ideal situation, and turn on the HVAC at least PT hours 

before people’s arrival. Figure 4 shows the definition of the 

PT in two scenarios. In scenario 1, the PT is defined as the 

time period (𝑡1 − 𝑡0) to reduce the concentration of PM2.5 

to below 35𝜇𝑔/𝑚3, which is regarded as “good” in Chinese 

AQI standard. In scenario 2, an HVAC system cannot 

reduce the indoor PM2.5 concentration below that threshold, 

given a certain high concentration of outdoor air quality and 

the limitation of the HVAC system. In this scenario, we 

regard the start point of a stable period like 𝑡2  (i.e. the 

indoor PM2.5 concentration no longer decreases in the 



 

following 30 minutes) as the ending of the purification time. 

In the example shown in Figure 4, the PT is 𝑡1 − 𝑡0= 40 

minutes in scenario 1 and 𝑡2 − 𝑡0= 60 minutes in scenario 2. 

 
Figure 4. Purification time 

An example: Suppose the majority of people start working 

in a building at 8am. The original schedule of turning on the 

HVAC system is 7am. There is a day with the concentration 

of outdoor PM2.5 much higher than usual. According to the 

prediction, the HVAC could need 1.5 hours to reduce the 

concentration to under 35𝜇𝑔/𝑚3. To provide people with a 

healthy working environment on their arrivals, we need to 

turn on the HVAC at 6:30am, half hour earlier than the 

original schedule. Note that we do not change the operating 

strategy of an HVAC system, which considers multiple fac-

tors, such as the concentration of CO2 and O2. Turning on 

an HVAC system a few minutes ahead of its schedule is a 

safe action that does not break other environmental criteria.  

Features 

By analyzing the data (12/23/2013-5/9/2013), we notice 

that the purification time is influenced by multiple factors, 

such as the indoor and outdoor air quality, humidity, and 

barometer pressure, as illustrated in Figure 5, where each 

row and column denote one factor. Each plot in the figure 

stands for a PT we observed from the historical data, and 

different symbols represent different lengths of PT, e.g. a 

circle means 40-80minuts. For instance, the vertical axis of 

the box standing in the third row and the fifth column 

denotes outdoor humidity and its horizontal axis represents 

outdoor wind speed. It can be observed that high humidity 

and low wind speed cause a long purification time. 

 

Figure 5. Correlation between purification time and features 

Purification Time Inference (PTI) 

We propose a Purification Time Inference (PTI) model 

based on artificial neural network (ANN), as illustrated in 

Figure 6. Specifically, PTI model is a three-layer network, 

with six nodes on the input layer, 16 nodes on the hidden 

layer, and 12 nodes on the output layer. Each node on the 

output layer denotes a certain length of PT, ranging from 10 

–120 minutes (the maximum PT is 120 minutes in the 

historical data). The output value for the ith node is the 

probability that PT is 𝑖 ×10 minutes. We then choose the 

most likely purification time 𝐶 among the 12 values as our 

final result, which is defined as Equation 1:  

 𝐶 = max
1≤𝑘≤12

(𝜑(∑ 𝑤𝑗𝑘
′ 𝜑(∑ 𝑤𝑖𝑗𝐹𝑖

6
𝑖=1 + 𝑏𝑗) + 𝑏𝑘

′16
𝑗=1 )),    (1) 

where 𝜑 is a sigmoid function; 𝐹𝑖 is the ith feature; 𝑏𝑗 and 

𝑏𝑘
′  are the biases associated with the nodes in hidden layer 

and output layer respectively; 𝑤𝑖𝑗  is the weight between 

input layer and hidden layer while 𝑤𝑗𝑘
′  denotes the weight 

between hidden layer and output layer. All the parameters 

are trained with a Back-Propagation algorithm. The system 

performs the PTI model every 10 minutes, and notifies a 

building’s operation team if the gap between the current 

time and people’s arrival time is close to the inferred PT.  

 
Figure 6. Framework of PTI 

Renew HVAC’s Air Filter Sheets 

The inferred PT can also be used to identify the floor where 

the HVAC no longer works well, which could trigger an 

inspection on the floor’s filter sheets. The assumption is 

that the real PT should be close to the inference in a normal 

situation. Specifically, if the real PT of a particular floor is 

longer than the inference by a threshold in consecutive days, 

our system sends an alarm. Figure 7 shows the real and 

inferred PTs of a floor in Beijing campus from 1/10/2014 to 

3/10/2014. There was a significant gap between the real and 

inferred PTs around 2/21/2014. An inspection on the floor’s 

HVAC found the filter sheets were very dirty and needed to 

be replaced. After the replacement, the gap is disappeared. 

 

Figure 7. Indoor PM2.5 in a long period 
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EVALUATIONS 

Datasets 

In the evaluation, we use a real dataset of 150 workdays 

from 12/23/2013 to 5/9/2014 generated in Beijing campus:  

1) Indoor air quality records: We collect indoor PM2.5 

concentration every 10 minutes from our monitoring system. 

2) Outdoor air quality record: We collect hourly outdoor 

PM2.5 concentration reported by the nearest air quality 

monitor station built by governments. 

3) Meteorological data: We collect hourly fine-grained 

meteorological data from official websites, consisting of 

temperature, humidity, barometer pressure, and wind speed. 

Baselines and Ground Truth 

We compare our approach with four baselines: 

1) Default: We choose the longest purification time (2 

hours) in history as a default period.  

2) Average: We set the average time of the historical PTs to 

reduce indoor PM2.5 concentration to a safe range. 

3) Regression: A linear regression is employed to estimate 

the purification time, considering outdoor/indoor PM2.5 

concentrations and meteorological data. 

4) ANN: We only consider indoor and outdoor PM2.5 

concentrations as the input of the PTI model. 

Ground Truth: The data of the first two hours after turning 

on the HVAC, i.e., 5am–7am, is used in our experiments. 

Each two-hour time slot contains 12 records (one per 10 

minutes). Regarding each of the record as a hypothetical 

beginning time, we obtain 12 instances of real purification 

time in a two-hour slot. We select data in the workdays (the 

HVAC is usually shot down in weekends), containing 733 

instances from the 150-day dataset (we lost the data of 

some hours due to the failure of data collection). A 10-fold 

cross validation was employed to test the PTI model.  

Results 

We compare PTI with the four aforementioned baselines in 

Figure 8. Note that the inference is considered correct if the 

inferred PT equals to or is longer than the ground truth. As 

shown in Figure 8 A), the default period (2 hour) achieves a 

perfect accuracy, however, resulting in an over long PT, 

which wastes unnecessary energy. With a minor decrease in 

accuracy, our PTI model infers a much shorter purification 

time than the Default, therefore saving energy significantly, 

as depicted in Figure 8 B). PTI also has a shorter PT than 

Regression and Average and a similar PT as ANN. But, PTI 

outperforms these three baselines in term of accuracy.  

  
                  A) Accuracy                              B) Average PT  

Figure 8. Overall results of different methods 

RELATED WORK 

There is a series of research on detecting indoor air quality. 

[5] described a personalized mobile sensing system MAQS 

to monitor CO2 concentration in a single room. [11] 

proposed a hybrid sensor network which contains both 

stationary sensors and mobile sensors to minimize the 

prediction error of the indoor CO2 concentration. However, 

actionable suggestion is not given in these research works.  

Future indoor air quality can be predicted based on the 

sensed data. [4] presented an approach to predict indoor air 

pollution generated by cookstove emissions using a Monte 

Carlo model. Other mathematical models [8] are proposed 

for predicting indoor air quality based on smoking activity.  

Different from these methods, our approach considers more 

information, such as meteorological features and outdoor 

air quality, for a better prediction of purification time. 

Various HVAC control strategies of smart buildings have 

been investigated in [1][2][6][7]. [1] presented a control 

architecture using sensing to guide operation of HVAC. [2] 

proposed a methodology with four phases to understand the 

energy performance and develop HVAC control scenarios 

to minimize energy usage. [6] used simulation models to 

verify against the effect of their strategies. [7] developed a 

multi-objective genetic algorithm which is validated using 

mathematic and simplified HVAC system problems. Differ-

ent from these projects that focus on operating HVAC 

systems in an energy-effective way, we emphasize more on 

the integration of multiple data sources for a better 

prediction of PT. The latter is a typical approach in urban 

computing [13], which aims to solve the challenges in cities 

by using big data. In addition, we do not intervene the 

operating process after an HVAC system starts working. 

We just calculate the most energy-effective time to turn on 

an HVAC system ahead of its original schedule. 

CONCLUSION 

In this paper, we introduce an indoor air quality monitoring 

system deployed in four Microsoft campuses in China. The 

information of indoor air quality provided by the system 

can inform people’s decision making in office areas. The 

gap between indoor and outdoor air quality can be used to 

measure the effectiveness of an HVAC in filtering air 

pollutants. The system also integrates outdoor air quality 

information with indoor measurements to adaptively control 

HVAC settings with a view on optimizing runtimes w.r.t. 

the energy efficiency and air quality conservation. Using a 

neural network-based approach, the time period that an 

HVAC needs to reduce the concentration of indoor PM2.5 

into a healthy range is predicted based on six factors, such 

as the concentration of outdoor PM2.5 and humidity. 

Extensive experiments using 150-day data demonstrate the 

advantage of our approach beyond baseline methods, e.g., 

linear regression and average time. In addition, the 

meteorological features improves the accuracy of the 

prediction. With a minor decrease in accuracy, PTI infers a 

shorter purification time, thus saving energy significantly. 

We have released the data and execution file at [15].   
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