
O
ver the last decade, our ability to access, store, 
and consume huge amount of media and infor-
mation on mobile devices has skyrocketed. 
While this has allowed people who are on the 
go to be more entertained, informed, and con-

nected, the small-form factor of mobile devices makes manag-
ing all of this content a difficult task. This difficulty is 
significantly amplified when we consider how many people are 
using these devices while driving in automobiles and the high 
risk of driver distraction such devices present. A recent govern-
ment study concluded that drivers performing complex second-

ary tasks such as operating or viewing a mobile device or 
personal digital assistant (PDA) were between 1.7 and 5.5 times 
more likely to be involved in a crash or near crash [1].

Recognizing the risk posed by the use of mobile devices by 
drivers, most major car manufacturers have begun selling sys-
tems for operating these devices using voice-driven interfaces. 
Because driving occupies both the user’s hands and eyes, voice 
control has long been proposed as an ideal means of performing 
in-car tasks. Early in-car systems used voice commands to con-
trol many dashboard functions such as the radio, compact disc 
(CD) player, and climate control. To limit the number of com-
mands active at a time, hierarchical menus were introduced, 
which put a significant burden on the user to maintain a men-
tal model of the system’s menu structure. To alleviate these 
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problems, the research community began investigating new 
approaches to voice input and multimodal interaction that are 
robust to the natural ways in which users speak and more toler-
ant of the common mistakes they make, e.g., [2] and [3]. Such 
an approach is critical for today’s applications where the user 
may be choosing from one of 50,000 songs on their media play-
er or looking for one of 100,000 local businesses on their navi-
gation device.

A block diagram of a state-of-the-art in-car infotainment 
system is shown in Figure 1. In a typical scenario, the user 
issues a query or command by voice, which is then processed 
by a speech recognizer. The recognizer output is then pro-
cessed by a search engine that looks through the relevant 
database index for the best match to the user’s query. The 
results are passed to a dialog manager and returned to the 
user via speech synthesis and/or a graphical display. 
Throughout the interaction, the dialog manager keeps track 
of the state of the system and loads the proper language 
model (LM) and search index. As this processing chain indi-
cates, implementing this system requires many technologies. 
While all of the components shown in the figure are impor-
tant, in this article, we focus on the three technologies that 
we believe have the biggest impact on the performance of 
these systems: speech recognition, information retrieval (IR), 
and multimodal interaction.

While each of these three fields has been studied for many 
years, there are unique challenges that arise when they are 
integrated into a single system for use by drivers in automo-
biles. For example, because the driver’s primary focus is always 
on the road, only limited cognitive resources and attention 
can be devoted to the system. As a result, there is a high likeli-
hood that the user will not remember the proper command 
syntax or the correct name of the item requested. In addition, 

traditional IR algorithms used in Web search are designed 
assuming that every word in the query is meaningful. When 
the queries are generated from noisy speech-recognition out-
put, this may not be true. These challenges strongly influence 
the design of such systems, and to address them successfully, 
it is critical to understand the interactions between each of the 
system components. By taking a holistic view of the end-to-
end user experience, the performance of the overall system 
can exceed the sum of its parts.

In this article, we first present an introduction to speech 
recognition, IR, and multimodal interaction. In each of these 
areas, recent algorithmic advances are discussed with particu-
lar emphasis on aspects that are important for the in-car 
media search scenario. We also describe how in-car systems 
are evaluated in terms of both system performance and driver 
 distraction, including the use of driving simulator studies to 
assess driver distraction and cognitive load. We then show how 
all of these technologies have been used to create a prototype 
in-car infotainment system called Commute UX. We describe 
the functionality of this system and take a detailed look at two 
applications, music search and voice reply to text messages. 
Performance evaluation of these applications with real users is 
discussed. Finally, we discuss an ongoing research in this area 
and assess the outlook for the future.

SPEECH RECOGNITION IN AUTOMOTIVE 
AND MOBILE ENVIRONMENTS
An automatic speech recognition (ASR) system operates by 
finding the most likely word sequence W * for a given 
observed series of acoustic speech events A. This can be 
done via Bayes’ rule, as

 W* 5 argmaxW P 1W |A 2 5 argmaxW P 1A|W 2P 1W 2 .
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[FIG1] A block diagram of an in-car multimodal system for media search and information access.
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Here the acoustic speech events A are represented with 
acoustic features obtained through the sound capture and fea-
ture extraction processes. These features are then processed 
using an acoustic model and an LM. The acoustic model 
P 1A|W 2  describes the probabilities of observing acoustic fea-
tures given a sequence of words or phonemes, while the LM 
P 1W 2  captures the prior probabilities of seeing certain words 
or word sequences. More details about the material in this 
section can be found in [4].

SOUND CAPTURE
Because the automobile is a noisy environment, the ability to 
capture the driver’s speech as cleanly as possible is critical for 
success. The signal is first captured by one or more 
 microphones typically located in the headliner, the rearview 
mirror, or the dashboard. The microphone signals are then pro-
cessed by a series of signal processing blocks, including acoustic 
echo cancellation, beamforming noise suppression, and auto-
matic gain control. While the blocks in this processing chain 
work to improve the overall quality of the captured speech sig-
nal, too much noise suppression can cause distortions in the 
output, which can be detrimental to the speech recognizer. As a 
result, it is important to adjust the operation of these algo-
rithms for best end-to-end speech-recognition performance 
instead of highest signal-to-noise ratio (SNR) or other signal 
processing criteria.

FEATURE EXTRACTION
Once the audio signal is captured, it is processed to extract fea-
tures for recognition that are discriminative and robust. The 
features are typically derived from the short-time power spec-
trum of each frame. The most common features are Mel-
frequency cepstral coefficients, though alternate features such 
as perceptual linear prediction coefficients are also frequently 
used. It is advantageous to remove noise from the speech-recog-
nition features directly in addition to or instead of the noise 
suppression applied during sound capture. Widely deployed 
noise-suppression techniques include spectral subtraction and 

vector Taylor series feature enhancement [5]. To further reduce 
the variability in the features, normalization techniques such as 
cepstral mean normalization are typically applied to the fea-
tures. The final augmented features used in the ASR consist of 
the normalized features and their first and second derivatives.

ACOUSTIC MODELING
State-of-the-art speech recognizers use acoustic models based 
on hidden Markov models (HMMs). For large vocabulary speech 
recognition, it is impractical to have an HMM for every word in 
the vocabulary, so words are broken down into a set of phonetic 
units. Each of these units is then modeled by an HMM. It is very 
helpful to model a phoneme in the context of its neighboring 
phonemes, so context-dependent triphones are typically used. 
For example, the HMM that models central “eh” sound in “get” 
would be modeled separately from the HMM that models the 
same “eh” sound in the word “beg.”

The parameters of an HMM speech recognizer are trained 
using a corpus of training data consisting of the speech audio 
and the corresponding transcripts. Because speech-recogni-
tion systems are statistical pattern classifiers, they perform 
best when the data used to train the system match the data 
seen in deployment. Of course, this is impractical to achieve 
because of the sheer variety in environmental conditions and 
sensor configurations. As a result, most models are built using 
a paradigm called multistyle training, in which the systems 
are trained using data collected from all acoustic conditions 
expected to be seen [6]. Further gains can be achieved by noise 
adaptive training, in which the training data are processed 
through the same audio pipeline to be used in deployment [5]. 
This approach has been shown to be superior to either multi-
style training or feature enhancement alone.

One of the major challenges in acoustic modeling for an 
automotive task is collecting speech training data. It is a time-
consuming and expensive process. An alternative solution is to 
use clean high-quality speech utterances, filters that represent 
the transfer function between the user and the in-car micro-
phone, and samples of in-car noise to create synthetic in-car 
training data [7].

LANGUAGE MODELING
In addition to a properly trained acoustic model, the perfor-
mance of a speech-recognition system is critically depen-
dent on the quality of its LM. An LM assigns prior 
probabilities to utterances or word sequences and signifi-
cantly constrains the decoding search space. The simplest 
LM is a probabilistic context-free grammar (PCFG) that lists 
a set of possible items, each with a corresponding probabili-
ty of being spoken. PCFGs can be nested to create more 
complicated grammar structures. PCFGs are easy for the 
application developers to create and implement, and as a 
result, this type of grammar is used in many voice platforms 
on the market today. However, a PCFG-based LM has several 
limitations. First, it does not scale up well with the number 
of entries. In fact, the ASR accuracy decreases linearly with 

[FIG2] Examples of spoken queries made by users for items 
in a personal music collection. There is significant mismatch 
between the query and the metadata.

User’s Query User’s Intent

All Rise from Blues Track : All Rise
Genre: Blues

Sarah, In the Arms of
an Angel 

Track : Angel
Artist : Sarah McLaughlin

Legally Blonde 
Soundtrack

Album: Legally Blonde 
Genre: Soundtrack

Boyz II Men, Hard to
Say Goodbye

Track :  It’s So Hard to Say
           Goodbye to Yesterday
Artist : Boyz II Men 
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logarithmic increases in the 
number of entries [8]. More 
importantly, it is not robust to 
natural spoken queries because 
of its poor coverage. Utterances 
spoken by the users that do not 
exactly match the items in the 
grammar have a very high 
chance of being misrecognized. For simple commands, this 
may not be an issue, but for tasks like music or business 
search, this is problematic. This is illustrated by a study we 
performed in which users were asked to make spoken que-
ries for items in their music collections. Example queries 
are shown in Figure 2, and the overall percentages of que-
ries that did not match the exact song title, album, artist, or 
genre exactly are shown in Figure 3.

To account for the frequent mismatch between user que-
ries and the actual items they are asking for, a more robust 
solution is required. Statistical n-gram models offer a flexible 
and principled approach to improving the robustness of the 
LM since such models do not require a user’s query to match 
an entry in the list exactly. Using the statistical the n-gram, 
the probability of a word sequence p 1w1, c, wK 2  is approxi-
mated as w K

i51  p 1wi | wi 2 1, c, wi 2 n 2 1 2 , and the probability 
of unseen word sequences can be reliably estimated using 
well-studied smoothing algorithms. Thus, the flexibility of the 
n-gram over the PCFG lies in the fact that it models the prob-
abilities of short sequences of words (typically one to three 
words) rather than entire utterances.

A statistical n-gram model performs best when it is built 
from the transcripts of real utterances. Unfortunately, collect-
ing enough real utterances can be difficult, especially in the 
early stages of system development. A feasible and effective 
compromise is to interpolate multiple LMs trained from 
 different data sources [9]. For example, an LM pt 1w 2  built 
using the transcripts of real queries can be combined with 
an LM pd 1w 2  built from database entries as p 1w 2 5

lpt 1w 21 112l 2pd 1w 2 , where the interpolation weight l can 
be tuned using a cross-validation set collected from real usage 
[10]. Building pt 1w 2  is straightforward if transcripts are avail-
able. Otherwise, a semisupervised approach may be taken to 
extract information from query logs [11]. However, careful 
measures have to be taken in building pd 1w 2 , as the database 
entries may not reflect the actual ways users refer to them as 
we have just explained. One approach that has been shown to 
be effective is to introduce a statistical variation model to 
derive the actual users’ queries from the database entries 
[10]. No matter how the LM is built, additional robustness 
can be obtained by incorporating a large vocabulary back-
ground LM since users may utter carrier phrases or there 
might be side conversations captured in the utterance.

IR USING SPOKEN QUERIES
Once the ASR system hypothesizes what the user said, this 
output is used to search for the desired item. This process, 

called spoken query informa-
tion retrieval (SQIR), is an 
important technology that can 
be broadly applied to a variety 
of in-car applications. This 
section first introduces tradi-
tional text-based IR, which is 
the technological foundation 

for SQIR and then addresses the specific challenge of SQIR, 
particularly how to make IR more robust to ASR errors.

OVERVIEW OF IR
Given a collection of documents D and a query q, the task of the 
IR is to find a subset of documents from D that are relevant to q 
and rank them in its decreasing order of relevance. To perform 
IR, two major problems need to be addressed: 1) how to quickly 
find the relevant documents from the keywords in the query and 
2) how to sort the IR results appropriately. The first problem is 
addressed by using an inverted index that operates much like the 
index at the end of a book that allows the readers to quickly find 
the context of a keyword [12]. The second problem, called rele-
vance ranking, defines the metrics to determine the relevance of 
returned documents so that they can be sorted. There are three 
major classes of relevance metrics. They include the TF*IDF-
weighted vector space model (VSM), the BM25 classical probabi-
listic model, and the language model approach to IR (LMIR).

The VSM represents a query or document as a vector. The 
relevance of the document vector d to the query vector q is 
measured as the cosine of the angle between the two vectors. 
Each element in the vector is a weight that represents the 
importance of a term (e.g., a word) to a query/document. 
Intuitively, the importance should increase as the term 
appears more frequently in the query/document, and it should 
decrease if it appears in many documents, as it is less discrimi-
native. The term frequency (TF) tft 1d 2  is the number of occur-
rences of term t in d, and the inverse document frequency 
(IDF) often takes the form of the logarithm of the total num-
ber of documents divided by the number of documents con-
taining term t: idft 5 log 1 |D|/|5d: t [ d6|2 |). The weight for 
term t in the vector is the product of its TF and IDF scores. 
There are many other ways to weight the vector elements 
based on the TF and IDF scores, which are discussed in [13]. 
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[FIG3] Percentage of spoken queries that were mismatched to 
the corresponding text in the metadata.
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An example of the VSM with 
TF-IDF weights is shown in 
Figure 4 for a small music col-
lection of four actual song titles. 
The cosine distance between the 
query and each of the songs is 
computed and used to rank the search results.

BM25 is a classic probabilistic IR model, which is based on 
the assumption that the eliteness of a term can be modeled by 
two Poisson distributions [14]. With some approximations, the 
TF described earlier can be modified to the following weight-
ing scheme:

 
tft

ka 11 2 b 2 1 b
L 1d 2
Lavg

b 1 tft

,

where L 1d 2  is the length of document d and Lavg is the average 
document length of the collection. The constant k makes the 
weight a nonlinear function of the TF, such that the effect of 
increasing an already large TF score is minimal, i.e., the score 
should saturate at some value. The constant b controls the 
degree of normalization with respect to the document length 
to adjust the TF.

The LMIR [15] assumes that a query was generated from a 
relevant document, and the level of relevance can be modeled 
by the posterior probability according to the following chan-
nel model:

P 1d|q 2 5

 P 1q|d 2  *  

P 1d 2
P 1q 2 ~ P 1q|d2  * P 1d 2<q

n

i51
P 1qi|d 2P 1d 2<q

n

i51
P 1qi|d 2 .

 (2)

Here the document unigram LM P 1qi/d 2 is used, which can be 
replaced by high-order n-grams. The last approximation in the 
above expression assumes that d, which is a random variable 
representing different documents, follows a uniform distribu-
tion a priori. Alternatively, a nonuniform P 1d 2  can be used.

IR FROM STRUCTURED 
METADATA
In many cases, text documents 
are structured, consisting of 
multiple fields. Improved IR per-
formance can be obtained by 

algorithms that exploit this structure. In BM25F, the term fre-
quencies are linearly combined before the BM25 nonlinear TF 
saturation function is applied [16]. While BM25F is an extension 
to BM25, the HMM approach to structured document IR 
(HMMIR) can be viewed as an extension to LMIR [17]. In 
HMMIR, a query term is assumed to be generated from a partic-
ular field of a document represented by a hidden variable. The 
hidden fields are further assumed to follow a Markov dependen-
cy. Using f  to represent the sequence of fields aligned to the 
query words in q,

 P 1d|q25a
f

P 1q|f, d2P 1f |d2 <a
f
q

n

i51
P 1qi|fi, d 2P 1 fi|fi21, d2 . (3)

The details for estimating the emission probabilities P 1qi|fi, d 2  
and the transition probabilities P 1 fi|fi21, d 2  can be found in [17].

FROM TEXT QUERIES TO SPOKEN 
QUERIES—ROBUST SQIR
In text search, there is an implicit assumption that every word 
in the query typed by the user is intended and meaningful. In 
fact, commercial search engines have been engineered to return 
only those documents that contain all query terms except for a 
fixed set of stop words. In SQIR, the query is generated by a 
speech-recognition system and as a result may contain errone-
ous words. Making the search perform well in the presence of 
errors in the query is the central challenge of SQIR.

To improve the robustness to ASR errors, two main 
approaches have been proposed. In the first approach, the word 
sequence hypothesized by the recognizer is decomposed into 
smaller units under the assumption that acoustically confusable 
words will have many units in common at the subword level. In 
[10], character n-grams are used instead of words as the terms 

Word S1 S2 S3 S4 Q

Stay 0.23 0 0 0.70 0

Wasting 0.10 0.14 0.06 0 0.10
Time 0.10 0.14 0.06 0 0.10

Ain’t 0 0 0.28 0 0.46

No 0 0 0.28 0 0

More 0 0 0.28 0 0

S1: Stay (Wasting Time)
S2: Wasting Time
S3: Ain’t Wasting Time No More
S4: Stay

“Ain’t Wasting Time”

Collection

Query

TF-IDF Table

1) S3 (0.59)
2) S2 (0.29)
3) S1 (0.15)

4) S4 (0.00)

Results

Score (d ) =
qTd

P P|q | P P|d |

[FIG4] An example of a VSM with TF-IDF for song titles.

THE PRINCIPAL GOAL OF AN IN-CAR 
USER INTERFACE IS TO CREATE AN 

INTUITIVE USER EXPERIENCE WHILE 
MINIMIZING DRIVER DISTRACTION.
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in the VSM. For example, the entity “LimeWire” is rewritten as 
a sequence of character four-grams – $Lim Lime ime_ me_W e_
Wi _Wir Wire ire$, where “$” indicates the start and the end of 
the listing and “_” indicates the separation of words. If a user’s 
query “Lime Wire” is misrecognized as “Dime Wired,” there is 
no word overlap but still many character n-grams are common 
between the ASR output and the intended entity. Similarly, the 
word sequence can also be broken up into phonetic units using 
a pronunciation dictionary, and the search can be performed in 
the space of n-grams of phonemes. This approach was applied to 
a destination entry task in [18], where many acoustically con-
fusable street names are present, e.g., thirtieth versus thirty-
eighth versus thirteenth.

The second approach to improving the robustness of SQIR 
uses the recognizer to generate multiple candidate hypotheses 
from the recognizer rather than just one. The candidate 
hypotheses are output in the form of an n-best list, a word con-
fusion network, or a lattice. Figure 5 shows an example of a 
WCN for the query “Dairy Queen Springfield Missouri.” In the 
network, each position in an utterance is associated with a set 
of confusable words and their negative log posterior probabili-
ties obtained from the recognizer. Although the one-best path 
from the network misrecognizes the query as “Gary Crites 
Springfield Missouri,” the correct entity name “Dairy Queen” is 
present in the word-confusion network. The knowledge of the 
entity in the semantic space, as reflected in the IR relevance 
metrics, can help recover the correct recognition [19]. Simply 
put, “Dairy Queen” is more likely to be a valid listing than 
“Gary Crites.”

In the speech-in list-out system proposed in [20], SQIR is 
performed using a query constructed from all terms in the word 
lattice, each weighted by its posterior probability. Figure 6 
shows the performance of this approach on a task to retrieve 
technical reports using spoken queries as a function of the SNR 
of speech. As the figure shows, the use of the lattices provides a 
significant gain in performance in noisier conditions.

MULTIMODAL INTERACTION
While speech recognition and IR are critical under the hood 
technologies, the user interface is the direct link between the 

system and the driver. It is therefore perhaps the most crucial 
component in the success of any in-car media search system. 
The principal goal of an in-car user interface is to create an 
intuitive user experience while minimizing driver distraction.

One of the principal ways to reduce driver distraction is to 
exploit multiple input and output modalities during interaction 
with the system. Experiments in which the users must perform 
two tasks simultaneously have shown that modality allocations 
that take this into account result in less interference than if 
both tasks have to be performed using the same interaction 
channels [21]. In the car, the typical available input modalities 
are speech, buttons on the steering wheel or console, and a 
touch screen. Output modalities typically include visual dis-
plays, earcons (short audio sounds, the audio equivalent of an 
icon), and voice prompts but may also include tactile displays 
and force feedback. Augmented reality displays projected onto 
the windshield have also been prototyped in research laborato-
ries. Within these categories of input and output modalities, 
many variations are possible.

While there are many aspects of multimodal system 
design that are critical for good system performance, one of 
the most important is to leverage the strength of each input 

0 1

Gary/0.323

Cherry/4.104

Dairy/1.442

Jerry/3.956

2

Crites/0.652

Christ/2.857

Creek/3.872

Queen/1.439

Kreep/4.540

Kersten/2.045

3Springfield/0.303

In/1.346
4Springfield/1.367

_Epsilon/0.294
5/1

Missouri/7.021

[FIG5] A word-confusion network. Even though the user’s query “Dairy Queen Springfield Missouri” was not the top hypothesis, it is 
present in the network.
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and output modality properly. 
For example, using touch or 
buttons to scroll  through 
thousands of audio tracks is 
time consuming, and in a car, 
this has been shown to be as 
distracting as operating a 
phone [22]. On the other hand, using speech input is a very 
efficient way to search through such a collection. Even if 
the query is ambiguous due to speech-recognition errors or 
the query terms themselves, it is very efficient to return a 
short list of candidate items to the user. Given a short list of 
candidate options, speech is no longer necessarily the most 
efficient modality for either input or output. For example, 
having a text-to-speech synthesis voice read four song titles 
aloud may be more distracting and annoying to a driver 
than simply glancing at a list of four choices. Using buttons 
or a touch screen to select the desired item from the list is 
faster and less error prone than using voice input. In short, 
speech is a good modality for choosing or narrowing down 
from a large collection of items, whereas a touch screen or 
buttons are more suitable for smaller lists of only a few 
items [23].

Other key aspects about multimodal in-car user interface 
design include the following:

 ■ Discoverability: At any point during system use, the user 
should be able to easily discern what the allowable 

 commands and action are. For 
speech interfaces, ways to do this 
include the “say what you see” 
principle in which users can say 
any command that is visible on a 
display [24] or the “What can I 
say?” command where the users 

can always ask the system for valid commands.
 ■ Graceful failure with alternate modalities: No matter how 

good the speech recognizer is, there will be cases when it 
fails, due to a speaker’s accent or a noisy environment. In 
such cases, the user should still be able to complete the task 
using an alternate input modality [25].

 ■ Design of voice prompts : Properly designed voice 
prompts spoken by the system can reduce dialog turns, 
unnecessary confirmations, and the chance the user 
will say something unexpected to the system, which, in 
turn, reduces task completion time and minimize dis-
traction [26].
One of the difficulties in designing multimodal user inter-

faces is that their evaluation is highly subjective and requires 
extensive usability testing. One way to objectively evaluate in-
car interfaces is to conduct driving simulator studies to quan-
tify the impact of various design choices on driving 
performance. Driving studies can be performed using simple 
setups such as a video gaming steering wheel and pedals con-
nected to a personal computer (PC) or elaborate immersive 
simulators with large-screen projection, 180° field of view, and 
a car body on a computer-controlled motion platform, as 
shown in Figure 7.

A typical simulator study consists of two simultaneous tasks: 
a primary driving task and a secondary task that involves one or 
more user interfaces under test. Typical driving tasks include 
the lane-change task, where the road signs indicate various lane 
changes to be performed, and the car-following task, where the 
driver is instructed to maintain a constant distance to a lead car. 
Performance for both the driving task and secondary tasks are 
recorded. For the driving task, the system can measure the 
speed, lane position, and/or following distance as well as any 
additional traffic violations. In addition, video cameras and gaze 
trackers can be used to evaluate the user’s attention. For the 
secondary task, task duration and task completion rate can be 
measured as well. All of this data can be used to inform deci-
sions about user preference, system performance, and driver 
distraction.

Several studies that have been recently published have 
begun to assess the effect of speech interfaces on driving 
performance. For example, a lane-change task study was per-
formed in [27] to compare speech input to traditional device 
input for music selection, phone dialing, and destination 
entry under the assumption of perfect speech recognition. It 
was concluded that speech interfaces can potentially be far 
less distracting than manual device input, as measured by 
mean lane deviation, and frequency and duration of gazes 
away from the road. The impact of speech-recognition 

(a)

(b)

[FIG7] (a) Exterior and (b) interior views of a high-fidelity driving 
simulator. The car body sits on a computer-controlled motion 
platform. The car cabin is equipped with video cameras and a 
gaze tracker. (Photos courtesy of Andrew L. Kun.) 
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 accuracy on driving perfor-
mance was assessed in [28]. 
Study  participants performed a 
car-following task while per-
forming a simple dialog task. 
The study showed that when 
the recognition accuracy was 
low, drivers exhibited a greater average variance in steering 
wheel angle, indicating a detrimental effect on driving 
 performance.

EXAMPLE APPLICATIONS
The technologies described for speech recognition, IR, and 
multimodal interaction can be combined to create a useful sys-
tem for media search and information access. For example, the  
Commute UX multimodal infotainment system [29] is a 
research prototype that runs on an embedded platform with a 
speech-recognition engine designed for automotive applica-
tions. It has a 7-in touch-screen display and is connected to a 
cluster of five buttons on the steering wheel for push-to-talk, 
cancel, up, down, and select. The system can use input from 
speech, touch, or button, and output can be spoken and/or dis-
played on the screen. The system enables the driver to make 
phone calls, play music from a collection, reply to incoming 
text messages, and search the car owner’s manual (while 
parked).

Regardless of the algorithms used in each component, the 
overall user experience is consistent across applications. At any 
time, the user makes a query by pressing the push-to-talk but-
ton and then speaking. Speech recognition and SQIR are per-
formed, and the top result or results are returned. When only a 
single result is returned or the top result has a much higher 
score than the other choices, the system does not prompt the 
user for confirmation. If there are several comparable choices, 
then the top four choices are displayed on the screen. Auxiliary 
information is provided to prevent ambiguity in the list of 
items. For example, in response to a request for “yellow 
 submarine,” the list may contain “Yellow Submarine [track]” 
and “Yellow Submarine [album].” The user can select the 
desired item using steering wheel buttons, touch, or speech. If 
none of the choices matches the user’s desired intent, the user 
respeaks the query. We believe this is more efficient and less 
cognitively demanding than initiating a dialog with the user to 
correct the error.

We now describe how the music search and text message 
reply applications in Commute UX operate. We chose these 
two as examples of tasks with structured and unstructured 
data. The same technology is used for the other applications in 
the system.

MUSIC SEARCH AND PLAYBACK
Probably the most common task for in-car media search is 
the ability to play music from a collection stored on a porta-
ble media device or memory card. To build the speech-recog-
nition LMs and the index for the IR engine, the music 

collection is crawled to extract 
the metadata from each of the 
audio files. Each item in the 
metadata that can be queried is 
considered a structured docu-
ment composed of one or more 
fields. For example, a docu-

ment for the song “It’s So Hard to Say Goodbye to Yesterday” 
could be represented as

Artist: Boys II Men
Track: It’s So Hard to Say Goodbye to Yesterday
Album: Legacy—The Greatest Hits Collection
Genre: R&B/Soul
The documents do not need to contain all fields. 

Removing the track field in this example would result in a 
new entity that represents the album rather than the song. 
To exploit the structure in the music metadata, IR was per-
formed using the HMMIR approach described earlier. Recall 
from (3) that the HMMIR retrieval engine needs to compute 
P 1qi|fi, d 2 , the probability of that query word came from a 
given field in a given document. This is done via a set of LMs 
trained using maximum likelihood estimation and smoothed 
with a document-specific model and a global LM trained 
from all the metadata

 P 1qi|fi, d 2 5 lf P 1qi|fi, d 21ld P 1qi|d 21lgP 1qi 2 , (4)

where lf 1ld 1lg 5 1.
To obtain further robustness against speech-recognition 

errors, a model of phonetic confusability was incorporated into 
the HMMIR generative model. To do so, the LM P 1qi|fi, d 2  was 
reestimated as the interpolation of the scores of four models, 
the three shown in (4) and a new term Pr 1qi|fi, d 2  that computes 
the phonetic similarity between the query word and the terms 
in the field fi. This new term is computed via dynamic program-
ming and a phonetic confusability matrix.

To validate this approach to music search, a series of 
experiments was performed using 425 spoken queries from 
29 different users. The users were asked to speak a series of 
music queries and then later were asked to identify the 
music item they were looking for. The metadata of the 
desired items was added to a preexisting music collection, 
resulting in a database of 11,000 songs, each with associated 
metadata. Example queries are shown in Figure 2. Notice 
that information from more than one field is often specified 
in a query. In fact, more than half of the queries contained 
information from multiple fields.

We compared the performance of the HMMIR-based 
approach with two baseline models. The first model (BM1) uses 
LMIR for retrieval with an LM for each field and assumes that 
each query will only contain information about a single field. 
This system mimics the behavior of many commercially avail-
able systems. The second baseline model (BM2) also uses LMIR 
but collapses the structure in each item and treats all words in 
all fields equally. This is a simple way to handle multifield 
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 queries. The results are shown in Figure 8 for both text queries 
(transcriptions of the spoken queries) and ASR output. The 
word error rate (WER) of the ASR output is 25.3%. As the figure 
indicates, the HMMIR approach improves the performance over 
both baseline models. Using the phonetic similarity model pro-
vides a small additional improvement. Comparing the text and 
speech-recognition performance, it is interesting to note that, 
while the word accuracy has degraded by 25% from the text 
transcriptions, the degradation in IR is less than 10%, showing 
the IR system’s robustness to ASR errors.

REPLYING TO TEXT MESSAGES
While the combination of speech recognition and IR seems like 
a natural fit for performing a search of a media collection by 
voice, it can also be applied in a less traditional manner to other 
tasks. One of the biggest sources of driver distraction is text 
messaging while driving. Current in-car systems on the market 
today allow the users to send one of a small set of common 
replies (typically 20) using steering wheel buttons or speech to 
scroll through the set and access the desired message. Using 
buttons can be tedious and time consuming, while using speech 
is quite difficult as it requires the user to commit the exact set 
of text messages to memory. Another approach would be to 
treat text messaging as a large vocabulary dictation task much 
like an e-mail or document dictation. However, this approach is 
problematic because of the high error rates of large vocabulary 
dictation expected in a car environment. Correcting dictation 
errors is not feasible for drivers who otherwise need to pay 
attention to the road.

Alternatively, a SQIR approach can be applied in a manner 
that takes advantage of the simplicity of canned responses and 
the flexibility and naturalness of dictation [30]. In this 
approach, a large set of short message service (SMS) responses 
is collected to form a training corpus. This corpus is used to 
train an n-gram dictation-style LM and to build a VSM-based 
index in which each SMS message is considered a document. 
Generalization from the messages in the training corpus is 
achieved by converting the messages into templates using 
slots. For example, the message “I’ll see you at 2:30 pm” has a 
corresponding template “I’ll see you at <T>.” In particular, 
references in the training data to numbers, times, names, and 
places were replaced with slots. At run time, the recognized 
utterance and the syntactic parsing tree from the recognition 
result are obtained. For example, for the utterance “five min-
utes I’ll see you at two thirty pm,” the parse tree contains 
“<N> 5 5(five),” and “<T> 5 2:30 PM (two thirty pm).” This 
gives us enough information to construct the search query 
“<N> minutes I’ll see you at <T>” as well as values to instanti-
ate the slots of any retrieved template. Because of the limited 
coverage of the templates present in the IR engine, what is 
returned may not be an exact match for what the user said but 
is often a semantically equivalent paraphrase, as shown in the 
following example  interaction:

Incoming Message:  Lunch together?
User’s Response:  No, I can’t have lunch today how 

about next week.
ASR Hypothesis:  No, I can get lunch today out of next 

week.
SQIR Hypothesis: Not today. Next week?
Of course, this approach will only work if the user’s utter-

ance closely matches the training data. For that reason, the sys-
tem is solely intended for replying to time-sensitive messages 
that typically involve time and confirmation.

To evaluate this approach to spoken SMS replies, experiments 
were performed to compare a traditional dictation approach to 
the SQIR approach. Both systems used the same n-gram LM 
trained from a corpus of 14,000 text messages from 350 partici-
pants. In the SQIR approach, the training corpus was also used 
to construct a VSM-based search engine. Both approaches were 
evaluated using a separate corpus of about 1,100 spoken SMS 
reply messages collected from 14 different participants.
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Speech data were recognized 
by the dictation and SQIR sys-
tems. In the dictation system, 
the recognizer generated the 
top five candidate hypotheses. 
In the SQIR system, a candidate 
list of SMS reply templates was 
retrieved for each recognition 
hypothesis in the n-best list and the set of all candidate tem-
plates was ranked according to TF-IDF score. In both cases, 
the semantic accuracy of the items in the final n-best list was 
evaluated by an independent rater. Figure 9 shows the 
semantic accuracy of the two different approaches for the top 
one and top five candidate hypotheses. As the figure shows, 
the SQIR approach using template messages provides an 
improvement in semantic accuracy over a more traditional 
dictation approach.

Although this shows that the SQIR approach to replying 
to SMS messages is more accurate than the dictation 
approach, the users may have trouble verifying whether the 
SMS response templates proposed match their intended 
meaning, especially while driving. To investigate this, a driv-
ing simulator study was performed comparing the dictation 
and SQIR approaches. In this study, participants had to drive 
a high fidelity driving simulator while obeying all the rules 
of the road. As a secondary task, participants listened to an 
incoming SMS message and a formulated reply, and then 
repeated the reply to the system. A list of four candidate 
responses was then presented, and the users were asked to 
pick the correct reply or reject all choices. In this experi-
ment, no actual recognition was performed, and the results 
presented to the user were obtained from the log files of the 
previous experiment. The responses were selected so that 
the correct response was always in the candidate list. There 
were 16 participants, and each performed ten SMS reply 
tasks on each driving course, half with the dictation 
approach and half with the SQIR approach, and the order 
was randomized.

Interestingly, the study showed no significant differences in 
driving performance between the two methods. However, as 
shown in Figure 10, the average number of user errors per driv-
ing course was approximately six times higher for the dictation 
approach than the SQIR approach. That is, drivers were far 
more likely to correctly locate the response in the list that best 
matched what they said when using the SQIR system. In the 
post hoc analysis, it was determined that the dictation system 
often presented several phonetically confusable options in the 
candidate list, which made choosing the correct response more 
difficult for the users.

CONCLUSIONS
The widespread adoption of smartphones and portable media 
players has created a significant challenge for the automotive 
community. Studies have shown that operating these types of 
devices while driving causes levels of distraction that match or 

exceed those caused by conven-
tional mobile phones. In this 
article, we have attempted to 
describe how in-car systems for 
media search and IR have the 
potential to significantly reduce 
driver distraction while enabling 
users to perform their desired 

tasks. By combining speech recognition with IR, we can create 
applications for media search and information access that are 
robust to speech-recognition errors and the user’s natural lan-
guage input.

While we have described the algorithms and methods used 
to perform speech recognition, SQIR, and multimodal inter-
action, we would also like to stress that there is ample room 
for improvement in each of these areas. Despite progress in 
front-end processing and acoustic modeling, the adverse 
effects of environmental noise remain an issue for speech rec-
ognizers. Nonstationary noise and background talkers are 
especially problematic. In SQIR, much of the technology has 
been borrowed from well-known methods in Web search. Yet, 
clearly, a Web page and a song in a collection are significantly 
different, and as such, alternate algorithms for relevance 
ranking of media could be possible. Multimedia interaction 
today is limited to speech, buttons, and touch. However, the 
use of video, gestures, augmented reality, and alternate sen-
sors are being explored in the automotive research communi-
ty and could profoundly impact the in-car user experience in 
the future.
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