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Unifying Views of Tail-Biting Trellis Constructions
for Linear Block Codes

Aditya V. Nori and Priti Shankar

Abstract—In this paper, we present new ways of describing and
constructing linear tail-biting trellises for block codes. We extend
the well-known Bahl–Cocke–Jelinek–Raviv (BCJR) construction
for conventional trellises to tail-biting trellises. The BCJR-like la-
beling scheme yields a simple specification for the tail-biting trellis
for the dual code, with the dual trellis having the same state-com-
plexity profile as that of the primal code . Finally, we show that the
algebraic specification of Forney for state spaces of conventional
trellises has a natural extension to tail-biting trellises.

Index Terms—Block codes, displacement matrix, duality, linear
trellises, nonmergeable trellises, tail-biting trellises.

I. INTRODUCTION

TAIL-BITING trellises for linear block codes represent the
simplest form of factor graphs with cycles. These regularly

structured graphs are viewed as trellises on a circular time axis
and are known to attain a state-complexity that could be con-
siderably lower than that of a conventional trellis for the same
code. Conventional trellises for block codes have a well-under-
stood underlying theory [1]–[7] and an excellent survey appears
in [7]. The theory of tail-biting trellises appears to be somewhat
more involved, though several advances in the understanding of
the structure and properties of such trellises have been made in
recent years [8]–[14].

Given a block code, it is known that there exists a unique min-
imal conventional trellis representing the code [6], and there are
several different algorithms for the construction of such a trellis
[1]–[3], [5]. The trellis simultaneously minimizes all measures
of minimality. However, it is known that tail-biting trellises do
not have such a property. Koetter and Vardy [9], [10] have made
a detailed study of the structure of linear tail-biting trellises and
have also defined several measures of minimality. They have
shown that different measures of minimality correspond to dif-
ferent partial orders on the set of linear tail-biting trellises for a
block code.

An interesting property that is known for conventional trel-
lises is that the minimal conventional trellis for a linear block
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code and its dual have the same state-complexity profile [2].
Koetter and Vardy have suggested a dual trellis construction
using an intersection product [10] and the state-complexity pro-
files of the primal and dual trellises are equal if the primal trellis
is -minimal [10].

An algebraic characterization of conventional trellises is pro-
vided by Forney [2] where state spaces at each time index cor-
respond to quotient groups with respect to a normal subgroup.
The subgroup is constructed by introducing the notions of past
and future subcodes.

In this paper, we generalize the Bahl–Cocke–Jelinek–Raviv
(BCJR) [1], [15] and Forney [2] constructions to obtain tail-
biting trellises. We show that a linear tail-biting trellis for an

linear block code over can be constructed from an
arbitrary parity check matrix for the code along with a

matrix with coefficients from which we term a
displacement matrix. The set of BCJR labels is constructed from

and . This description facilitates a simple and direct dual
construction algorithm yielding dual trellises with exactly the
same state-complexity profiles as those for the primal trellises
for the class of nonmergeable trellises [4], [7], [16]. This class
properly includes the class of -minimal trellises [10].

We further show that pasts and futures for conventional trel-
lises can be generalized to circular pasts and futures for tail-
biting trellises, thereby obtaining a natural extension of the al-
gebraic specification of Forney to tail-biting trellises.

Section II contains the notation and definitions used in the
subsequent sections. Section III describes our scheme for a
BCJR-like labeling of tail-biting trellises. Section IV shows
how the BCJR scheme can be used to directly construct dual
trellises whose state-complexity profiles are identical to those
of the primal ones. Section V gives a natural generalization of
the Forney specification for conventional trellises to tail-biting
trellises. Section VI concludes the paper.

II. PRELIMINARIES

We refer to an linear block code over as an
code. Every block code has a combinatorial description in the
form of a trellis. Trellises for block codes were introduced in
1974 by Bahl et al. [1], and further important results were re-
ported in [2], [3], [5], [6], [15], [17]. We give a few definitions
below.

Definition 1: A conventional trellis of depth
is an edge-labeled directed graph with the property that the

set can be partitioned into vertex classes

(1)
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Fig. 1. The minimal conventional trellis for a (7; 4) Hamming code.

such that every edge in is labeled with a symbol from the
alphabet , and begins at a vertex of and ends at a vertex of

, for some .
The length of a path (in edges) from the root to any vertex

is unique and the set of indices for the par-
tition in (1) are the time indices. The quantity is the
state-complexity of the trellis at time index and the sequence

defines the state-complexity profile
(SCP) of the trellis.

A measure of trellis complexity commonly used by coding
theorists has to do with the SCP. A trellis is said to be minimal
if the maximum state-complexity over all time indices denoted
by is minimized over all possible coordinate permu-
tations of the code [6]. Other measures are the total number of
states, the total number of edges, the maximum number of edges
at any time index and the product of the state cardinalities over
all time indices. It is well known that minimal trellises for linear
block codes are unique [6] and simultaneously satisfy all defini-
tions of minimality. They are also biproper (that is, any pair of
edges directed towards a vertex has distinct labels, and so also
any pair of edges leaving a vertex). The trellis in Fig. 1 is the
minimal trellis for a Hamming code. We will now re-
view concepts related to tail-biting trellises [10].

Definition 2: A tail-biting trellis of depth is
an edge-labeled directed graph with the property that the set
can be partitioned into vertex classes

(2)

such that every edge in is labeled with a symbol from the
alphabet , and begins at a vertex of and ends at a vertex of

, for some .
As for conventional trellises, the set of indices

for the partition in (2) are the time indices. We

Fig. 2. A tail-biting trellis for the (7;4) Hamming code of Fig. 1.

identify with , the residue classes of integers modulo . An
interval of indices represents the sequence
if , and the sequence if .
Every cycle of length in starting at a vertex of defines a
vector which is an edge-label sequence.
We assume that every vertex and every edge in the tail-biting
trellis lies on some cycle. The trellis is said to represent a
block code over if the set of all edge-label sequences in

is equal to . Let denote the code represented by the
trellis . The trellis in Fig. 2 is a tail-biting trellis for the
Hamming code of Fig. 1.

In addition to the labeling of edges, each vertex in the set
can be labeled by a sequence of length of
elements in , all vertex labels at a given depth being distinct.
Thus every cycle in this labeled trellis defines a sequence of
length (where ) over , consisting
of alternating labels of vertices and edges in . This sequence
is called the label sequence of a cycle in . The set of all label
sequences in a labeled tail-biting trellis is called the label code
represented by and is denoted by . Fig. 11 illustrates a
labeled tail-biting trellis. A trellis is said to be one-to-one if there
is a one-to-one correspondence between the cycles in and the
codewords in , and it is reduced if every vertex and every
edge in belongs to at least one cycle.

Definition 3: A trellis is said to be linear if there exists a
vertex labeling of such that is a vector space.

The notion of mergeability [4], [7], [16] is also useful here.
Definition 4: A trellis is mergeable if there exist vertices

in the same vertex class of that can be replaced by a single
vertex, while retaining the edges incident on the original ver-
tices, without modifying .

If a trellis contains no vertices that can be merged, it is said
to be nonmergeable.

Example 1: Consider a code with generator matrix
defined as follows:

A mergeable linear tail-biting trellis for this code is shown in
Fig. 3—the mergeable vertices are enclosed by dashed ellipses.
In contrast, another tail-biting trellis for this code shown in
Fig. 4 is nonmergeable and a non one-to-one linear trellis.

Koetter and Vardy [9] have shown that if a linear trellis is non-
mergeable, then it is also biproper. However, though the con-
verse is true for conventional trellises, it is not true in general
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Fig. 3. A mergeable tail-biting trellis for the (3; 2) code in Example 1.

Fig. 4. A nonmergeable tail-biting trellis for the (3;2) code in Example 1.

for tail-biting trellises as illustrated by Fig. 3. They show that
for tail-biting trellises the following relation holds:

linear trellises

biproper linear trellises

nonmergeable linear trellises

In the discussion that follows, we restrict ourselves to trellises
representing linear block codes over the alphabet . Any
linear trellis, conventional or tail-biting, for an linear
code can be constructed as a trellis product [3] of the rep-
resentation of the individual trellises corresponding to the
rows of the generator matrix for [10]. The trellis product

of a pair of trellises and will have at index a set of
vertices which is the Cartesian product of vertices of and

at that time index, with an edge labeled (where
denotes addition in the field ), from to , at
time indices and , respectively, whenever is
an edge between vertices at time indices and in , and

is an edge between vertices at time indices and
in . Let be the rows of a generator matrix
for the linear code . Each vector generates a one-dimen-
sional (1-D) subcode of , which we denote by . Therefore

, and the trellis repre-
senting is given by , where is the
trellis representing .

To specify the component trellises in the trellis product above,
we will need the notions of linear and circular spans and elemen-
tary trellises [10]. Given a codeword , the linear span of
is the smallest interval , such that
, which contains all the nonzero positions of . A circular span

has exactly the same definition with . Note that for a given
vector, the linear span is unique, but circular spans are not—they
depend on the runs of consecutive zeros chosen for the comple-
ment of the span with respect to the index set . For example,
the vector can be chosen to have circular span

Fig. 5. Elementary trellis for (0110) with span [2; 3].

Fig. 6. Elementary trellis for (1001) with span [4; 1].

or . For a vector over the field with
span (either linear or circular), there is a unique elemen-
tary trellis representing [10]. This trellis has vertices at
those positions that belong to , and a single vertex at other
positions. Consequently, in the trellis product mentioned ear-
lier, is the elementary trellis representing for some choice
of span (either linear or circular).

Definition 5: If is the span of a vector
, then is its zero-run. The

zero-run of is a (possibly circular) interval of time-indices
at which the path corresponding to merges with the all-zero
path.

Note that in case the span of a vector is chosen to be the whole
interval , the zero run is the empty sequence.

Koetter and Vardy [10] have shown that any linear trellis, con-
ventional or tail-biting can be constructed from a generator ma-
trix whose rows can be partitioned into two sets, those which
have linear span, and those taken to have circular span. The
trellis is formed as a product of the elementary trellises corre-
sponding to these rows. We will represent such a generator ma-
trix as

where is the submatrix consisting of rows with linear span,
and the submatrix of rows with circular span, and refer to it
as a Koetter–Vardy (KV) product matrix and the corresponding
trellis as the KV trellis.

Example 2: Consider a linear block code whose KV
generator matrix is

The spans and elementary trellises for the rows and
are shown in Figs. 5 and 6, respectively. The resulting KV
product trellis is shown in Fig. 7.

III. THE TAIL-BITING BCJR TRELLIS

The original BCJR algorithm [1] constructs the minimal con-
ventional trellis for a linear block code in the following way.
Let be an arbitrary parity check matrix for an
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Fig. 7. The KV product trellis for the (4; 2) linear code.

Fig. 8. The minimal conventional BCJR trellis for the (4;2) code.

linear block code over , and let
be the columns of . Every codeword

induces a sequence of states , each
state being labeled by a vector in as follows:

if
otherwise

(3)

Clearly, there will be a single state at time index as
for all codewords . There is an edge labeled from
state to state , if and only if

We refer to such a labeling as a BCJR labeling of the trellis in
the following section. We will also refer to the labeled sequences
in the BCJR label code as the BCJR labeled words. It is well
known that the set of vectors that are labels at each time index
form a vector space whose dimension is the state-complexity at
that time index [15]. Any generator matrix for this code can
then be represented as a set of BCJR labeled codewords. This
labeled matrix is henceforth referred to as the matrix
and its labels depend on the parity check matrix chosen.

Example 3: Consider a self dual code with parity
check matrix defined as

The BCJR label generator matrix is given below

The minimal conventional trellis resulting from the BCJR con-
struction for this code is shown in Fig. 8.

The BCJR algorithm for conventional trellises is now gener-
alized to construct labeled tail-biting trellises for any linear code
with the resultant trellis satisfying the following two properties:

i) the trellis formed is biproper and linear;
ii) the state labels at each time index form a vector space.
Let be an linear block code with generator matrix

, where , are the
rows of , and parity check matrix , with

columns .
The tail-biting BCJR specification includes an 1 dis-

placement vector with every generator row . Specif-
ically, the set of displacement vectors for an generator
matrix is an arbitrary set of vectors from , which
could be linearly independent or dependent, with repetitions al-
lowed. The displacement vector for any codeword is
defined as follows:

where (4)

Definition 6: Given an linear code with generator
matrix and displacement vectors , the
matrix whose column is equal to , where is the
row of , , is called a displacement matrix for .

By definition the all-zero codeword is associated with the
displacement vector.

The following lemma defines the decomposition of the code
induced by the displacement matrix.

Lemma 1: Let be an linear code with generator ma-
trix and displacement matrix . Then specifies a coset de-
composition of the code , where ,
with every coset being associated with a unique displacement
vector.

Proof: It is easily seen that is a
linear subcode of . Consider a coset .
Since every codeword takes the form for some

, it follows that (since ). Therefore,
every coset is associated with a unique displacement vector and
the lemma follows.

It should be noted that there are in general many displace-
ment matrices that induce the same coset decomposition of a
code , as the coset decomposition depends only on the choice
of . This subcode is generated by the largest set of linearly
independent vectors, each element of which has an associated
displacement vector corresponding to the all-zero vector.

Example 4: Let be a self dual code with generator
matrix as follows:

Let the displacement matrix . Therefore

and , and from (4), we have and

. The matrix also induces the same

coset decomposition as the matrix where the subgroup
is . However the displacement vectors for the rows

and are the vector .
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Fig. 9. A T–BCJR trellis for the (4; 2) code with displacement matrix .

Definition 7 (T-BCJR Labeling): Every codeword
induces a sequence of states ,

each state being labeled by a vector in as follows:

if
otherwise

(5)

There is an edge labeled from state to state
, if and only if

(6)

We refer to such a labeling as a Tail-biting BCJR (T-BCJR)
trellis, and the vector as the th partial syndrome of .

Definition 8: Let be an code with parity check ma-
trix , generator matrix and a displacement matrix . The
label generator matrix is defined to be the matrix con-
sisting of BCJR label rows of formed with respect to and

.
Let be an code with generator matrix and parity

check matrix . The T-BCJR trellis constructed with respect
to , and some arbitrary is thus given by

(7)

where we recall that is the vector space generated by
the rows of .

Example 5: For the code from Example 4, with

and is the T-BCJR trellis shown in Fig. 9. On the other

hand, choosing , results in a completely different

label generator matrix

and is the T-BCJR trellis shown in Fig. 10.
As illustrated by Example 5, the structure of the T-BCJR

trellis not only depends on the coset decomposition of the code,

Fig. 10. A T-BCJR trellis for the (4;2) code with displacement matrix .

but also on the label generator matrix structure imposed by the
displacement matrix .

Let be a T-BCJR trellis constructed for . The following
lemmas define the properties of .

Lemma 2: The trellis is linear and represents .
Proof: We first prove that . Assume to the con-

trary that such that . Let
be the start vertex of the cycle representing the word .

The invariant maintained by the algorithm for every edge
is

Therefore, , thus
contradicting our original assumption. That follows
from the construction. We next show that the trellis is linear.

Let and let respectively,
be their label codewords. Since , we have

. In order to prove linearity of , we
need to show that also belongs to . We
have , such that

, and , such that

. Therefore

which shows that is the label codeword in representing
the codeword , thus proving that is indeed a linear trellis
representing .

Lemma 3: The trellis is biproper.
Proof: Assume there exists a vertex at some time index

, with two outgoing edges and ,
(that is, is not proper). From the BCJR construction we know
that and , which
contradicts our assumption that and are distinct. Therefore

must be proper. A similar argument shows that must also
be co-proper (that is, with its edges reversed is also proper),
thus proving that is a biproper trellis.

Let and respectively, denote the submatrices
consisting of the first columns of and . For every

, define a matrix as follows:

(8)
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Fig. 11. A minimal T-BCJR trellis for the (7; 4) Hamming code.

Lemma 4 (State-Space Lemma): For all time indices ,
the state space of the trellis at time index equals the

column-space of .
Proof: For every generator , the

state at time index is given by .
Therefore the set of states at time index for generators in is
defined by the columns of , and the lemma
follows.

Example 6: For the code defined in Example 4, the
T-BCJR trellis shown in Fig. 9.

Example 7: Consider the Hamming code with parity
check and generator matrices defined as follows:

Choosing

we obtain a minimal T-BCJR trellis for with ,
as illustrated in Fig. 11.

We will now define a displacement matrix derived directly
from a KV product specification of a nonmergeable linear trellis.

Definition 9: Let be a KV product matrix for a nonmerge-
able linear trellis representing an code . Let the
parity check matrix for be , with columns

. A T-BCJR labeling for is de-
fined by the displacement matrix with respect to and as
follows.

The th column of is equal to if the row of has
linear span, else it is equal to , where

is the row of with circular span .
The KV product construction of tail-biting trellises naturally

induces a -tuple labeling of each vertex of the final trellis for

the code formed as the product of the elementary trellises
for the basis vectors in the generator matrix. Each element of
the -tuple is a label of a vertex of an elementary trellis. The
following lemma follows directly from the product construction.

Lemma 5: Let be prefixes of codewords in ele-
mentary trellises leading to vertices respectively in
the trellises. Then the codeword prefix leads
to a vertex labeled , that is, the Cartesian product
of the vertices in the elementary trellis.

The following lemma follows directly from the T-BCJR con-
struction.

Lemma 6: Let be prefixes of codewords in
elementary trellises leading to vertices with T-BCJR labels

respectively in the trellises. Then the codeword
prefix leads to vertex with T-BCJR label

, that is, the sum of the T-BCJR labels.
Definition 10: A subtrellis of a tail-biting trellis is defined by

the set of all paths that begin and end at the same vertex at time
index .

The number of subtrellises of a tail-biting trellis is thus the
number of vertices at time index .

The following lemmas state some properties of paths in the
T-BCJR trellis.

Lemma 7: Let and be
prefixes of codewords and of length such that they induce
the same T-BCJR label . Then if they are paths in the same
T-BCJR subtrellis they share all continuations. If they are paths
in distinct subtrellises they share no continuations.

Proof: If and cor-
respond to paths in the same subtrellis and if is the displace-
ment vector associated with that subtrellis, we have

which implies
that where is the subma-
trix consisting of the first columns of . Thus they obviously
share all continuations. Assume they correspond to paths in dif-
ferent subtrellises. If they share a continuation, say then there
must be two paths labelled originating at vertex labeled to
the final nodes of the two subtrellises. This violates the property
of biproperness guaranteed by Lemma 3. Hence the lemma.

A similar statement can be proved replacing continuations by
pasts and codeword prefixes by suffixes.
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Lemma 8: Let codeword prefixes and lead to distinct
states and in a KV trellis but lead to the same state in
the T-BCJR trellis constructed according to Definition 9. Then
merging and does not change the code.

Proof: Assume and induce the same T-BCJR label,
but lead to different states and in the KV trellis. Merging
states and will change the code only if a cycle with a new
edge-label sequence is introduced as a result of the merging.
By Lemma 7, prefixes originating at the same vertex inducing
the same T-BCJR label share all continuations, and therefore
no new edge-label sequences corresponding to cycles are intro-
duced as a result of the merging. Hence the code defined by the
trellis does not change.

Lemma 9: Codewords and
lead to distinct vertices at level in a non-

mergeable KV trellis if and only if and induce distinct
T-BCJR labels (as given in Definition 9) at level .

Proof: Assume that and lead to distinct vertices at level
in a KV trellis. Assume they lead to the same T-BCJR label.

This implies that merging the corresponding vertices in the KV
trellis will not change the code by Lemma 8, contradicting the
assumption that is nonmergeable.

Conversely assume that and induce distinct T-BCJR
labels at level , but lead to the same KV trellis vertex, say

, at level . Then the projections of this vertex
into the elementary trellis vertices are . Let
vertices have T-BCJR labels respec-
tively. Therefore, by Lemma 6, the corresponding T-BCJR
node is , contradicting the assumption that
and induce distinct T–BCJR nodes.

Lemma 10: The KV nonmergeable elementary trellis for a
row vector of and the T-BCJR trellis for constructed ac-
cording to Definition 9 are isomorphic to each other.

Proof: From Lemma 9 there is a one-to-one correspon-
dence between the vertices of the KV and T-BCJR nonmerge-
able elementary trellises. That there is a one-to-one correspon-
dence between the edges follows directly from the definitions
of the elementary trellises.

Theorem 3.1: Let be a KV product matrix for a nonmerge-
able linear trellis representing an linear block code .
Let the T-BCJR trellis be defined as in Definition 9. Then
is isomorphic to .

Proof: Assume that is a nonmergeable
linear KV trellis. Let be a set of ver-
tices at time index one in each elementary trellis with T-BCJR
labels respectively. By Lemma 5, we have

as the corresponding node in the product
trellis . For the T-BCJR trellis ,
by Lemma 6, the corresponding T-BCJR vertex is given
by

Define a map , from the labeled vertices in to the
labeled vertices in as follows:

Fig. 12. A trellis for the (3; 2) code not computable by a T-BCJR construc-
tion.

Fig. 13. A non-one-to-one nonmergeable T-BCJR trellis for the (3;2) code.

From Lemma 9, we see that is a bijection. Next, from the
isomorphism of the elementary KV and T-BCJR trellises, and
linearity of the trellises it follows that is an
edge in the KV trellis if and only if the T-BCJR trellis has an
edge . Therefore, the trellises and
are isomorphic.

Corollary 3.2: Every nonmergeable linear tail-biting trellis
can be constructed by a T-BCJR construction.

It is worth noting that every biproper linear trellis cannot be
constructed by T-BCJR construction. The biproper linear trellis
for the code in Fig. 12 is one such example. Note that
this trellis is computable by the KV product construction with
the product matrix defined as

The following is an example of a T-BCJR trellis which is
biproper but not one-to-one.

Example 8: Consider a code with generator matrix
, parity check matrix and displacement matrix defined

as follows:

The T-BCJR trellis shown in Fig. 13 is nonmergeable but not
one-to-one.

A question that naturally arises here is whether the T-BCJR
trellises exactly represent the class of nonmergeable trellises.
Below is an example to show they do not.

Example 9: Consider the self dual linear code speci-
fied by

and

The T-BCJR trellis (for the above choice of ) for is shown
in Fig. 14 and is mergeable. It is easy to see that to see that this
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Fig. 14. A mergeable T-BCJR trellis for the (4; 2) code.

trellis corresponds to a coset decomposition of the code with
respect to the subcode .

Therefore, we have the following lemma.
Lemma 11: The class of trellises computed by the T-BCJR

construction lies in between the class of nonmergeable linear
trellises and the class of biproper linear trellises.

We conclude this section by observing that the -mini-
mality problem for an code with parity check matrix

and generator matrix may be stated as follows.
1) Problem: Find a displacement matrix that minimizes

for a T-BCJR trellis representing

(9)

Let be an code with generator matrix and parity
check matrix . Then from the BCJR construction, we know
that a conventional trellis for is completely specified by the
sequence

where (10)

where we recall that the column-space of each represents the
set of states at level of the trellis. Every nonmergeable linear
tail-biting trellis for can be specified as

where (11)

Define the rank of the sequence as follows:

rank rank (12)

Thus the -minimal tail-biting trellis computation problem
may thus be formulated as follows.

2) Problem: Find a matrix such that rank is
minimized

rank (13)

IV. THE TAIL-BITING DUAL TRELLIS

There are a number of interesting connections between the
minimal conventional trellis for a linear code and the minimal
conventional trellis for its dual code. It is an interesting fact that

Fig. 15. A T-BCJR trellis for the (4;2) code.

algebraic and combinatorial duality are related, and this was first
established by Forney [2]. Koetter and Vardy [10] have defined a
special product operation called the intersection product to con-
struct a dual linear tail-biting trellis directly from a generator
matrix for the primal code. This results in a linear tail-biting
trellis for the dual code that has the same SCP if the primal
trellis is -minimal (that is, minimal under component-wise
ordering), otherwise has a smaller SCP than . Our con-
struction that is based on the T–BCJR specification of linear
tail-biting trellises extends the Koetter–Vardy result to a larger
class of trellises.

Let , and respectively, be the generator, parity and
displacement matrices for a primal code . Given a primal
trellis specification , the dual BCJR construction
(T-BCJR ) computes a biproper linear tail-biting trellis
for the dual code , with the property that the SCP of is
equal to the SCP of . In other words, given a minimal (under
any definition of minimality) trellis for the primal code,

computes a minimal linear tail-biting trellis for
the dual code such that the SCP of is equal to the SCP of .
We define the trellis as follows.

Definition 11 (T-BCJR Construction): Let be an
code with generator and parity check matrices and re-
spectively. Let be a biproper linear trellis rep-
resenting for some . Then the T-BCJR trellis

representing a code is defined
as

(14)

Example 10: For the code defined in Example 6, we
have

and is the trellis shown in Fig. 15.
Example 11: For the Hamming code given in Ex-

ample 7, we have the equation shown at the bottom of the fol-
lowing page and is the trellis shown in Fig. 16.

The following lemma states the properties of the T-BCJR
trellis .

Lemma 12: The trellis is a biproper linear trellis that rep-
resents the dual code.

Proof: Since is a T-BCJR trellis, the lemma follows
from Lemmas 2 and 3.

Lemma 13: For all time indices , the state space of
at time index equals the column-space of .

Proof: Let be the matrix defined in (8). Recall that
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Fig. 16. A T-BCJR trellis for the (7; 4) Hamming code.

Therefore

Hence the column space of is the state space of the dual
trellis from Definition 11.

Example 12: The T-BCJR trellises for the self dual
code and the Hamming code from Examples 10 and 11,
are shown in Figs. 15 and 16 respectively. These trellises have
the same SCPs as their primal counterparts (Figs. 9 and 11).

Lemma 14: Let and be the trellises computed by the
T-BCJR and T-BCJR constructions, respectively. Then for all
all-time indices , the state-cardinality of at level equals
the state-cardinality of at level . In other words,

.
Proof: From Lemmas 4 and 13 we know that is equal to

the column-space of , and is equal to the column-space
of . Therefore, by the “ ” theorem
of linear algebra [18], .

Finally, we have the following theorem.
Theorem 4.1: Let be a minimal linear trellis, either con-

ventional or tail-biting, for a linear code . Then there exists a
minimal linear dual trellis for the dual code such that
the SCP of is identical to the SCP of .

Proof: Follows from Corollary 3.2, Lemma 12 and
Lemma 14.

V. THE TAIL-BITING FORNEY TRELLIS

In this section we generalize the Forney construction [2] for
conventional trellises to obtain tail-biting trellises. Specifically,
we show that there is a generalization of “pasts” and “futures”
which enables the construction of a linear tail-biting trellis for a
linear block code from a coset decomposition of the code, with
respect to a subcode of the code.

The Forney construction [2] is an elegant algebraic character-
ization of conventional trellises in terms of a coset decomposi-
tion of the linear block code. We briefly review this characteri-
zation here.

Let be an linear code with generator matrix and
parity check matrix . Let
be a map defined by .
The map thus effectively maps a codeword to its partial
syndrome. Define the past projection at time index as follows:

(15)
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Fig. 17. The minimal conventional Forney trellis for the (4; 2) code.

These are projections of codewords that share an all-zero suffix
with the all-zero codeword, from index to index . Define
the future projection at time index as follows:

(16)

These are projections of codewords that share an all-zero prefix
with the all-zero codeword, from index to index .

Definition 12: Let and be past and future projections of
at some time index . Then the product of and , denoted

by , is defined as

(17)

It is easy to see that the product is a linear subcode
of . Therefore forms a quotient space. The Forney
trellis for is constructed by identifying ver-
tices in with the quotient group corresponding to cosets of
modulo , that is

for (18)

There is an edge from labeled from a vertex
to a vertex , if and only if there exists a codeword

such that . The resulting trellis is
isomorphic to the minimal conventional trellis [7].

Example 13: Consider again the self dual code from
Example 3. Let denote the empty sequence of length 0. The
past projections are , , ,

, . The future projections are ,
, , . The subcodes

are thus given by

The minimal conventional trellis for resulting from the
Forney construction is shown in Fig. 17. The vertices at level
in Fig. 17 are labeled by coset representatives in .
For example, the vertex is labeled by

.

This determines the quotient space at all time
indices. Therefore we have the vertex sets below (with coset
representatives underlined)

We now generalize the Forney construction to tail-biting trel-
lises. We first state an observation that has been made by several
researchers in the past [13], [14], [19].

1) Observation 1: Every linear tail-biting trellis for an
linear code can be viewed as a superposition of

subtrellises each of which represents a coset of the the code
with respect to a subcode . The subtrellises are all structurally
identical to the the subtrellis for .

Let

be a KV product matrix for a linear block code. Then if is
the subcode generated by the coset decomposition is .
Each vector in is taken to be a coset leader and the
path associated with in the trellis shares all states with that
corresponding to the all-zero codeword in the zero run of . If

denotes the coset then the subtrellis associated with
shares all states with that associated with in the zero run of .
The zero run of is called the merging interval of subtrellises

and associated with cosets and and is also henceforth
referred to as the merging interval of . Note that if the zero run
of a coset leader is the empty interval then the subtrellis defined
by that coset leader shares no states with that associated with

.
Our adaptation of Forney’s coset construction computes a

trellis (henceforth referred to as the T–Forney trellis) that uses
a coset decomposition of the code and the associated merging
interval for each coset. This as we have seen, depends on the
coset leader chosen for each subtrellis. Let be a linear sub-
code of an code . Denote by , the
coset decomposition of over , and choose coset leaders

, where coset leader has merging interval
. For all vectors in coset with coset leader ,

having merging interval with the all-zero codeword, the
past (perhaps more appropriately, the circular past) at begins
at time index , wraps around mod and ends at . Similarly, a
future of a vector in at time index begins at and ends
at . If the merging interval is empty then pasts and futures are
undefined.

Define partial maps , as follows:

(19)

where
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The maps map codewords into partial syndromes com-
puted with respect to an initial time index instead of , and
are partial as they are undefined for a coset whose merging in-
terval is empty.

Example 14: Let be a Hamming code specified by

Define the linear subcode as

Then the rest of the cosets in are

Define coset leaders and corresponding merging intervals and
spans as follows:

where the first interval alongside the vector is the merging in-
terval, and the second interval is the span. For and ,
the map is given by

For every time index , we define the past and future
for vectors in coset as follows:

(20)

(21)

Fig. 18. A T–Forney trellis for the (4; 2) code.

If is undefined then is the empty set and so is
.

Lemma 15: The set is a linear
subcode of .

Proof: Fix a time index . For cosets and , let
and . Let

, belong to coset . It can easily be verified that
, and therefore

whenever and are
nonempty. If either of them is empty the result follows trivially.

Definition 13 (T-Forney Trellis): The T-Forney trellis
for is constructed by identifying vertices in

with the quotient group corresponding to cosets of modulo
, that is

(22)

There is an edge from labeled from a vertex
to a vertex , if and only if there exists a codeword

such that .
Example 15: Let be a self dual code with parity

check matrix and generator matrix defined as follows.

Let the linear subcode of be defined as

Let the coset leader for the coset be (with
span and merging interval ). The subcodes

, , are given by

The T–Forney trellis for is shown in Fig. 18. The vertices in
Fig. 18 are labeled by the coset representatives in

. For example, the vertex is labeled by
. We observe that since the coset with respect to which
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Fig. 19. A T-Forney trellis for the (7; 4) Hamming code.

the decomposition is computed is the whole code at time indices
and , there is a single state at those time indices.
Example 16: Let be the Hamming code from Ex-

ample 14. The subcodes , ,
are given by

The T–Forney trellis for is shown in Fig. 19. The vertices in
Fig. 19 are labeled by the coset representatives in .
For example, the vertex is labeled by

.

Note that this trellis is isomorphic to the KV trellis generated
by the matrix

where the intervals on the right represent the spans selected.
The corresponding T-BCJR representation has the same gen-

erator matrix, with the parity check matrix of Example 14 and
the matrix below

The following theorem relates nonmergeable KV trellises,
T-BCJR and T-Forney trellises.

Theorem 5.1: Given an code with generator matrix

generating a nonmergeable trellis, parity check matrix and
displacement matrix computed according to Definition 9 ,
the T-BCJR the T-Forney, and the KV trellises are isomorphic
to one another if coset leaders are chosen to be elements of .

Proof: As we saw in Definition 9,

determines which in turn defines a coset decomposition
of the code . We refer to this decomposition as the -coset
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decomposition to distinguish it from the coset decomposition
induced by the Forney definition. Let be the
cosets of the -coset decomposition. We refer to the T-BCJR
label induced by a codeword prefix as T-BCJR . Let

, where and are
as defined in (20) and (21) choosing coset leaders as specified
in the statement of the theorem. Denote the coset decompo-
sition as the -coset decomposition of . Denote the
coset containing in the -coset decomposition by . Let

where are the rows
of the generator matrix. Let be the displacement
vectors for respectively. Denote the T-BCJR label
for vector at level by . Define the map

We show that the mapping is an isomorphism. Assume that
codewords and induce
the same T-BCJR label at time index . Then their difference

induces the all-zero label at time index . Hence,
. Therefore and belong to the same coset in the

-coset decomposition and therefore lead to the same state in
the T–Forney trellis.

Conversely assume that and belong to the same coset
in the -coset decomposition of . Hence their difference
belongs to in the -coset decomposition and therefore
corresponds to the state and has partial syndrome at level
. Hence the T-BCJR label of at level is , which in turn

implies that the T-BCJR labels of prefixes of and at level
are the same.

Next, let be an edge in the T-BCJR trellis
from index to index . Then there exists a codeword

such that T-BCJR ,
T-BCJR , and . The codeword is in
coset of the -coset decomposition as well as in
of the -coset decomposition. Hence by definition there is
an edge labeled from the state represented by to that
represented by in the T-Forney trellis. Conversely,
assume that there is an edge in the T-Forney trellis from vertex
associated with coset in the -coset decomposition to that
associated with coset in the -coset decomposition
with label . Then by Definition 13, there exists a codeword
such that and and
the symbol of the codeword is . Let map to and

map to . By definition there is an edge from to
on label establishing the isomorphism between the T-Forney
and the T-BCJR trellis. Since the nonmergeable KV trellis is
isomorphic to the T-BCJR trellis by Theorem 3.1, the theorem
follows.

VI. CONCLUSION

We have given a specification for tail-biting trellises which
is a generalization of the BCJR construction for conventional
trellises for linear block codes. The generalized BCJR construc-

tion begins with an arbitrary parity check matrix and a ma-
trix which we term the displacement matrix, and proceeds
to produce a labeled tail-biting trellis whose state spaces are
vector spaces. It is easy to get dual trellises using this specifica-
tion; these have state-complexity profiles which are identical to
those of the primal trellises. Adaptation of the algebraic Forney
construction which views trellis state spaces as quotient spaces
with respect to a coset decomposition is also shown to be pos-
sible with a redefinition of “pasts” and “futures.” The most in-
teresting problem which to our knowledge is as yet open, is that
of finding a polynomial time algorithm for obtaining a minimal
trellis which minimizes the maximum state-complexity over all
time indices.
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