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ABSTRACT 

This paper introduces a new watermarking modulation technique, 

which we call improved spread spectrum (ISS). Unlike in tradi-

tional spread spectrum (SS), in ISS the carrier signal does not act 

as a noise source, leading significant performance gains. In typi-

cal examples, the gain of ISS over SS is 20 dB or more in signal-

to-noise ratio or 20 orders of magnitude or more in error prob-

ability. The proposed method achieves roughly the same noise 

robustness gain as quantization index modulation (QIM). Never-

theless, while QIM is quite sensitive to amplitude variations, ISS 

is as robust in practice as traditional SS. 

1. INTRODUCTION 

With the widespread use of digital representation for images, 

video, audio and other signals, copyright protection by using 

digital watermarks became an active area of research. Water-

marking in this new context is a complex problem, with issues 

that also involve system design, cryptography, and a series of 

economic and legal aspects. While we do appreciate the com-

plexity of the problem, in this paper we will only deal with a 

specific aspect of the problem: that of “hiding” or transmitting 

information embedded in a signal (i.e., watermark modulation). 

In most watermarking schemes, spread spectrum (SS) is the 

modulation technique used to embed the watermark [1–3]. In this 

case, the signal to be marked (the carrier signal) acts as a source 

of interference [1,4]. Because the carrier signal itself is generally 

much stronger than other interferences, its interference dominates 

the performance of watermark detection. 

In [5], Chen and Wornell proposed a new embedding 

method, called quantization index modulation (QIM), which 

eliminates the interference from the carrier signal. However, 

QIM obtains its gains from embedding the watermark in a lattice, 

making the watermark sensitive to scaling of the signal. Change 

in the scale of the watermarked signal, such as dynamic range 

equalization typically used by radio stations, can effectively erase 

the watermark. Therefore, QIM may not be applicable to water-

marking signals in scenarios where a malicious attack can take 

place. 

In [4], Cox et al. present a framework where they indicate 

the need for removing the influence of the signal in the water-

mark detection process. Three different practical solutions based 

on that framework have been proposed [7]. Nevertheless, they do 

not handle the most important case under the communication 

point of view: how to insert the watermark to minimize the error 

rate at a given average distortion level. 

In this paper, we propose a new technique, which we call 

improved spread spectrum (ISS). This technique essentially re-

moves the signal as source of interference, producing a dramatic 

improvement in the quality of the watermarking process. The 

gains for the ISS are similar to those obtained by QIM, but ISS 

does not suffer from the same sensitivity to amplitude scaling. In 

fact, ISS is essentially as insensitive to amplitude scaling as tradi-

tional spread spectrum.  

Practically any watermarking system currently using SS 

would immediately profit from using the proposed scheme. Gains 

will vary according to signal-to-noise ratio (SNR) and current 

error probability, but improvements of 20 dB in noise immunity 

or reduction in error probabilities of 20 orders of magnitude can 

be achieved. 

In Section 2 we present our notation and analyze traditional 

SS, as it applies to watermarking. In section 3 we present our 

technique, including a simplified (linear) version, and the opti-

mum ISS. In section 4 we compare the performance in terms of 

noise immunity of our technique to that of traditional spread 

spectrum, and in Section 5 we present some conclusions. 

2. TRADITIONAL SS-BASED 

WATERMARKING 

A simplified diagram of basic SS-based watermarking is shown 

in Fig. 1. A secret key K$ is used by a pseudo random number 

generator (PRN) to produce a “chip sequence” u, with zero 

mean, and whose elements are equal to 
u

σ+  or 
u

σ− .  The se-

quence u is then added or subtracted to the signal x depending on 

to the variable b, which has the values of +1 or –1, according to 

the bit (or bits) to be transmitted. The watermarked signal is s. 
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Figure 1. Spread-spectrum-based watermarking. 



We now perform a simple analysis of the probability of er-

ror in the detector for SS-based watermarking. First, consider the 

definitions of inner product and norm: 
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Without loss of generality, we assume that we are embed-

ding one bit of information in a vector s of N signal samples1. 

Then, the bit rate is 1/N bits/sample. Embedding is performed by 

s = x + b u. The distortion D in the embedded signal is defined 

by D = ||s – x||. It is easy to see that for the embedding equation 

above we have  

 2|| || || || .
u

D bu u σ= = =  (2) 

The channel is modeled as additive noise, i.e. y = s + n.  Detec-

tion is performed by first computing the (normalized) sufficient 

statistic r 
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u
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and then estimating the embedded bit by ( )ˆ signb r= , where 

,x x u u�  and ,n n u u� . 

We assume simple statistical models for the original signal x 

and the attack noise n. Namely, we assume both to be samples 

from uncorrelated white Gaussian random processes. Therefore, 

we have 

 2 2~ (0, ), ~ (0, )
i x i n
x N n Nσ σ  (4) 

Under those assumptions, it is easy to show that the sufficient 

statistic r is also Gaussian, i.e. 
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In particular, let’s consider the case when b = 1. Then, an error 

occurs when r < 0, and so the error probability p is given by 
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where erfc(·) is the complementary error function. The same error 

probability is obtained for b = –1. 

3. IMPROVED SPREAD-SPECTRUM 

The main idea behind the Improved Spread Spectrum (ISS) is 

that, by using the encoder knowledge about the signal x (or more 

precisely x, the projection of x on the watermark), we can en-

hance performance by modulating the energy of the inserted 

watermark to compensate for the signal interference. The new 

embedding approach is defined by a slight modification to the SS 

embedding equation, i.e., we vary the amplitude of the inserted 

chip sequence by a function µ (x, b) 

 ( , ) ,x bs x uµ= +  (7) 

__________________________________________  

1
 The signal x is usually obtained from transformations on the origi-

nal media signal to be marked [3]. 

where, as before, ,x x u u� . Note that the traditional SS is a 

particular case of ISS, for µ (x, b) = b, i.e. µ is independent of x. 

We will now analyze two variations of the ISS approach. 

We first analyze a linear approximation to µ, as this allows for a 

simpler mathematical analysis and it’s useful in practice. We also 

discuss the case of optimum ISS. These and a few other alterna-

tives are discussed in detail in [8]. 

3.1 A linear approximation for µ 

A simpler version of the ISS is to restrict µ to be a linear func-

tion. Not only this is much simpler to analyze, it will also provide 

a significant part of the gains in relation to traditional SS. In this 

case, and due to the symmetry of the problem in relation to b and 

x, we have: 

 ( )b xs x uα λ= + −  (8) 

The parameters α and λ control the distortion level and the re-

moval of the carrier distortion on the detection statistic. Tradi-

tional SS is obtained by setting α = 1 and λ = 0. 

With the same channel noise model as before, the receiver 

sufficient statistic is 

 , (1 ) .r b x ny u u α λ= = + − +  (9) 

So, the closer we make λ to 1, the more the influence of x will be 

removed from r. The detector is the same as in spread-spectrum, 

i.e., the detected bit is sign(r). 

The expected distortion of the new system is given by 
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To make the average distortion of the new system to equal that of 

traditional SS, we force 2[ ]
u

E D σ= , and therefore  

 ( )2 2 2 2
.

u x u
N Nα σ λ σ σ= −  (11) 

To compute the error probability, all we need is the mean and 

variance of the sufficient statistic r. They are given by 

 ( )( )22 2 2 2
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We can therefore compute the error probability p by 
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In Fig. 2 we plot p as a function of λ for various values of 

SNR and 2 2
/

u x
Nσ σ . Remember that λ = 0 corresponds to SS. 

Note that by proper selection of the parameter λ, the error prob-

ability in the proposed method can be made several orders of 

magnitude better than using traditional SS. For example, with a 

signal to interference ratio of 10 (i.e., 10 dB), we get a reduction 

in the error rate from 5
10

o
p

−

= for traditional SS to 
43

1.55 10
o
p

−

= ×  for the proposed method, a reduction of over 

37 orders of magnitude in the error probability! Higher SNR 

(which can happen in practical applications) will yield even 

higher gains. 



As it can be inferred from Fig. 2, the error probability 

achieves a minimum value for λ close to one. The expression for 

the optimum value for λ can be computed from the error prob-

ability p by setting / 0p λ∂ ∂ = : 
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Note also from this expression that 1optλ →  as SNR→∞  (for 

N large enough). 

3.2 Optimum ISS 

We now analyze the more generic case, where the function 

µ (x, b) in (7) is not restricted to be linear. We can find the opti-

mum solution for µ (x, b) that minimizes the probability detection 

error. We first note that since x, n, and b are independent, µ (x, b) 

will be odd symmetric, in the sense that µ (x, b) = –µ (–x, – b). For 

simplicity, and without loss of generality, from now on we will 

assume b = 1, and write simply µ (x). We can show that the opti-

mum value of µ (x) is either µ (x) = 0 or it must satisfy 
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where K is a constant. Details of the derivation can be found in 

[8]. Unfortunately, there is no closed-form solution for µ (x), but 

we can solve the above equation numerically. The expected error 

probability will depend on the variance of the noise, and on the 

constant K. We can, therefore look at K as a parameter that con-

trols the tradeoff between distortion and error probability. De-

pending on the values of K,
n

σ , and x, the equation will have 

one, two or three solutions. Details on which is the optimum 

solution can also be found in [8].  

Fig. 3 shows a plot of the optimum µ (x) for some different 

situations. In particular, we vary the SNR ratio, while keeping 

the average distortion constant. As it can be noted in the figure, 

µ (x) can be approximated by a straight line segment for a large 

number of situations. In particular, the higher the SNR (or the 

stronger the watermark), the better the linear approximation. 

4. PERFORMANCE COMPARISONS 

The proposed method improves the error ratio (or noise immu-

nity) for any level of channel noise (signal editing or malicious 

attack), and for any level of desired error probability. We now 

select a more specific example to give an idea of the levels of 

improvement that can be achieved with the proposed ISS 

method. We recall that for the traditional SS system to work with 

a low probability of error, e.g. 3
10p

−

< , then we need to ensure 

( )2 2 2
9u n xNσ σ σ> + . For this case it follows 0.9 < optλ  < 1. 

Also, let’s call  2

no
σ  the amount of noise supported by SS, Q the 

signal to channel noise ratio, i.e. 
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and let’s call P the noise tolerance gain of our system when com-

pared to traditional SS 
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Then, we can show that the noise tolerance gain for our new 

system is given by [8] 

 (1 ) (1 0.9 ) .
o

P Q Qλ= + > +  (18) 

Therefore, for large Q the improvement in noise tolerance will be 

significant, since it will be approximately equal to 0.9Q. In Fig. 4 

we plot P as a function of Q, all in dB.  

We note that the performance of our new ISS system is 

quite close to that of QIM [5]. The noise tolerance improvement 

of QIM over SS is slightly above Q, whereas in our system it is 

slightly below Q. However, our ISS system is not sensitive to 

amplitude scaling of the received signal y, like QIM. So, ISS can 

work very well in practice. 

In many applications, a desired error probability and a cer-

tain SNR are specified. In such cases, the objective is to mini-

mize the energy of the watermark (i.e., the signal distortion). We 

will now use this situation to compare the linear ISS to tradi-

tional SS, to STDM (a particular form of QIM), and to a theo-

retical bound.  

For a given signal and noise energy, and a desired error 

probability, inverting Eqn. (6) gives us the necessary energy in 

the watermark for traditional SS. A similar equation for the linear 

 

Figure 2. Error probability p as a function of λ. Solid lines cor-

respond to 10 dB SNR, and dashed lines to 7 dB SNR. Lines 

correspond to values of 
2 2
/

u x
Nσ σ  equal to 5, 10, and 20 

(higher values having smaller p). 

 

Figure 3. Optimal µ (x) for several SNRs. From left to right 

SNR is 10 dB, 7 dB, 3 dB, and 0 dB. In all cases, distortion is 

set to 20 dB below signal, and N = 100. 



ISS can be obtained by inverting Eqn. (13). The objective of ISS 

is to reduce the influence of the signal as a source of interference. 

A natural performance bound is therefore the result that could be 

achieved if the decoder had knowledge of the signal (and there-

fore could remove any influence from the detection statistic). In 

such situation, it has been shown that traditional SS is optimum. 

In [6], Chen and Wornell show that the performance of STDM is 

only 1.25 dB above this bound. 

Fig. 5 shows a plot of these numbers for attacks correspond-

ing to 5 dB and 10 dB SNR. In each figure, the solid line repre-

sents the theoretical bound, the dash-doted line represents the 

performance of traditional SS, the dashed line id for STDM, and 

the two dotted lines represent two versions of linear ISS: the 

simplest one (λ = 1), and with λ optimized according to Eqn. 

(14). Note that, in each case, traditional SS requires about the 

same extra energy in the watermark as the attack SNR. For error 

probabilities below 5
10

− with attacks over 10 dB, the ISS per-

formance is within 2 dB of the theoretical bound, and it even 

outperforms STDM for error probabilities below 8
10

−  (below 
3

10
− for a 5 dB attack). We note that other QIM methods, more 

elaborate than STDM would help reduce the gap to the theoreti-

cal bound. Nevertheless, all QIM methods suffer from the scale 

sensitivity problem. In summary, ISS is much simpler, robust to 

scaling attacks, does not require modifying an existing SS de-

coder, and its performance is similar to that of QIM. 

5. CONCLUSION 

In this paper we have proposed an improved spread spectrum 

technique for use in watermarking applications. We have shown 

that the proposed technique provides an exceptional improve-

ment over traditional SS, with improvements in the error prob-

ability of several orders of magnitude for most typical scenarios. 

Spread spectrum is currently used by many watermarking 

schemes as the information embedding (or modulation) technol-

ogy. The proposed technique can be readily applied to practically 

any watermarking technique currently using SS, taking immedi-

ate advantage of the gains. Furthermore, the proposed method 

does not require any change in the detection scheme, and in some 

cases it could be applied even to systems that are already de-

ployed, as far as we still have access to the encoders (and this is 

often the case in media distribution schemes). 
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Figure 4. Improvement in noise robustness of ISS over tradi-

tional SS, in dB, as a function of the channel SNR. For a typical 

scenario of a channel SNR of 20 dB, the improvement is about 

20 dB, i.e., ISS can tolerate 100 more times channel noise power 

than traditional SS. 

 

 

Figure 5. Error probability as a function of watermark energy. Er-

ror probability for ISS (optimum and linear, dotted lines) com-

pared to SS (dash-dot lines), STDM (dashed line) and a theoretical 

bound (solid line). Top: SNR = 5dB; bottom: SNR = 10dB. 
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