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ABSTRACT

Zombie is an endurance management framework that en-
ables a variety of error correction mechanisms to extend the
lifetimes of memories that suffer from bit failures caused by
wearout, such as phase-change memory (PCM). Zombie sup-
ports both single-level cell (SLC) and multi-level cell (MLC)
variants. It extends the lifetime of blocks in working memory
pages (primary blocks) by pairing them with spare blocks,
i.e., working blocks in pages that have been disabled due
to exhaustion of a single block’s error correction resources,
which would be ‘dead’ otherwise. Spare blocks adaptively
provide error correction resources to primary blocks as fail-
ures accumulate over time. This reduces the waste caused
by early block failures, making working blocks in discarded
pages a useful resource. Even though we use PCM as the
target technology, Zombie applies to any memory technology
that suffers stuck-at cell failures.

This paper describes the Zombie framework, a combina-
tion of two new error correction mechanisms (ZombieXOR
for SLC and ZombieMLC for MLC) and the extension of
two previously proposed SLC mechanisms (ZombieECP and
ZombieERC). The result is a 58% to 92% improvement in
endurance for Zombie SLC memory and an even more im-
pressive 11X to 17x improvement for ZombieMLC, both
with performance overheads of only 0.1% when memories
using prior error correction mechanisms reach end of life.

Categories and Subject Descriptors

B. Hardware [B.3. Memory Structures]: B.3.4. Relia-
bility, Testing and Fault-Tolerance; E. Data [E.4. Coding
and Information Theory]: Error control codes
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1. INTRODUCTION

The current technology roadmap shows that scaling DRAM
to smaller features [16] is rapidly slowing down. Fortu-
nately, DRAM replacement solutions are emerging [29, 28,
33]. These solutions provide more stable storage and are
based on magnetic or physical properties of materials. Phase-
change memory (PCM) [12, 1, 3], a resistive memory tech-
nology, is already shipping as a NOR-Flash replacement. It
is faster, uses less power, and achieves longer lifetimes than
Flash.

Using PCM as a DRAM replacement for main memory,
however, poses challenges. One such challenge is the en-
durance of individual bits. While DRAM cells typically
support an average of 10'° writes over their lifetime, PCM
cells last for as little as 10® writes on average. Permanent
DRAM cell failures are so rare that mechanisms to tolerate
them are wasteful: They disable the entire physical page
where the failure occurred, which then becomes unavailable
for software use. Since PCM cells wear out much faster, us-
ing the same approach would quickly disable all PCM pages.
Thus, to make PCM a viable alternative for main memory,
lifetime-extending mechanisms are crucial for both single-
level cell (SLC) and multi-level cell (MLC) PCMs. An ad-
ditional challenge with MLC PCM is drift: Once written,
cell resistance may change over time. This adds complex-
ity to MLC error correction mechanisms because they must
tolerate both wearout and drift.

Multiple hardware-only error correction mechanisms tackle
wearout by transparently correcting and hiding failures from
software layers [15, 30, 31, 37, 24]. Despite significant prog-
ress, these mechanisms remain inefficient, wasting a large
number of working bits when they can no longer correct
errors and thus must disable pages.

This paper proposes the Zombie framework, which lets
a variety of error correction mechanisms use the abundant
working bits in disabled pages to extend the lifetime of pages
still in service. Its unifying principle is to pair a block, or
even a subblock, sourced from disabled pages (spare blocks)
with a block in software-visible pages (primary blocks), ex-
tending the primary block’s useful lifetime (and turning them
into ‘zombies’). Zombie enables on-demand pairing and
gradual spare subblock growth, i.e., primary blocks are paired
with spare blocks only when they exhaust their own error
correction resources and can gradually increase their spare
subblock size as additional resources are needed. Although
this paper focuses on PCM memory, Zombie applies to other
memory technologies that suffer from stuck-at cell failures.

This paper also proposes two new error correction mech-



anisms, ZombieMLC and ZombieXOR, and extends two ex-
isting ones (ZombieECP and ZombieERC) to showcase the
Zombie framework. ZombieMLC, as the name suggests, is
designed specifically for MLC and, to our knowledge, is the
first mechanism to tolerate both drift and stuck-at failures.
The other mechanisms (ZombieXOR, ZombieECP and Zom-
bieERC, collectively called “ZombieSLC mechanisms”) tol-
erate only stuck-at failures and are better suited to SLC
PCM.

To illustrate the opportunity Zombie leverages, Figure 1
shows the average number of bit flips (or writes to a bit)
and the average fraction of failed bits when a page must be
disabled, for several previously proposed mechanisms that
protect SLC PCM. The fraction of failed bits measures the
amount of waste — the lower this fraction, the higher the
number of unusable working bits that are wasted. All practi-
cal mechanisms waste at least 99% of the bits in a page. Ora-
cle64 and Oracle128 represent ideal mechanisms that correct
64 and 128 bit failures per block, respectively. Even though
increasing the error tolerance from 64 to 128 bit failures dra-
matically reduces bit waste, it is arguably in the diminishing
returns region with respect to increasing the number of bit
flips. Note that Oracle64 increases memory endurance (68
million flips) by 50% or more compared to other previously
proposed mechanisms (SAFER at 44 million flips), repre-
senting a significant memory lifetime improvement oppor-
tunity that can be realized by the Zombie framework. The
opportunity is significantly larger for MLC PCM.

Number of flips per bit (millions)

Figure 1: Average number of bit flips (x-axis) and av-
erage fraction of failed bits (y-axis) when a page must
be disabled for a variety of error correction mechanisms
that protect an SLC PCM (represented by markers), as-
suming an average cell lifetime of 108 bit flips (writes)
and a 0.25 coefficient of variance. The solid line is the
cumulative distribution function of failed memory bits as
a function of bit flips.

By leveraging this opportunity, the ZombieSLC mecha-
nisms extend memory lifetimes by 58% to 92%. ZombieMLC
achieves even more impressive lifetime extensions — of 11 x
to 17x— while also tolerating drift. Zombie achieves these
longer lifetimes with graceful degradation and at low perfor-
mance overhead and complexity.

The rest of this paper is structured as follows. Section 2
presents background on PCM and the relevant previous er-
ror tolerance approaches. Section 3 provides an overview
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of the various Zombie mechanisms, while Section 4 offers
more implementation details. Section 5 evaluates Zombie,
Section 6 reviews related work and, Section 7 concludes our
discussion.

2. BACKGROUND

2.1 Phase-Change Memory Basics

The storage principle in PCM leverages the phase of the
material in a cell: Depending on how cells are heated up
and cooled down, the material can become amorphous or
crystalline, which changes its conductivity. This allows the
value to be read out by running a small current through
the cell and measuring the voltage. The material can also
be partially crystallized to create multi-level cells that store
more than one bit.

PCM differs from DRAM in multiple aspects. Besides
having higher write operation latency and energy, PCM has
a very different failure profile!. PCM cells are less vulnerable
to soft errors than DRAM cells. Prior research has shown
that PCM retention time will reach 10 years at 85°C', and
that the thermal interference between cells is very low even
over a 10-year retention period [5]. However, multi-level
cells are subject to a phenomenon called drift, which causes
the resistance of cells to grow over time [14, 23], potentially
reaching a different level and resulting in transient errors.
Other challenges specific to MLC PCM, like spontaneous
crystallization, can be handled at the device level [13].

Temperature cycles in write operations also make PCM
much more susceptible to wear; PCM currently supports on
the order of 10® bit flips per cell. This poses one of the most
significant challenges in using PCM as main memory. Con-
sequently, writes are performed differentially, i.e., a block is
read and compared to the value to be written so that only
the bits that changed are actually modified. In addition, er-
rors resulting from wearout failures can be detected at write
time and are “stuck-at” faults. A verification operation, per-
formed after every write, reads the block again and compares
the new value to the expected value. PCM write operations
are thus a three-step process: read-write-verify?.

There have been many prior error correction proposals for
SLC PCM (15, 30, 31, 37, 24, 7]. Except for DRM [15], none
of these proposals attempt to reuse bits in pages that have
already been disabled to correct bits in pages that are still
enabled. DRM reuses bits at the granularity of pages. Zom-
bie mechanisms reuse them at the block or subblock gran-
ularity level. This finer granularity enables more flexibility
in correcting errors, enhancing page longevity and making
memory degradation more gradual. More detail on prior
mechanisms is provided in Section 6.

2.2 Zombie-Extended Correction Mechanisms

ECP [30] is based on adding replacement cells and pointers
to the failed cells they replace. The original ECP proposal
adds 12.5% extra bits to each block and uses them to store 6
replacement entries and a used-entries counter, as shown in
Figure 2. ZombieECP extends ECP by providing additional
replacement entry storage, up to an entire spare block.

!This paper uses error, fault and failure interchangeably to
refer to wearout, stuck-at faults.
2We assume differential writes, read-write-verify write oper-
ations, and perfect wear leveling.
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Figure 2: A 512-bit PCM block with 6 associated ECP
pointers. The error correction overheard is 12.5%.

Codes to deal with stuck-at faults use one-to-many encod-
ing functions. Multiple possible representations of the same
message ensure that at least one representation is appropri-
ately aligned with the values of stuck cells and can actually
be stored in memory. This paper uses the notation [n, k, d|
to denote coding schemes that encode k-symbol messages to
n-symbol codewords and tolerate d — 1 stuck-at faults.

ZombieERC implements one such mechanism proposed by
Tsybakov [34], optimizing it for practical use in the PCM
context. To store k-bit messages in an n-bit memory block
where up to d — 1 cells are stuck, ZombieERC uses a binary
k X m matrix G, which is a generator matrix of a binary
linear code of length n, dimension k, and distance d [22].
The possible representations of x are all vectors y such that
GyT = . If more than one vector y is aligned with the
values of stuck cells, ZombieERC prefers the vector y that
optimizes memory lifetime (i.e., wears the spare block).

Rank modulation [23, 4, 18], an encoding technique that
tackles the drift issue in MLC memory, constructs a code-
word as a string of relative ranks of values stored in a group
of cells such that their specific permutation compared to a
base string (e.g., monotonically increasing ranks) encodes
the original data message. Using small groups results in a
low probability of the cells in that group drifting enough to
change their relative rank. Although rank modulation mit-
igates drift, it does not tolerate stuck-at cells [23]. Naively
combining rank modulation with error correction does not
result in a mechanism capable of tolerating both drift and
wearout. ZombieMLC uses certain principles from rank
modulation to mitigate drift, yet it can also tolerate wearout.

3. THE ZOMBIE FRAMEWORK

Zombie is a hardware framework that allows error correc-
tion mechanisms to recycle good cells in disabled (or dead)
pages to extend the life of pages that are still in service
(or alive) but are running out of error correction resources.
Zombie thus leverages the high number of good cells left in
pages that have to be disabled due to a small number of
failures that cannot be corrected, as illustrated in Figure 1.

3.1 Pairing Strategies

Initially, all memory pages are independent and visible to
software. When the first block runs out of intrinsic error
correction resources, its entire page is disabled and made
unavailable to software. Zombie recycles good blocks in dis-

abled pages (spare blocks or subblocks) by pairing them in-
dividually with blocks in working pages that are about to
run out of error correction resources (primary blocks), as
illustrated in Figure 3. The spare block increases the error
correction resources of its primary block and keeps it alive
longer. The various Zombie mechanisms differ in how they
combine the two blocks to implement error correction, but
all use this pairing strategy.
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Figure 3: Primary blocks (in white) pointing to a spare
subblock (left) and block (right), in gray. The spare
block may be the same size as the primary block or
smaller: half, a quarter or an eighth of the size. Each
spare block size has it own address pool.

Many of the Zombie mechanisms are adaptive: Instead
of initially pairing blocks with a full spare block, a primary
block may be paired with a smaller spare subblock, as shown
in Figure 3. This ensures better utilization of spare blocks
because primary blocks get only as much extra resources
as they need. As more resources are needed, primary blocks
are paired with increasingly larger subblocks until they reach
the size of an entire block. The memory controller keeps one
pool per size and hands out spare subblocks for on-demand
pairing.

3.2 Error Correction Mechanisms Overview

This paper showcases Zombie with two new error correc-
tion mechanisms (ZombieMLC and ZombieXOR) and two
existing ones [30, 34] that were extended to leverage the
framework (ZombieECP and ZombieERC). These mecha-
nisms belong to one of two classes. ZombieXOR, Zom-
bieECP and ZombieERC correct stuck-at cells but cannot
tolerate drift, which is typical of MLC. Thus, they are more
suitable to SLC (or MLC memories without drift or simi-
lar issues), so we refer to these mechanisms as ZombieSLC.
The remaining mechanism is, to our knowledge, the first to
tolerate both drift and stuck-at errors, and we refer to it as
ZombieMLC. Basic descriptions of each Zombie error cor-
rection mechanism follow. Section 4 provides more detail
about each.

ZombieXOR. ZombieXOR pairs two blocks cell-by-cell.
Once blocks are paired, ZombieXOR relies on simple XOR-
based encoding to read and write these blocks. If a given
cell in a primary block is stuck, its counterpart in the spare
block is likely not to be; therefore, the spare block can be
modified so that the XOR operation between primary and
spare bits recovers the original value stored in the cell. In
the unlikely case that both cells are stuck, ECP entries in
the spare block are used to correct the stuck cell pair.



ZombieECP. This simple extension of ECP [30] works as
follows. Once blocks are paired, the spare block stores addi-
tional ECP entries to correct stuck bits both in the primary
block and in the spare block itself. This mechanism is adap-
tive, so blocks are divided into subblocks. When the level of
failures in a primary block is low, a small spare subblock pro-
vides sufficient resources for correct operation. As failures
accumulate, larger subblocks are used, up to a full block.

ZombieERC. This mechanism applies erasure codes that
take the location of stuck-at bits into account [34]. It uses
one-to-many encodings of values and chooses an encoding
that matches the values in stuck cells. Providing one-to-
many encodings requires additional storage, which is grad-
ually supplied by spare subblocks or blocks as failures ac-
cumulate. ZombieERC prefers encodings that least modify
primary bits, shifting the wear to spare bits.

ZombieMLC. ZombieMLC uses different coding solutions
depending on the number of stuck cells. Under no failures,
the simplest codes, which are based on rank modulation and
only tolerate drift, use a one-to-one mapping of messages to
balanced codewords, i.e., strings where all ranks, or coordi-
nate values, occur equally often. As permanent failures ac-
cumulate, ZombieMLC switches to one-to-many encodings;
these encodings not only take advantage of the likelihood of
cells drifting together, like rank modulation does, but they
also use predefined anchor values to determine how to un-
shuffle the codeword to recover the original string.

4. IMPLEMENTATION DETAILS

Zombie memory controllers transparently offer unmodified
read and writeback semantics to last level caches. Zombie
adds features only to the control path and error correction
modules of memory controllers. Some of these features, such
as those related to spare pool management, are common to
all Zombie mechanisms. Others are specific to particular
mechanisms. Note that ZombieMLC uses a different block
size than ZombieSLC, but it still stores 512 bits of data.

4.1 Common Zombie Functionality

The Zombie framework provides common block formats,
structures and mechanisms.
A. Block Formats
Primary block format. For ZombieSLC, the ECP meta-
data in the primary block has a field to indicate whether
all entries are used, as in the original ECP proposal. Zom-
bie adds a two-bit field to indicate either that the block is
unpaired or the size of the subblock in use. The remaining
ECP bits are used to redundantly store the spare block ad-
dress and additional metadata. ZombieMLC does not use
ECP, so the pointer is stored in bits previously used for data
or in reserved fields.
Spare block format. Spare blocks are one of three sizes,
the largest being a full block (512-bits). Intermediate sizes
depend on the Zombie mechanism being used. When the
block is divided into subblocks, the memory controller records
which subblocks have been allocated and which are free, ei-
ther in the spare block itself or in a separate table.
B. Basic Structures
Spare block pools. The memory controller keeps a sep-
arate pool for each subblock size. Pools are simply a head
entry pointing to block linked-lists implemented using the
storage in the blocks themselves.

Spare data buffer. The memory controller’s control path
and error correction modules share and communicate spare
block contents through this buffer.

C. Basic Mechanisms

Locating spare blocks. When a paired primary block is
accessed, the memory controller’s control path module lo-
cates the spare block by following the pointer stored in the
primary block. When a block is read, it places the spare
block data into the spare data buffer. When a block is writ-
ten, it copies the contents of the spare data buffer to the
spare block.

Managing free spare blocks. On block failure, the mem-
ory controller finds the smallest available subblock of ap-
propriate size and pairs it with the primary block; it then
updates the corresponding spare block allocation bit and
removes the block from the pool if it has been completely
paired. If there are no spare blocks in any pools, the entire
page containing the failing block is disabled, and its blocks
are divided into the smallest supported subblock size and
inserted in the pool. If the primary block had previously
been paired with a smaller subblock, this spare subblock is
returned to its pool. As larger subblocks are needed, the
memory controller combines smaller contiguous subblocks
into larger ones.

4.2 ZombieSLC Mechanisms

ZombieSLC mechanisms use existing schemes for intrinsic
block error correction. For example, we assume ECP with
six entries (ECP6). With ECP6, when a block suffers its
seventh bit failure, it is paired, and a ZombieSL.C mechanism
becomes active for that block.

4.2.1 ZombieXOR Mechanism

ZombieXOR is the simplest Zombie strategy. It pairs two
blocks cell-by-cell using XOR operations (see Figure 4).
ZombieXOR is not adaptive, so primary and spare blocks
are always the same size. The semantics of reading and
writing the block changes for paired blocks: A cell of data is
the XOR of cells with the same offset in primary and spare
blocks. ZombieXOR repurposes ECP entries in the spare
blocks to replace cells in offsets where both the primary and
spare data cells have failed. It adds a bit-wise XOR unit to
the memory controller’s error correction module.
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Figure 4: Blocks paired with XOR operations. If aligned
bits have both failed, an ECP entry in the spare block
replaces those bits.

Read operation. Reads are straightforward: If the block
is paired, both the primary and spare blocks are read from
memory. The primary block P is read as is, and the spare
block S is read and corrected by its ECP entries. The orig-
inal data is finally obtained by performing a bit-wise XOR
of these values. Reading each paired block requires reading



two blocks from main memory. However, reads of primary
and spare blocks can proceed in parallel if the pairing infor-
mation (not the data) is cached by the memory controller
and the blocks have been mapped to independent banks.
Write operation. Writes are more complex: The memory
controller must determine what values need to be written
to the primary (P) and spare (S) blocks. The goal is to
write two values, P’ and S’, such that P’ ® S’ encode the
desired data A (see Figure 4). To reduce wear, ZombieXOR
writes mostly to S and only writes to P bits that, when
X ORed with corresponding S’ stuck-at bits, recover A’s bit.
This lengthens P’s lifetime at the expense of S, but a spare
block can be easily replaced, while a primary one cannot.
If writes to P also fail, the memory controller allocates an
ECP entry in the spare block for each failing bit (rarely more
than one at a time) and retries the write. If S’s ECP entries
are exhausted, the memory controller allocates a new spare
block. If the new pairing fails, P’s page is disabled, and its
blocks are added to the spare pool.

4.2.2 ZombieECP Mechanism

ZombieECP is an adaptive extension of ECP that uses the
space in a spare subblock for additional ECP entries. As in
the original ECP proposal, ZombieECP entries are used to
correct stuck-at data cells or to replace another failed ECP
entry. The subblock size gradually increases on demand. For
SLC cells, 128-bit subblocks support up to 12 entries, 256-
bit subblocks support up to 25, and 512-bit blocks support
up to 51.

ECP uses an active entry count to determine which en-
tries are already in use. This count must be larger for Zom-
bieECP. When the primary block gets paired, its entries are
copied to the spare block, and its ECP metadata field is
repurposed to store the spare subblock pointer and other
metadata, such as the combined entry count. Read and
write operations are performed as in ECP except they use a
larger number of ECP entries. Though its hardware is simi-
lar to ECP, ZombieECP includes a log-depth parallel prefix
circuit to keep latency low.

4.2.3 ZombieERC Mechanism

ZombieERC divides blocks into multiple data messages
of size k and encodes them into larger codewords of size n
with an erasure code [n, k, d] that can tolerate up to d—1 er-
rors. This code uses the knowledge of stuck-at bit locations,
as described by Tsybakov [34]. This type of code provides
a one-to-many mapping of data messages into codewords.
Having multiple codewords to choose from lets ZombieERC
tolerate stuck-at cells by finding a compatible codeword, i.e.,
a codeword containing symbols that match the stuck-at cell
values.

ZombieERC extends Tsybakov’s proposal with a hardware-
optimized implementation using three optimizations: (1) bi-
asing writes toward the spare block, (2) adapting to a gradu-
ally higher number of failures by increasing the subblock size
to accommodate more error tolerant encodings, and (3) cal-
culating one-to-many mappings using a table-based imple-
mentation.

After encoding, the k first bits of each codeword are stored
in the primary subblock, and the remaining in the spare.
ZombieERC intentionally partitions codewords into primary
and spare blocks, and it biases the encoding so that bit flips
are more frequent in the spare block, unlike T'sybakov’s cod-

ing scheme. This is done to preserve primary blocks: A spare
block can be readily replaced with another, while a primary
one cannot. ZombieERC is also adaptive; thus, as failures
accrue, subblocks grow, stretching to make space for more
error tolerant encodings. For SLC PCM, ZombieERC uses
128-bit subblocks to tolerate up to 2 errors per codeword,
256-bit subblocks to tolerate up to 3 errors per codeword,
and 512-bit blocks for 3 errors per smaller codeword.

Typically, using Tsybakov’s codes requires solving a sys-
tem of linear equations. Instead of implementing hardware
to solve this system dynamically, we partition blocks into
smaller data messages, which reduces the size of matrices
used for decoding and their inverses used for encoding. These
smaller matrices can be pre-computed for every set of stuck-
at cells and allow for a table-based implementation that re-
moves the need to solve the system dynamically, resulting in
a hardware-optimized design. For SLC PCM, ZombieERC
encodes 20-bit messages into 25-bit codewords (128-bit sub-
blocks, 2 errors per codeword), 10-bit messages into 15-bit
codewords (256-bit subblocks, 3 errors per codeword), and
4-bit messages into 8-bit codewords (512-bit blocks, 3 er-
rors per codeword). The total memory required to store all
matrices is less than 16KB.

As noted, ZombieERC relies on a priori knowledge of
stuck-at locations. A naive approach to generating this
knowledge is to flip all cells and read them back, comparing
new to original values. However, performing this operation
would cause too much wear. Instead, ZombieERC employs a
failure location cache, similar to previous work [31], to miti-
gate excessive wear. This cache consists of entries that store
a bit vector for error locations in both primary and spare
blocks, and it has overheads similar to the cache presented
in prior work [31].

4.3 ZombieMLC Mechanism

ZombieMLC, a new encoding mechanism, tolerates both
stuck-at failures and drift. It combines ideas from rank
modulation with a novel form of encoding information about
failures based on the position of special symbols, called an-
chors. This encoding assumes that the two possible types
of stuck-at cell failures can be differentiated and that they
represent the lowest and the highest symbol values.

As discussed in Section 2, rank modulation constructs a
codeword as a string of relative ranks of values stored in
a group of cells. A contrived example of a 3-cell group il-
lustrates the concept. The first cell has the highest value
(rank 5), the second cell has the lowest value (rank 1), and
the third cell has the middle value (rank 3), resulting in the
string r5,r1,r3 (note that a string is a sequence of ranks).
This permutation of ranks, instead of the absolute cell val-
ues determined by the cell resistance levels of the group,
determines the original data message.

ZombieMLC tolerates stuck-at failures by picking anchor(s)
with unique ranks and known starting positions embedded
within the string. For d — 1 stuck-at cells, we pick d — 1
symbols used as anchors that are neither the lowest nor
the highest symbol values. The rank-modulated string is
appended to the anchors and further shuffled to align the
lowest and highest ranks with failures. The known anchor
values and respective positions are then used to unshuffle the
stored value and recover the original string. For example,
if the goal is to correct two errors in the preceding rank-
modulated string, ZombieMLC adds two anchors (and two



cells) to the group, as the second and fourth highest values,
and prepends them to the string: r2,r4 — r5,r1,r3. Assume
there is a ‘stuck-at one’ failure in position 4 and a ‘stuck-at
zero’ failure in position 5. By shifting the string one posi-
tion to the right, ZombieMLC obtains a permutation that
covers the error locations with the appropriate values (po-
sition 4 with the highest and position 5 with the lowest):
r3,r2,r4,r5,rl, which is finally stored in memory. At decode
time, the position of the first anchor value determines how
much to shift the string to recover the original string.

In reality, ZombieMLC uses slightly more complex func-
tions to shuffle the coordinates of the string. It always uses
the same number of anchors as there are error locations to
correct and covers the error locations with their known val-
ues. The problem construction (i.e., codeword length restric-
tions, shuffle equations, and number of anchors) guarantees
unique solutions for every encoding, making it possible to
decode what is written to memory.

If each symbol can occur only once in a group, the over-
head of permutations could become very large. We use
strings to reduce it, allowing multiple symbols to appear
uniformly (2-bit MLC) or non-uniformly (3-bit or greater
MLC) in the group of cells. For example, for 2-bit cells,
groups of 8 (e.g., [0,0,1,1,2,2,3,3]), 12, 16, or more cells trade
off encoding overhead — since longer codewords reduce the
encoding overhead, or stretch — and encoding complexity, or
the computational effort required to encode or decode the
codeword. Table 1 lists candidate codes and points out the
baseline encoding (B, drift-tolerant, no error correction) and
adaptive coding sequences we evaluate (1, 2, 3).

Notation | Codeword | Msg | Errors | Stretch
2-bit MLC (MLC2)
8,5, 1] 8 5 0 1.60
12,9,1] 12 9 0 1.33
16,12,1] 16 12 0 1.33
[20,16,1] (B,1) 20 16 0 1.25
[8,4,2] (3) 8 4 1 2.00
12,8,2] (2) 12 8 1 1.50
16,11,2 16 11 1 1.45
20, 15,2 20 15 1 1.33
4-bit MLC (MLC4)
32,25,1 32 25 0 1.28
48,40, 1 48 40 0 1.20
[64,55,1] (B) 64 55 0 1.16
(32,24, 2] 32 24 1 1.33
48,39,2] (1) 48 39 1 1.23
64,52, 2 64 52 1 1.23
29,20, 3 29 20 2 145
41,30,3] (2) 41 30 2 1.37
57,45,3 57 45 2 1.27
28,17,4] (3) 28 17 3 1.65
42,30,4 42 30 3 1.40
54, 40,4 54 40 3 1.35

Table 1: String stretch for 2-bit and 4-bit MLC PCM.
(B=Dbaseline code, and the numbers show the codes used
for our adaptive encoding scheme.)

Two main steps are required for encoding ZombieMLC
codewords: rank modulation and stuck-at cell error correc-
tion. First, ZombieMLC converts the message into a drift-
tolerant codeword (string). Second, it layers error correction
on top of the string by prepending more (unique) symbols,
the anchors, to the string and further shuffling the codeword

to tolerate stuck-at cell failures if the region of memory to be
written contains them. Knowing the anchor values and loca-
tions provides an ‘undo’ function that is used to decode the
codeword. To correct single-cell failures, the anchor value
changes, but its string location or position stays the same.
To correct two or more cell failures, the anchor values stay
the same, but their locations in the string are shuffled so
that other known values (not the anchors) can be “written”
to the error locations. Figure 5 illustrates these two main
steps.

4.3.1 Rank Modulation Step

The goal of step 1, rank modulation, is to use m coordi-
nate values (or ranks, or resistance levels available in a cell)
and a group of 2m cells to encode a data message so that the
sequence in which these values appear in the group can be
used to decode the message®. Each cell is permanently as-
signed a coordinate 1 < ¢ < 2m, which indicates its relative
position in its group. Coordinates are shuffled to generate a
string. Figure 5 shows an example shuffle of the data mes-
sage, the decimal number ‘1,001’, into the rank-modulated
string [3,0,1,2,2,1,0,3], using well-known techniques. We re-
fer the reader to Barg et al.’s work [4] for details on how the
encoding and decoding of rank modulated-strings is done.

4.3.2  Stuck Cell Error Correction Step

The second step depends on how many stuck-at cells need
to be accommodated. Items 2a and 2b in Figure 5 show the
process for one and two stuck-at cells, respectively.

For one stuck-at cell, say code [9,5,2] for 2-bit MLC, Zom-
bieMLC prepends a single symbol of known coordinate value
(e.g., 0) to the string that represents the data value after
rank modulation. It then subtracts the original value to be
stored in the stuck-at cell (2, circled in 2a) from the faulty
cell value (0 in this example). This value is added to each
symbol in the string. Both subtraction and addition are
modulo the number of levels these cells support. This fi-
nally produces the codeword to be written in memory (2a,
bottom).

For two and three stuck-at cells, ZombieMLC prepends
as many anchors as stuck-at cells to the rank-modulated
string, resulting in a new string s. The rank-modulated
string contains non-anchor symbols, where each symbol oc-
curs a (nearly) equal number of times, and both lowest and
highest possible cell values occur at least as many times as
stuck-at cells to be tolerated; otherwise, there may not be
enough of these values to map to stuck-at cells.

If ZombieMLC were to write s unmodified to memory,
the presence of stuck-at cells could cause the arbitrary val-
ues in s to be corrupted because one or more of its symbols
cannot be written. Thus, ZombieMLC shuffles this string
using a permutation on its indices (i.e., symbols in s are
placed in new locations within that group of cells) so that
the stuck-at cells are aligned with the symbols these cells
return when read. For example, if a location is stuck at
0, the value mapped to that index is also 0. The mapping
function ZombieMLC uses to generate this permutation be-
longs to a carefully crafted family, which guarantees that
the permutation always exists and is easy to compute. To
decode, ZombieMLC inverts this permutation. The family
of mapping functions we use allows ZombieMLC to use the
knowledge of anchor locations (due to their unique values)

30ther ratios of ranks to cell group size are possible.



in the string read from memory to invert the permutation.
For two errors, n (the size of the string to be written in
memory) must be a prime power and the family of map-
ping functions consists of linear functions y = ax + b, where
the arithmetic is over a finite field of size n, x is a location
in a rank-modulated string, and y is the location where it
is stored in memory. For three errors, n is a prime power
plus one, F' is a finite field of size n — 1, and the family
of functions consists of Mobius transformations of the form
y = (ax + b)/(cx + d) with ad — bc = 1, over the projective
line F'U {oco}. Alon and Lovett [2] provide a more detailed
discussion.

1. Rank Modulation Step:

a. Original data message: 1,001 (decimal number)
b. Rank-modulated string: [3,0,1,2,2,1,0,3]

2. Stuck Cell Error Correction Step:

a. Code that tolerates 1 stuck-at cell:

Codeword for data message=1,001 after first step:
anchor~" 0| 3'0’;@2’1’0’3

Memory to store codeword: (W = working Cell, 0 = stuck
W,W,W, \W,W,W, 5t cell stuck at 0

Codeword for data message=1,001 after second step:
anchor/z 11,2, 0,3,2,1
b. Code that tolerates 2 stuck-at cells:
Codeword for data message=26 after first step:
2| 0,0,3,3,0,3,3
anchors

Memory to store codeword:

@N,W,W,W,\I\@N,W,V\/,W, 15t and 7t cells stuck at 0
Codeword for data message=26 after second step:

@3 | 0,0,3,2@3,0,3,1
Encoding:y = (ax + b) mod 11  Decoding:y = (ax + b) mod 11

V=1 %3 =3 Yar =11, %, =1
Vo =7, % =4 Ya2 =6, X2 =2
a=6,b=5 a=6b=5

y =(6x+5) mod 11 (6x) mod 11 = (y = 5) mod 11

X 1 2 3 4 5 6 7 8 9 10 1
y 1 6 1 7 2 8 3 9 4 10 5

Figure 5: Two-step ZombieMLC string encoding and
decoding process: rank modulation and correction for
one and two stuck-at cells. ‘W’ denotes working cells.

Item 2b in Figure 5 shows the encoding of a codeword
that tolerates up to two stuck-at cells. Anchors with values
1 and 2 are prepended to the rank-modulated string. The
first and seventh positions in the memory that will be used
to store the final codeword are stuck at 0 (circled in the fig-
ure), so yr1 = 1 and yro = 7. First, ZombieMLC finds the
two leftmost positions with values at the same level as the
stuck-at cells, the third and fourth positions in this example.
These are the positions the mapping function should shuffie
into the stuck-at cells. Thus, 51 = 3 and xyo = 4. Next,
ZombieMLC computes a and b such that ys1 = (axs1 + b)
mod 11 and ys2 = (axf2+b) mod 11, which resultsina = 6
and b = 5. Note that because n, the codeword length, is
prime, modulo arithmetic and finite field arithmetic are the
same. We refer readers to Horowitz’s work [11] for details on

finite field arithmetic. Finally, a and b are used to determine
the final coordinate for every symbol in the string (Figure 5,
mapping table at the bottom), and values are written to
memory according to this shuffle (see codeword after sec-
ond step in Figure 5, 2b). To decode, ZombieMLC uses the
knowledge of the anchor values (1 and 2), their original lo-
cations at the beginning of the string (z,1 = 1 and 242 = 2),
and their current locations (y,1 = 11 and ya2 = 6) to recover
a and b and revert the encoding shuffle. Once unshuffled,
the string goes through rank demodulation to recover the
data message (26). A more complete set of encoding and
decoding examples, including rank modulation is provided
elsewhere [8].

4.4 Zombie Hardware and Memory Operations

Zombie requires only minor hardware changes, summa-

rized below, along with additional memory operations that
affect Zombie’s performance only when blocks are paired.
Memory controller. The logic and memory required
in the memory controller are small and add only one cy-
cle to the control path. ZombieERC’s erasure code table is
read-only and at most 15.6 KB for the codes we use, smaller
than a typical L1 cache. The largest ZombieERC codeword
size we use is 25 bits, requiring five levels of simple logic for
the bitwise multiplication (an XOR). For ZombieMLC, we
use multiple simple functional units to solve the sequence
of equations required to generate the string. A small col-
lection of multiplexers with at most 6 levels is required to
shuffle cells to transform the string into the codeword and
vice versa.
Memory operations. Operations over paired blocks re-
quire at least one additional memory operation. On reads,
the memory controller must read both primary and spare
blocks to reconstruct the original data. Writes are more
complicated: For mechanisms that use the error location
cache, a miss in this structure requires flipping all bits in the
block to recover the location of failed bits. All mechanisms
require writes to both primary and spare blocks. If new
bits fail during these writes, additional writes are required.
Table 2 summarizes the number of additional operations re-
quired in the worst-case.

Mechanism Additional

Read Ops Write Ops
ZombieECP +1 RD(S) +1WR(S)
ZombieERC +1 RD(S) +1WR(P),+2WR(S)
ZombieXOR +1 RD(S) +1 RD(S), +1 WR(P)
ZombieMLC +1 RD(S) | +1 WR(S), +1 WR(P)

Table 2: Additional operations required for the various
Zombie mechanisms. (S:Spare and P:Primary blocks)

S. EVALUATION

We use two kinds of simulation approaches to model Zom-
bie: (1) a cache and memory simulator to collect information
about cache and bit/cell flipping behavior, and a statistical
stmulator to estimate lifetime. The cache and memory simu-
lator is based on Pin [21] and simulates a cache hierarchy of
64KB, 8-way set associative data L1 cache, a shared 2MB,
8-way set associative L2 cache, and main memory. We run
SPEC2006 workloads [10]. On an average write, the raw



data bit flip rate is only 17% of bits in a block. For SLC,
this naturally translates into a 17% cell flip rate. As bits
are grouped into multi-bit cells (MLC), the cell flip rate in-
creases because cells have to be re-written every time any
of their bits flip. We have measured an average of 31%
and 39% cell flip rates for 2-bit and 4-bit cells, respectively.
Additionally, once raw data gets encoded, flip rates grow
significantly. We use 75% and 93.75% flip rates to account
for the wear of rank modulation encoding of 2-bit and 4-bit
cells for our baseline and error-corrected data, respectively.

The statistical simulator uses a methodology very similar
to ECP [30]: it simulates at least 10,000 pages, assuming
a normal bit failure distribution with a mean of 10% write
operations, 0.25 coefficient of variance, and wear leveling
across pages in memory, blocks in pages, and bits in blocks.
ZombieSLC mechanisms rely on ECP to tolerate the first
6 failures in a block. Average results are reported without
variance, which is always under 3%. Endurance improve-
ment is the ratio of aggregate writes performed by a mech-
anism by the time memory drops below 24% capacity.

Table 3 lists the various SLC failure tolerance mechanisms
against which we compare Zombie mechanisms.

Name Approach
NoCorrection | Discards block on first error
SEC Single Error Correction per 64-bit (ECC)
DRM [15] Pairs pages, corrects up to 160 errors per page
ECP [30] Error Correcting Pointers. Default: corrects
up to 6 errors per block
Corrects up to 4 hard and 2 soft errors per
FREE-p [37] block and remaps blocks
SAFER [31] Corrects up to 32 errors per block
PAYG [24] Hierarchical ECP
Oracle64 Magically tolerates 64 errors per block
Oraclel28 Magically tolerates 128 errors per block
. Increasing number of ECP entries over time;
ZombieECP | i ing with 128-bit, 256-bit and 512-bit blocks
. Increasing erasure code strength over time;
ZombieERC | e with 128-bit, 256-bit and 512-bit blocks
ZombieXOR | Pairs 512-bit blocks, up to n tries on pairing
. Increasing code strength entries over time;
ZombieMLC | ing with 64-bit, 128-bit, and 512-bit blocks

Table 3: SLC and MLC PCM lifetime extension mech-
anisms evaluated.

5.1 Opverall Zombie Lifetime Improvements

ZombieMLC. Figure 6 shows results for ZombieMLC. Base-
lines (MLC-2 and MLC-4) perform rank modulation (i.e.,
are drift-tolerant), but they cannot tolerate stuck-at failures
so their memory capacity degrades very quickly*. In con-
trast, ZombieMLC (M LC2adapt and M LC4 aqapt) tolerates
both drift and stuck-at failures and therefore significantly
extends the lifetime of MLC PCM (17x and 11X, respec-
tively).

ZombieSLC. Figure 7 shows how memory capacity de-
grades as pages are written and bits fail due to wear for
ZombieSLC. Overall, ZombieSLC mechanisms provide high
memory capacity longer than any other previously proposed

4MLC-2 degrades more quickly than MLC-4 because it uses
a larger number of cells per block; therefore, the probability
of having a failure in at least one cell is higher.
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Figure 6: Memory capacity degradation due to failures
that cannot be tolerated as memory is written over its
lifetime for 2-bit and 4-bit MLC PCM.

lifetime extension mechanism. This results from reviving
dead blocks to extend the lifetime of live blocks.

In general, ZombieSL.C has a four-phase life cycle. The
first phase corresponds to the portion of lifetime covered by
ECP or some other intrinsic error correction scheme. Once
bit failures exceed what ECP can tolerate, the second phase
begins: Failed blocks now start being paired. By enabling
subblock pairing, we can maintain higher available memory
capacity longer, handling more errors gracefully. The third
phase is defined by all blocks being paired. The fourth phase
begins when paired blocks can no longer correct the errors:
Spare blocks are retired (really dead) and primary blocks are
added to the pool (not dead yet). Recall that all ZombieSLC
mechanisms bias bit flips to the spare blocks, so primary
blocks may still have a useful Zombie lifespan even after
their spare blocks have died.
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Figure 7: Memory capacity degradation due to fail-
ures that cannot be tolerated as memory is written
over its lifetime, for multiple failure tolerance mech-
anisms: DRM, ECP, FREE-p, SAFER, PAYG, Zom-
bieECP, ZombieERC, and ZombieXOR.

The first knee of the curve in Figure 7, at 98% mem-
ory capacity, demonstrates how little memory capacity must
change before ZombieSLC shows an improvement over the
intrinsic error correction capability of PCM, like ECP or
SAFER. Further, in phase two, ZombieSLC’s rate of mem-
ory capacity degradation is lower than other mechanisms.
Specifically, PAYG fails on the first uncorrectable cell (i.e.,



from 100% to 0% instantly); ECP, DRM and SAFER fall
from 100% to 50% capacity in about 1 billion writes, and
FREE-p in about 2.3 billion writes. This transition hap-
pens over 3.8 billion writes for ZombieXOR, 10 billion writes
for ZombieECP, and 11 billion writes for ZombieERC. Zom-
bieXOR maintains 50% memory capacity longer than any
other mechanism. Finally, ZombieXOR/’s rate of memory ca-
pacity degradation, from 50% to 0% capacity, is lower than
any other mechanism’s; in all of PCM’s operational regions,
ZombieSLC is superior to all other mechanisms.
ZombieXOR. This all-or-nothing mechanism trades sim-
plicity for pairing granularity (only full blocks are paired).
It achieves a 92% endurance improvement over PAYG, the
best prior mechanism. ZombieXOR provides little memory
capacity boost in phase one. Blocks gradually get paired
in phase two as the number of failures in a block exceeds
ECP’s correction capacity (6 failures). By the end of this
phase, ECP, PAYG, FREE-p and SAFER have already com-
pletely exhausted their memory capacity. In phase three, all
ZombieXOR, blocks are paired, so memory remains at 50%
capacity for a long time. The reason is the redundancy pro-
vided by paired bits and the additional resiliency of revived
ECP entries in the spare block. Once enough pairs of bits
fail, spares are discarded, and memory capacity starts drop-
ping again (fourth phase).

ZombieECP. Due to variation in the endurance of individ-
ual cells, outlier failures prematurely reduce memory capac-
ity. ZombieECP gradually extends ECP by using variable-
size subblocks. Spare subblocks of three possible sizes can
simultaneously co-exist in the system, so there are no well-

defined stable phases like ZombieXOR/’s. Overall, ZombieECP

achieves a 58% endurance improvement over PAYG.
ZombieERC. Like ZombieECP, ZombieERC gradually in-
troduces increasingly greater error tolerance by growing its
subblock size, so phases are again not well defined. It achieves
62% longer endurance than PAYG. At 17% raw data bit
flip rates, ZombieERC is approximately equivalent to Zom-
bieECP. This is because the coding itself causes additional
flips and raises ZombieERC'’s effective wear rates (after en-
coding) to higher levels.

ZombieSLC sensitivity to cell flip rate. PCM en-
durance is sensitive to cell flip rates. In general, curves are
scaled to the left and down (lower endurance) with increased
cell wear rates. One notable exception is ZombieERC, which
improves relative to other ZombieSLC mechanisms as the
wear rate increases. At the measured 17%, ZombieERC’s
adds bit flips due to its encoding. As raw data flip rates
increase, ZombieERC’s overall wear is not affected as much
as other ZombieSLC mechanisms, again due to its encoding.
As a result, if memory were to be compressed or encrypted
(raw data bit flips around 50%), ZombieERC would be the
most effective correction mechanism.

Zombie error location cache sensitivity. We conducted
a cache sensitivity analysis by varying the error location
cache size from 32 K entries up to 256 K entries (powers of
two) and its associativity from 4- to 8-way. Most SPEC2006
benchmarks have error location cache miss rates below 1%
with a 8-way 256K error location cache, never exceeding 2%.

5.2 A Closer Look at Zombie Lifetimes

Table 4 shows the normalized average number of writes
per page until memory capacity falls to the 98%, 49%, 24%
and 0% thresholds. SLC lifetimes are normalized to SEC to

demonstrate the relative improvements of the various mech-
anisms. ZombieMLC lifetimes are normalized to respective
baselines, which provide no stuck-at cell correction, only
drift tolerance.

Writes per page % Cell
Mechanism 98% | 49% | 24% | 0% | failures
NoCorrection - - 0.0 0.1 0.0%
SEC 1.0 1.0 1.0 1.0 0.1%
DRM - 0.3 0.4 0.4 0.5%
ECP 5.2 2.5 2.4 2.3 0.5%
FREE-p 4.7 2.4 2.3 2.3 0.7%
SAFER 5.4 2.5 2.5 2.4 0.9%
PAYG 6.1 2.5 2.4 2.4 0.4%
Oracle64 10.3 4.4 4.2 4.1 9.5%
Oraclel28 12.4 5.2 5.0 4.9 20.8%
ZombieECP 6.7 3.9 3.8 3.7 5.1%
ZombieERC 6.7 4.0 3.9 3.8 13.8%
ZombieXOR 6.2 4.7 4.6 4.6 19.6%
ZombieSAFER 6.4 4.1 4.2 4.1 15.2%
ZombieMLC2,40, | - | 89.6 | 166 | 120 | 05%
ZombieMLClgqa, | - | 187 | 109 | 9.1 | 05%

Table 4: Average number of writes per page (normal-
ized with respect to SEC for SLC and drift tolerance for
MLC) until memory is reduced to 98%, 49%, 24%, and
0% of its original capacity, and the total fraction of cells
that failed during the memory lifetime.

These results show that PAYG achieves a lower number of
total cell failures than ECP, in contrast with data provided
in the original PAYG proposal. The reason is a method-
ological difference. The original PAYG proposal assumes a
system stops operation at the first uncorrectable failure for
both PAYG and ECP. Although PAYG can no longer cor-
rect additional errors at this point, ECP can still degrade
memory capacity after the first uncorrectable failure because
there are many other blocks with unused error correction en-
tries. Thus, we continue simulation of ECP beyond this first
failure, which provides additional wear and resulting oppor-
tunities for new failures to appear.

For all capacity levels in Table 4, Zombie results in the
largest number of writes among all realistic failure tolerance
mechanisms. However, the best ZombieSLC mechanism is
not the same for all phases. Therefore, the best mechanism
must be selected depending on design goals. If the goal is to
keep memory close to 100% capacity for the longest time, a
designer should select ZombieERC or ZombieECP. On the
other hand, if the goal is to keep memory capacity above 50%
for the longest time, ZombieXOR is a better option. Finally,
the increased density and the need for drift tolerance of MLC
PCM dramatically reduces lifetime compared to SLC, but
ZombieMLC reverts this reduction in lifetimes by over an
order of magnitude.

5.3 Zombie Performance

Zombie’s performance degradation is very low, even after
the previous proposals have exhausted their lifetimes. Fig-
ure 8 shows the execution time of SPEC2006 workloads for
ZombieSLC normalized to a system with no pairing. By the
time the best alternative method — PAYG (vertical line in
Figure 8) — fails, the slowdown of ZombieSLC is a negligi-
ble 0.1%, on average. The reason for such low overhead is
the negligible latency the extra control path logic adds to
operations on unpaired blocks.



By the time all blocks are paired (worst possible case), the
slowdown is significantly higher due to the additional mem-
ory operations to spare blocks, but it is still not prohibitive,
at 6-10%. Likewise, Figure 9 shows that ZombieMLC also
incurs very little performance degradation by the time its
counterpart fails, as well as tolerable performance degrada-
tion at the end of its own lifetime.
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Figure 8: ZombieSLC performance over time as the
memory system degrades. The vertical line shows where
the best alternative life extension technique fails.
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Figure 9: ZombieMLC performance over time as the
memory system degrades. The vertical lines show where
the baseline rank modulation fails.

6. RELATED WORK

Three overarching strategies mitigate the problem of lim-
ited cell lifetime. The first reduces the total number of PCM
writes. A system can avoid bit-cell writes using a variety of
techniques: adding buffers in front of PCM to absorb tem-
porally local writes [26, 20, 39], writing only cells whose
bits have actually changed [35, 40, 20, 38], and dynami-
cally adapting the data encoding used based on past behav-
ior [6, 38, 27, 17]. Given that writes are eventually neces-
sary, the second strategy attempts to spread them out evenly
across the entire memory system. These wear-leveling tech-
niques [40, 39, 25, 32] can prevent hot spots of activity from
occurring, thus preventing excessive wear and early exhaus-
tion of particular bits, blocks and pages. Finally, given that
failures will eventually occur, the last strategy is to add some
amount of redundant cells or redundant information so that

failures can be detected and corrected [15, 30, 31, 37, 24, 7,
17]. Although Zombie belongs to the third category, many
of these solutions can be easily combined with the Zombie
framework.

Theoretical investigation of coding for memory with stuck-
at locations was initiated by Kuznetsov and Tsybakov [19,
34], with some recent progress [9]. However, we found the
early papers [19, 34] to be more applicable to our setting
of short message and codeword lengths. Rank modulation
in the presence of errors has been addressed by Barg and
Mazumdar [4], and Yehezkeally and Schwartz [36], but they
do not use a stuck-at fault error model.

DRM [15] pairs two pages with failures to make one work-
ing page. Like Zombie, DRM pairs memory regions, al-
though DRM does it at coarser granularity (pages vs. blocks).
SAFER [31] takes advantage of PCM’s stuck-at bit failures
by partitioning a data block dynamically; each partition has
at most one failed bit. An additional bit indicates whether
the bits in a partition have to be inverted when they are
read. ECP [30] is an error correction mechanism that cor-
rects cell failures by using pointers to failed bits and replace-
ment bits to correct them. ZombieSLC may use SAFER or
ECP as a block-intrinsic error correction mechanism, among
others. ZombieECP also extends ECP with additional en-
tries. Like Zombie, FREE-p [37] pairs failed blocks to work-
ing blocks. However, FREE-p uses failed block cells to store
only a pointer to the working block, while Zombie uses them
for data and error correction, which is a more efficient use of
cells. PAYG [24] proposes that all blocks have only one dedi-
cated ECP entry and that other entries be part of a common
pool. Once all entries in this pool are exhausted, the sys-
tem fails without attempting to reuse partially worn blocks
of memory to gradually degrade capacity, unlike Zombie.
Further, instead of obtaining entries from a shared pool of
pristine entries, like PAYG does, ZombieECP obtains them
from a failed page. AECC [7] is an adaptive mechanism
that changes the allocation of bits within a block to store
data and metadata. Zombie adaptively increases metadata
storage with external blocks and subblocks. FlipMin [17] is
a concurrently proposed mechanism that, like ZombieERC,
is based on the theory put forward by Kuznetsov and Tsy-
bakov [19, 34]. Both select nearest codeword matches in
the presence of stuck-at faults and bias writes away from
bit flips. Unlike FlipMin, ZombieERC pairs blocks, directs
wear to the spare block, and is adaptive.

Even though the preceding mechanisms have improved
PCM lifetimes, pages, often disabled with many working
cells left, are simply wasted. Zombie dramatically increases
bit lifetimes by reusing working bits in the blocks on pages
that have been disabled due to failures in only some of their
bits.

Table 5 compares these algorithms along multiple dimen-
sions. The storage column refers to the location and granu-
larity of metadata: a separate page, a separate block, a sepa-
rate subblock, or additional bits in the original block (intra-
block). The method refers to how error tolerance is achieved:
(summ) by summarizing (e.g., erasure codes, ECC); (pair)
by pairing regions of memory (e.g., XOR, DRM, FREE-p);
(repl) by replacing regions of memory that no longer work
with another (e.g., ECP, FREE-p); or (part) by using par-
titioning with (inv) bit inversion per partition (SAFER).
The third column (Adpt) refers to whether the mechanism
can grow its error tolerance dynamically by distributing data



Mechanism | Storage Method Adpt | OS | Rus
SEC intrablock | summ no no no
DRM [15] page pair no yes | yes
ECP [30] intrablock | repl no no | no
SAFER [31] | intrablock | part/inv no no | no
FREE-p [37] | block pair/repl no yes | no
PAYG [24] subblock repl yes no | no
AECC [7] intrablock | summ yes yes | no
FlipMin [17] | intrablock | summ no no | no
ZombieECP subblock pair/repl yes no yes
ZombieERC subblock pair/summ | yes no yes
ZombieXOR | block pair no no yes
ZombieMLC | subblock pair/summ | yes no yes

Table 5: Comparison to related work.

and metadata differently. The OS category refers to whether
OS support is required beyond what is already provided in
current DRAM systems. DRM relies on the OS to pair pages
based on error locations; FREE-p relies on the OS to man-
age spare blocks; and AECC relies on the OS to switch to
stronger codes by remapping data and metadata bits. The
Rus column refers to the reuse of pages and blocks that
were disabled due to failures that could not be corrected.
As noted, the only mechanisms that support this feature at
fine granularities are those proposed in this paper.

7. CONCLUSIONS

This paper proposed Zombie, a framework that can be
used with prior and new error correction mechanisms to sig-
nificantly improve SLC and MLC PCM lifetimes. Zombie
uses memory that has been disabled due to exhaustion of in-
trinsic block error correction resources to keep memory that
is still in service alive longer. Three of these mechanisms
— ZombieXOR, ZombieECP, and ZombieERC— show en-
durance superior to various state-of-the-art SLC PCM er-
ror correction mechanisms. These mechanisms can also be
used to correct stuck-at failures in MLLC PCM, but doing so
would require an additional compatible mechanism to tol-
erate drift. The fourth mechanism, ZombieMLC, is to our
knowledge the first proposal to tolerate both stuck-at fail-
ures and drift in an integrated and seamless manner. Zom-
bieMLC increases the lifetime of MLC PCM by over an or-
der of magnitude compared to a standard rank-modulation
mechanism, which tolerates only drift.

In summary, the Zombie framework enriches the toolbox
of designers seeking error correction mechanisms that match
their specific system design goals.
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