
DNA-based Molecular Architecture
with Spatially Localized Components

Richard A. Muscat† Karin Strauss†‡ Luis Ceze† Georg Seelig†

† University of Washington ‡ Microsoft Research

ABSTRACT
Performing computation inside living cells offers life-changing ap-
plications, from improved medical diagnostics to better cancer ther-
apy to intelligent drugs. Due to its bio-compatibility and ease of en-
gineering, one promising approach for performing in-vivo compu-
tation is DNA strand displacement. This paper introduces computer
architects to DNA strand displacement “circuits”, discusses associ-
ated architectural challenges, and proposes a new organization that
provides practical composability. In particular, prior approaches
rely mostly on stochastic interaction of freely diffusing compo-
nents. This paper proposes practical spatial isolation of compo-
nents, leading to more easily designed DNA-based circuits. DNA
nanotechnology is currently at a turning point, with many proposed
applications being realized [20, 9]. We believe that it is time for the
computer architecture community to take notice and contribute.

Categories and Subject Descriptors
B. Hardware [Emerging Technologies]

General Terms
Design

Keywords
DNA-based In-cell Computation, Spatial Localization

1. INTRODUCTION
Synthetic molecular circuits that work reliably in a complex cel-

lular environment and that can sense and respond to that environ-
ment offer the potential for many significant applications. For ex-
ample, in-vivo computation with molecular circuits could enable
novel approaches to medical diagnostics and imaging, selective
drug delivery to cancer cells, and even intelligent drugs that lay
latent inside cells and release automatically when a disease is first
detected.

DNA is an ideal physical substrate for carrying out molecular
computation because its simple primitives make it amenable to ef-
fective engineering. Furthermore, DNA circuitry is bio-compatible,
thus well-suited for intra-cell operation. Using DNA to carry out

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

computation has been explored for almost two decades, starting
when Adleman proposed computing Hamiltonian paths [1] with
DNA. Researchers subsequently explored other basic computing
primitives with DNA, from Boolean gates [33, 29, 23] to neural
networks [24] to chemical reaction networks [32, 3, 4].

As the technology evolves, however, it is only natural to expect
architectural questions to arise, as they did with the development of
electronic computers. We believe the computer architecture com-
munity will find this technology of interest and that it has much
to contribute to answering these questions. Several questions we
face with electronics today are very relevant to biological comput-
ers, as well. For example, both require performing computation
with unreliable components, and both require abstractions to man-
age complexity, simplifying the design of more complex systems.

In particular, we focus on DNA strand displacement systems
because of their simplicity and flexibility. The DNA strand dis-
placement mechanism has enabled the construction of many dy-
namic molecular systems, including motors, sensors, circuits, am-
plifiers, and reconfigurable nanostructures. These developments
are reviewed in the literature [40, 12]. Importantly, the goal of
these approaches is not to solve general computational problems
faster than electronics could. Instead, current DNA-based comput-
ing aims to develop molecular information processing similar to
that which occurs inside cells and to engineer systems that can pro-
cess information that is intrinsically molecular (such as the infor-
mation encoded in the concentrations of various cellular molecules).
In other words, it is a promising way to embed bio-compatible com-
puting elements into a living cell.

This paper introduces computer architects to the basics of DNA
computing, focusing on DNA strand displacement mechanisms.
Further, it discusses several architectural challenges associated with
computing using DNA and focuses on one of these challenges: the
fact that DNA reactions happen in diffusion and therefore lack spa-
tial isolation. Without this property, designers must confront code
isolation issues, i.e., each logical gate must be built with a different
set of DNA sequences to avoid interference between gates or mod-
ules. Finally, we propose a solution to this problem: organizing
gates in a practical, spatially isolated fashion, which can be done
with the help of DNA origami. In this paper, the spatial organiza-
tion on a DNA substrate addresses the gate interference problem,
simplifying the design process and improving composability of rich
DNA strand displacement systems. We describe the design of basic
primitives (gates) and evaluate them both analytically and experi-
mentally. Our analytic results show the benefits of spatial isolation
on ease of design, especially as circuits grow larger. Our experi-
mental results show evidence that the proposed approach is viable
in practice.

1

2. BACKGROUND

2.1 DNA as a Programmable Material
for Nanoscale Engineering

Single-stranded DNA is a linear polymer that consists of four
chemically different building blocks, the nucleotides adenine (A),
cytosine (C), guanine (G), and thymine (T). A DNA strand is char-
acterized by its linear sequence, which can be abstracted as a string
of the symbols A, C, G and T . Two single strands can bind (“hy-
bridize”) to form double-stranded DNA (a double helix) if their
sequences are complementary, that is, if A in one strand faces T in
the other strand while C faces G, as shown in Figure 1. The pairs
A : T and C : G are the canonical Watson-Crick base pairs. Two
strands with perfectly complementary sequences bind/hybridize to
each other more strongly than two strands with partial complemen-
tarity. The two ends of a DNA strand are chemically different and
are referred to as the 5’ and 3’ ends, respectively (these names re-
fer to specific carbon atoms within the nucleotide that participate
in the attachment to the previous and next nucleotide in the chain,
respectively). In a double helix, the two strands have opposite ori-
entation. Single-stranded DNA is floppy; double-stranded DNA is
more rigid. The width of a double helix is 2 nm, and the distance
between sequential base pairs along the helix is 0.34 nm.

DNA nanotechnology [30, 31, 40, 12] uses DNA as a program-
mable nanoscale building material because its predictability of in-
teractions is ideal for an engineering approach. DNA nanotechnol-
ogy chiefly relies on single-stranded molecules that are relatively
short (typically less than 100 nucleotides in length). Such “oligonu-
cleotides” of arbitrary sequence can be synthesized chemically and
bought from a variety of synthesis companies; in contrast, biolog-
ical DNA — the carrier of genetic information — mostly occurs
as a double-stranded molecule that can be millions of base pairs in
length. The use of DNA as an engineering material has been addi-
tionally facilitated by the rapidly decreasing cost of oligonucleotide
preparation and purification [5].

It is often convenient to abstract contiguous DNA bases into
functional DNA domains that act as a unit, as Figure 1 also shows
(e.g., domains a and b). In most figures, the DNA sequences are not
shown explicitly because it is expected that most described systems
will work for many choices of domain sequences. Domains are rep-
resented in this paper by letters; a starred domain denotes a domain
complementary in sequence to the domain without a star (e.g., do-
main b∗ is complementary to domain b), and complementary do-
mains hybridize to each other via Watson-Crick base pairing. In
the following discussion, we distinguish between “short” (e.g., do-
mains a and c∗) and “long” domains (e.g., domains b and d∗) based
on the stability of a duplexed (double-stranded) domain. Short du-
plexes are unstable at room temperature, while long duplexes are
assumed to be stable. In practice, the length and sequence compo-
sition required to make a duplex (un)stable depends on temperature
and reaction conditions. For typical experimental conditions, i.e.,
temperatures from 20-40◦C and a saline reaction buffer, short do-
mains are usually 4-6 nucleotides, while long domains are 15-25
nucleotides.

2.2 DNA Strand Displacement Reactions:
Primitives for Molecular Programming

Strand displacement is the process through which two strands
with partial or full complementarity hybridize to each other, dis-
placing one or more pre-hybridized strands in the process. A simple
example of a strand displacement reaction is illustrated in Figure 2.

Strand displacement occurs as a series of reactions between sin-
gle strands and double strands and involves multiple functional do-
mains. A strand displacement reaction is initiated when two com-
plementary toehold domains (i.e., short domains), like a and a∗ in
Figure 2, bind to each other. A single-stranded input a∗b∗c∗ binds
to the toehold a (because it is exposed) and displaces the previously
bound strand (b∗c∗d∗e∗) in a base-by-base random walk process,
where two domains with identical sequences (b∗) compete to bind
with the same complementary long domain (b). The final step is
the complete release of the initial binding partner by the new part-
ner, i.e., the separation of toeholds c and c∗ and release of strand
b∗c∗d∗e∗. The rate of a strand displacement reaction is determined
by the length of the toehold domain and can be carefully controlled
over several orders of magnitude [39, 14, 42], enabling engineering
control over the kinetics of synthetic DNA devices.

2.3 Molecular Signals Can Propagate through
Strand Displacement Cascades

Strand displacement releases at least one single-stranded nucleic
acid product. In a DNA strand displacement cascade, this released
strand can trigger a downstream reaction, as shown in Figure 2.
Once b∗c∗d∗e∗ is released in the first step, it displaces d∗e∗f∗g∗

from cde. Note that the final output signal e∗f∗g∗ has no domains
in common with the input signal a∗b∗c∗ of the two-stage cascade,
so they are completely independent. Functionally, this cascade is a
sequence translator since an input with one sequence is deactivated
and replaced by an output with a different sequence. Here, we dis-
tinguish between the signal e∗f∗g∗ and the strand d∗e∗f∗g∗. The
domain d∗ does not participate in any downstream reaction and de-
pends on strand history. Signals with identical sequences other than
different history domains act in the same way in downstream reac-
tions. In contrast, the output of the first stage, c∗d∗e∗, is an internal
signal because it depends on both upstream input and downstream
output (for example, it shares the toehold domain c∗ with the input
and the toehold domain e∗ with the output).

2.4 DNA Strand-Displacement Circuits
Cascades of strand displacement reactions have been used to

experimentally implement feed-forward digital logic circuits ca-
pable of combinational logic [29, 23]. As an example, this sec-
tion uses the designs presented by Seelig et al. and Soloveichik et
al. [29, 32].

Signals in these circuits are single-stranded nucleic acids with
the domain structure short:long:short. Signals interact with multi-
strand DNA complexes (“gates”) through strand displacement re-
actions. In this framework, the two-stage reaction cascade of Fig-
ure 2 represents a logical repeater. The input is the signal a∗b∗c∗,
and the output is e∗f∗g∗. Multi-input logic can be implemented
through the use of multiple strand gate complexes. The AND gate
by Soloveichik et al. [32] consists of three partially complementary
strands assembled into a complex. Two sequential strand displace-
ment reactions with two different input strands trigger the disas-
sembly of this complex, resulting in the release of an output strand.
If only one or none of the inputs is present, no output is released.
Figure 3 shows the process. When the first input signal a∗b∗c∗ ar-
rives, it displaces b∗c∗d∗ and provides a toehold for binding of the
second input d∗e∗f∗. The latter, in turn, can displace e∗f∗g∗h∗,
which now frees f∗g∗h∗ to serve as input in a downstream reaction.
As in the previous example, one additional component, a one-stage
translator gate (not shown), is required to obtain complete sequence
independence between inputs and outputs.

2

5’-AGTCGATGATACCTACGTGTAGCCGATCGA-3’

3’-CGATGTTCAGCTACTATGGATGCA-5’

5’-AGTCGATGATACCTACGT

TCAGCTACTATGGATGCA-5’
+ GT

AG
CC
GA
TC
GA
-3
’

3’
-C
GA
TG
T

a b c

d*
c*b*= =

Figure 1: Two DNA strands with complementary sequence hybridize and form double-stranded DNA (or duplex) in a double helix
shape. In this example, the two strands are only partially complementary. We use a simplified notation where functional DNA
domains are labeled with letters and * indicates complementarity.

a b c

a* b* c*

d*

b* c*
d*

cba
a
a*

c*

b c
c*

a* b* c*

c*b*

a
a*

c*

b c
c*b*

b*
+

a b c
a* b* c*

d*
+

c

e*

d

e*

e

f*
g*

d*
e*

d*
e*

e*

d*

c d

e*

e

f*
g*

d*

c d

e*

e

f*
g*

d*

c d

e*

e

f*
g*c

c* d*
d

e*
e

b*

d* e* f* g*

a*b*c* e*f*g*

input

output

Figure 2: DNA strand displacement is a primitive for molecular information processing. A single-stranded DNA input signal dis-
places another strand (internal signal) from a duplex. This internal signal then displaces the output signal, freeing it to react with
other sequences. Input and output signals have no domains in common.

b* d*

ba d e f

e*

h*

a* b*

f*

i*

d*j*

b*
cba

a*
d e

e*
i*

c*b*
inputs

c*

c*

c

g*

e* f*

f

f*

h*
g*

d*

b*
ba

a*
i* j*

d*

d e f

e* f*c*

c

f* g*e* h*
output

i*a*b*c*
j*d*e*f*

e*f*g*h*

Figure 3: AND gate in solution by Soloveichik et al. [32].

a*b*

b a

c +
b a*b*

bc a
b

a*b*

c a
a*b*
abcb

Figure 4: Hairpin being opened by an input and exposing a new output.

3

2.5 DNA Hairpins Enable Co-localization of
Inputs and Outputs

A DNA strand that is partially self-complementary can bind to
itself and form a hairpin. A hairpin has a double-stranded stem
and a single-stranded loop that connects the two complementary
stem domains. We use this hairpin motif as the basic ingredient
for the construction of localized DNA circuits: Hairpins are eas-
ily attachable to an origami substrate (defined in Section 2.6), and
their structure hides certain domains; this delays the undesirable
early start of certain reactions until these domains are exposed by
previous reactions.

As shown in Figure 4, a hairpin can participate in a strand dis-
placement reaction [8]. In this example, domain a∗ serves as a
toehold for binding domain a of the single-stranded input. Domain
b of the input opens the stem and unfolds the hairpin. Note that
the reaction results in a single-stranded “output” (cb) that remains
attached in a complex with the input, but that is now exposed and
can further react with other domains. The output has a different
toehold than the input (c instead of a), but in this case only the toe-
hold domain of the output c is independent of the input (because b
is required to open the hairpin).

2.6 DNA Origami as a Nano-board for Molec-
ular Self-assembly

DNA origami is a DNA self-assembly technique recently devel-
oped by Rothemund [26]. In DNA origami, a long single-stranded
scaffold DNA is folded into a target shape using short staple strands,
as shown in Figure 5. Each staple is complementary to two differ-
ent domains within the scaffold and, depending on the choice of
staples, a variety of different shapes can be obtained. The charac-
teristic length of a DNA origami, such as the square sketched in
the figure, is on the order of 100 nm. However, the thickness of
a one-dimensional origami sheet is only about 2 nm, correspond-
ing to the width of one double helix. Because each staple attaches
to a unique address and the distance between sequential base pairs
in a double helix is only 0.34 nm, DNA origami enables the place-
ment of molecules with nanoscale precision. Thus, we can leverage
this fact to attach hairpins to DNA origami so that individual hair-
pins, once activated, will react only with other hairpins attached
nearby, localizing the circuit. Mammalian cells have already been
shown to internalize DNA nanostructures such as tetrahedra (an ap-
proximately 7 nm DNA pyramid) [35] and origami [27]. Addition-
ally, origami has been shown to be preserved in mammalian cell
lysate [16], so it is unlikely to degrade before the intended circuit
has a chance to be activated.

2.7 Manufacturing DNA Systems
As noted, individual arbitrary DNA sequences can be synthe-

sized chemically. However, if the desired product is a construct
of several strands, there are additional manufacturing steps. Indi-
vidual sequences are mixed in solution and annealed, i.e., heated
to a high temperature where all bonds that connect strands are dis-
rupted, then gradually cooled. During the cooling process, the de-
signed, stable, double-stranded regions form earlier than partially
matched regions, which are less stable interactions. For this rea-
son, different components in a single displacement reaction are an-
nealed separately and then mixed in the same solution; otherwise,
they would react at fabrication time, rendering the circuit useless.

3. ARCHITECTURAL ISSUES
There are many parallels between digital electronic circuits and

digital DNA strand displacement circuits. There are also several

unique architectural challenges that arise in DNA strand displace-
ment circuits. This section presents parallels and discusses chal-
lenges.

Lack of spatial isolation. Signal strands and gate complexes all
diffuse freely in solution and interact stochastically. The DNA se-
quence of a signal, rather than its location, determines the gates
with which it can interact. Therefore, to compose a circuit with
multiple gates, each signal must have its own sequence, or name,
and be carefully designed and tested to avoid interference with
other sequences. In other words, there is no spatial isolation like
electronic circuits have, so some form of code isolation is required.
An analogy one could draw is making gates “wireless.” Imagine a
circuit with multiple AND and OR gates that communicate wire-
lessly; since there is no spatial isolation, one has to “tune” the out-
put of a gate to the input of the next gate in the chain. This way,
two gates that have the same function but are in different parts of
the circuit can be differentiated during circuit evaluation. We pro-
pose a solution to this challenge in Section 4.

Leakage. Perhaps not surprisingly, DNA strand displacement sys-
tems have their own version of leakage. The issue stems partly
from synthesis errors, which can lead to strands where bases are
missing or incorrectly incorporated, and partly from the (unavoid-
able) random “opening” of base pairs at the end of helices. Under
certain conditions, a strand may be displaced even if the input is not
present, causing the reaction to spuriously propagate downstream.
Conversely, inputs can get stuck without ever releasing an output
strand, leading to signal attenuation.

Computation energy and non-reusable gates. Both inputs and
gates are consumed as the circuit is evaluated by cascade reactions,
so they cannot be reused. This may impose design constraints, such
as the lack of feedback loop signals. Importantly, reactions are
driven by the formation of additional base pairs (e.g., in the toe-
holds) between inputs and gates, and the gates thus also act as a
diminishing energy source.

Data encoding. Information is encoded not only in sequences but
also in the concentration of signals (number of molecules/volume).
The concentrations of signal species play a role similar to the volt-
age applied to a wire in an electronic circuit. A high concentration
(above a threshold value) represents the logical “ON” state, while a
low concentration (below a threshold value) represents the logical
“OFF” state. In previous experiments [29, 41, 42, 23, 24], a typical
gate or signal is present at concentrations of 10-100 nM, or in the
order of 1010-1011 copies in a reaction volume of 100µl. Abso-
lute numbers may be smaller for a computation that occurs inside a
much smaller cellular volume.

Lack of clear hardware/software interface. The two previous
challenges result in a new one: there is no clearly defined notion of
hardware and software in these systems. Gates and systems come
pre-programmed and pre-assembled for the specific computation
they are designed to carry out. In addition, information and gates
are both composed of the same substrate, i.e., DNA sequences.

Speed of computation. The typical time to evaluate one level of
logic can be on the order of minutes to hours. This is most often
compatible with the time-scale of target applications: Diagnostic
or therapeutic responses do not require nanosecond response times.
Further, circuits are inherently asynchronous.

Need for dual-rail logic. In practice, all DNA strand displace-
ment logic circuits built so far use dual-rail logic. This is because

4

a

b

c

d

a*b*
c*d*

a
b

c
d

a
b

c
d

extended
staples

scaffold strand

folded
origami

partially folded

=

Figure 5: DNA origami is a technique for the self-assembly of molecular structures with nanoscale precision. A long, single-stranded
DNA scaffold is mixed with short staple strands.

a) b)C1

C2

C3C4

C1 C3 C4C2
x*x

y
y*x*

free in solution spatially isolated

unintended

Figure 6: Possible circuit organizations. (a) Non-localized circuit. (b) Localized circuit on DNA origami.

it is not possible to distinguish if a signal is absent due to its being
asynchronous, having a value of zero or having a value of one with
a single molecule. Dual-rail logic makes NOT gates unnecessary,
because a signal can be simply interpreted as its complement by a
cascaded gate.

4. AN ARCHITECTURE FOR SPATIALLY
ISOLATED DNA GATES

We propose a practical approach to DNA-based computation that
takes advantage of spatial isolation and organization. In our ap-
proach, DNA structures that implement computational elements,
such as logic AND and OR gates, are attached to a “molecular
board,” typically DNA origami. When a component is activated,
it can interact with other components that are in close proximity
on the same board, although interaction with components that are
farther away is inhibited. A key advantage of this approach is that
it minimizes crosstalk. It also lowers code pressure because possi-
ble interactions are now constrained simply by proximity, and the
same signal sequence can be reused in multiple locations without
any risk of interference. Furthermore, a diagnostic circuit using co-
localized components may be easier to deliver to cells and is likely
better protected from degradation by cellular enzymes [35, 16].

Figure 6 illustrates the concept of spatial isolation. In solu-
tion, hairpins C1, C2, C3 and C4 can freely interact with each
other when open (Figure 6(a)). Specific, designed interactions be-
tween two components are achieved when each component carries
a unique, identifying toehold sequence (or code). In this example,
component C1 carries a toehold complementary to C2. However,
C4 carries the same toehold, so crosstalk may occur if C1 opens
and approaches C4 before approaching C2. Spatially organizing
the same set of components on an origami substrate (Figure 6(b))
limits interaction to adjacent components; therefore, the duplicated
toehold of component C4 can no longer interact with C1. Note that
by localizing the reactions, a designer need not be concerned when
reusing gate designs (and signal sequences) within the same board,
which simplifies the design process and improves composability.
Moreover, this makes the design process more closely resemble the
design of electronic circuits. Spatial organization also increases the

speed of signal propagation. The rate of chemical reactions is ef-
fectively determined by the concentrations of the reactant species,
and when the two reactants are co-localized, the effective “concen-
tration” of one reactant around the location of the other is high.

A single DNA origami provides limited surface for placement
of logic gates (about 100 hairpins). However, it is possible to ar-
range, align and bind multiple DNA origamis on a surface through
recursive, multi-stage assembly [25, 37]. This provides sufficient
precision to extend the computation to larger boards, further low-
ering code pressure. Another viable alternative is to use a hybrid
approach that implements interactions between multiple boards via
the release and capture of diffusible signal strands. A benefit of the
hybrid approach is the higher tolerance to fabrication defects, erro-
neous signals or incomplete reactions. In both cases, the origami
boards are themselves in diffusion, and there can be (and typically
are) multiple copies of each circuit, allowing detections of the out-
put from many identical tiles through their concentration.

We break up computation using our spatially isolated architec-
ture into three basic stages: binding of diffusible inputs to input
ports1; computational processing of the inputs, which occurs on
the board surface using only a small number of hairpin types; and
release of an output that can serve as an input to a downstream
component, can act as a drug, or can be used for reading compu-
tation’s result. Section 4.1 identifies the basic building blocks and
processes of our spatially isolated circuits. Section 4.2 presents a
half-adder circuit as an example of how to scale to larger, more
complex circuits from the basic primitives.

4.1 Basic Building Blocks

Input translation. Inputs external to the circuit (external signals)
are recognized by special input translation hairpins anchored in the
origami (called anchorages). For example, hairpin H(A0, Y) in
Figure 7 is designed to recognize input strand A0 with domains
sa0. Binding of the strand opens the hairpin, producing an output
with domains ys (an output repeated throughout the circuit), and

1Inputs in this paper are shown here at the edges of the board for
simplicity, but complex circuits may take advantage of input ports
in multiple locations.

5

mediates a further reaction to produce an input for the adjacent gate.
In this example,H(A0, Y) represents a hairpin that is opened by an
input with domain a0 and releases an output with domain y. This
notation system will be used to simplify the upcoming diagrams
and better describe hairpin components2.

Fuel. This free hairpin strand relays a message from one anchored
hairpin to the next. In Figure 7, when translation hairpinH(A0, Y)
is activated and opens, it reveals domains ys, which respectively
complement the toehold and stem of a fuel F (Y,X). F (Y,X) is
a hairpin activated by an input with domain y and output x. Hy-
bridization causes the fuel to open, at which point the fuel’s single-
stranded part acts as an input for a subsequent hairpin.

It is possible to design a circuit where anchored hairpins com-
municate directly without fuel, but it is not practical for two ma-
jor reasons. The first is a geometric issue: if the two hairpins
intended to react are anchored, they have fewer degrees of free-
dom to move and are less likely to position themselves into an
interaction-favorable configuration. The second is a manufactur-
ing issue. DNA origamis, along with circuit strands, are manufac-
tured in a single step by annealing all components: strands are first
heated to disrupt hybridization and then gradually cooled, allow-
ing the designed, stable duplex regions to form first. However, if
circuit components were designed with complementary toeholds as
well as stem regions, binding could occur directly between hair-
pins. With a fuel that is added separately, anchored hairpins can be
manufactured without any risk of unintended interactions.

Transmission line. This consists of a series of identical hairpins
designed to relay the signal across a pre-designed path. Figure 7
illustrates the process of input translation and transmission. The
input A0 initially hybridizes to the translation gate (1), followed
by the binding of the fuel (2), as described previously. The single-
stranded region of the fuel, domains sx, acts as an input to the
adjacent hairpin, H(X,Y), opening it to reveal domains ys (3).
Binding of a new F (Y,X) fuel produces another identical input sx
for the next hairpin, and the process repeats along the transmission
line until another block is reached (not shown).

Cross-over path. Larger circuits may require transmission lines
to cross so that signals can travel to their destination. If they are
simply allowed to cross without any safety measures, they may in-
terfere with one another because they use the same type of trans-
mission gate. However, mitigating this problem requires only the
temporary substitution of two new domains into one of the trans-
mission lines and one new fuel. The sequences and design can be
reused in multiple crossings. Figure 8 shows how a cross-over path
is implemented. The diagonal path is a regular transmission line,
as explained above. The horizontal path is a modified transmission
line. As the horizontal transmission line approaches the crossing, it
goes through a translation step via an anchored hairpin H(X, J).
This enables transmission using a new fuel F (J, I) and a repeating
hairpin, H(I, J). Once past the crossing region, the transmission
line goes through a second translation step via another anchored
hairpin H(I, Y), at which point it goes back to using the original
fuel and anchored hairpins.

AND gate. This consists of two input hairpins3, a threshold hairpin
and an output hairpin. The threshold hairpin is designed to mimic

2For clarity, gate explanations in this section denote inputs as if
they were external inputs, but they could just as well be internal
inputs.
3Although AND gates with larger numbers of inputs are possible,
we do not illustrate them here for simplicity.

the output hairpin, but it produces an output sequence that has no
complement in the system. Positioned closer to the input hairpins
than the output hairpin, the threshold is more likely to react with
the hairpin of the first incoming input. An example is shown in
Figure 9. When the first input A0 arrives (1), it opens H(A0, Y),
followed by fuel F (Y,X) (2), which opens the threshold hairpin
H(X,−) (3) since this hairpin is closer. The output from this first
stage is inert. When the second input B0 arrives (4), the signal is
transmitted from the input hairpin to the fuel (5), which can freely
interact with H(X,Y) since the threshold is already bound to the
first signal. Once H(X,Y) is opened (6), the output can be trans-
mitted to further components.

OR gate. This is similar to the AND gate, but it has no threshold
hairpin: For OR gates, any of the two inputs should be sufficient
to expose the output. Figure 10 illustrates the process. Arrival
of either strand A0 (2a) or B0 (2b) opens its corresponding input
hairpin, which binds to a fuel F (Y,X), transmitting the signal to
the next hairpin H(X,Y).

Fan-out. This gate forks an output into multiple gates so a single
output can be reused as input for more than one downstream gate.
The operating principle is to have a fan-out hairpin per desired out-
put. An input comes in, reacts with a fan-out hairpin, and then
detaches itself, becoming available for interaction with another fan-
out. Figure 11 illustrates a configuration with a fan-out of two and
details the reaction with one of the fan-out hairpins. An open fuel
strand from a previous transmission step (1) opens the fan-out hair-
pin H(X,ZY) (2), freeing the domains zsy. Domains zsy then
bind to fuel F (ZY, Y), specific to the fan-out hairpins, opening
it and exposing sys (3). Finally, sys displaces the attached in-
put through competition of the s domain, leaving a single-stranded
ys hanging off the fan-out hairpin (4), which can now open a fuel
F (Y,X) that opens the next hairpin H(X,Y). This also frees the
input to interact with another fan-out hairpin (5 — compare to 1).

Producing outputs. Once the circuit has finished its computation,
it needs mechanisms to communicate its results or to actuate in
the “external world”. External communication (with humans) is
typically provided via fluorescence, discussed in Section 5. Com-
munication with other circuits and simple actuation is achieved by
releasing certain sequences. More complex actuation requires these
sequences to trigger the operation of other types of DNA machines
(e.g., a DNA-based mechanism that releases a drug).

4.2 From Gates to Circuits: A Half-adder Ex-
ample

It is possible to build more complex circuits from the primitives
described above. We now illustrate how a half-adder can be built
with localized strand displacement. Even though other circuits may
be more relevant to in-cell computation, we chose the half-adder
example because it is a circuit familiar to computer designers. This
simplifies our discussion of concepts and methodology.

The process is similar to designing circuits with electronic gates.
First, the logical circuit is designed and physically laid out. Fig-
ure 12 shows multiple representations of a half-adder circuit. Rep-
resentation (a) is its final layout on a DNA origami board. Note that
about half of the board is unused and could host additional compo-
nents. Representation (b) is the equivalent dual-rail logic circuit.
Only one pair of (A0, B0), (A0, B1), (A1, B0), (A1, B1) will be
present, so only one of the AND gates activates and generates the
corresponding outputs. Representation (c) also shows the circuit at
the level of anchored and fuel hairpins, with corresponding input

6

s

s*a₀ s s*s

sInput A₀

Fuel
F(Y,X)

Track

H(A₀,Y) H(X,Y) H(X,Y)
+ F(Y,X)

a₀* a₀ a₀*

y

y*

s* s

x

s* s

x*

y

s* s

x*

y

y*

s* s

x

s* s

x*

y

s* s

x*

y
y

s*s

s

a₀ a₀*

s* s

x*

y

s* s

x*

yy

s*
s

y*

x

s* s

x*

y
y

s*s

x*x

s

A₀ X

s*s
s s*

y y*

a₀ a₀*

H(A₀,Y) H(X,Y) H(X,Y)
1

2

3

Input Output

Figure 7: Signal transmission over two hairpins.

H(X,Y)

X

X

X X
H(X,J) H(I,J)x*

y y y

x* x*

j

i* i* i*

j j
j*

ix

y* X

X

X
X

H(I,J) H(I,Y) H(X,Y)

H(X,Y)
H(X,Y)

H(X,Y)
H(X,Y)

F(Y,X) + F(J,I)

Input

Input

Output Output

Figure 8: Signal cross-over in localized DNA circuits.

Threshold Input A₀

Input B₀

A₀
B₀

H(A₀,Y)
H(B₀,Y)

H(X,-) H(X,Y)

H(X,-)

H(A₀,Y)

H(B₀,Y)

H(X,Y)

+ F(Y,X)

B A

B<A

X

no output

A₀

B₀

X

output

Fuel
F(Y,X)

1 2

345

6

Input Input Output

Figure 9: AND logic with two inputs, A0 and B0 (top left diagram, diagonal opposites in origami), and one output, X (top left
diagram, right side).

7

and output signals in each of the hairpins. From left to right, the
first three hairpin columns represent the AND gates (threshold, in-
puts and output hairpins). The fourth column represents the fan-out
hairpins, at which point a switch to a new pair of domains is used
to prevent backward transmission of the signal; otherwise, the out-
put of a fan-out hairpin could interact with untriggered hairpins
within reach in the third column. From that point on, output sig-
nals are either readily available in the next hairpin or transmitted
farther down. Representation (d) shows two dual-rail half-adders
combined into a full dual-rail adder.

5. EVALUATION
This section assesses: (1) the complexity reduction and perfor-

mance improvement of localized circuits compared to non-localized
ones, and (2) whether our proposed design works well in practice.

5.1 Assessing Complexity Reduction and Per-
formance Improvement

We compare circuits built from our localized components to equiv-
alent non-localized circuits based on the gates of Soloveichik et
al. [32]. We expect that results would be similar for other gate
designs [29, 23, 4]. We use two main criteria for this compari-
son, namely, the number of different sequences required to encode
all signals and circuit components, and the typical time it takes
to complete a computation. Reducing the number of required se-
quences is beneficial to modularity because it practically eliminates
concerns over unanticipated interference between the multiple dis-
tinct sequences used in the circuit. In non-localized circuits, ev-
ery sequence may interact with every other sequence, so the com-
plexity of verifying whether the circuit is interference-free grows
with the square of the number of sequences used. In localized cir-
cuits, sequences may interact only with other sequences anchored
nearby and with molecules in solution, such as fuels, inputs and
outputs. Thus, the verification complexity of localized circuits is
not affected by the size of the circuit itself and grows only with
the square of the number of inputs and outputs (fuel sequences
are reused across many gates, so only a few types are required
regardless of circuit size). As in electronic circuits, the compu-
tation time in strand displacement circuits is primarily determined
by the depth of the circuit [28], here meaning the longest path of
sequential strand displacement reactions that needs to occur for a
computation to complete.

In counting sequences, we distinguish between inputs that are
externally supplied and signals that are internal to the circuit. Fur-
thermore, we count only the number of unique signals needed to de-
sign each circuit, not the number of physical DNA strands, because
only the signal sequences are unique. All other strand sequences
are determined by the sequences of these signals. Signals in the
non-localized circuit have the domain structure short:long:short;
signals in the localized circuit have the domain structure short:long,
except for one signal produced during the fan-out stage that also has
the structure short:long:short.

Table 1 shows the number of domains required to implement a
variety of circuits. As a first example, we consider a linear trans-
mission line. The simplest case corresponds to a single logical re-
peater gate, which is the best case proxy of a circuit with depth
one. Likewise, chains of transmission gates are the simplest pos-
sible circuits of depth n. Thus, we evaluate both a single trans-
mission gate and a chain of n transmission gates. In solution, a
single repeater can be implemented by the two-stage reaction cas-
cade shown in Figure 2. The design of a repeater thus requires the
design of three signal strands: the input, the output, and the internal
signal that connects the two stages of the cascade. In a cascade of

n repeaters in solution, each additional repeater requires the design
of two new signals. Both the number of sequences and the typical
completion time thus scale linearly with the number of repeaters in
the sequence.

Trns(1) Trns(n) AND(1) AND(n) Half-addr Full-addr N-bit addr

Non-localized 3 2n+1 4 3n+1 12 24 12+16n
Localized 3 3 4 n+3 13 15 15+6n

Table 1: Number of domains required to implement various
circuits.

In the localized circuit, a repeater similarly requires three dis-
tinct signals: the external input as, an internal signal ys (that en-
ables fuel capture), and an intermediate output sequence xs. The
sequence s is determined by the input, and only the toehold se-
quences change. Unlike the diffusive case, the same two sequences
(ys and xs) are used in every additional layer, so the number of se-
quences needed is independent of the cascade’s length. Computa-
tion time scales linearly with the number of sequential repeaters, as
observed for the diffusion case. Note, however, that co-localization
of components can dramatically enhance reaction speed simply by
increasing the effective concentration of one reactant at the site of
the other (e.g., see Chandran et al. [6] for a more detailed discus-
sion). In our design, fuel capture should be the rate-limiting step,
while the activation of an output by an open fuel should be fast.
Thus, compared to the case where all communication is diffusive,
each step in the reaction can potentially be accelerated by a con-
stant factor.

Next, we compare the non-localized AND gate by Soloveichik
et al. [32] with the localized gate introduced in Section 4.1, again
both individually and in chains of n gates. The non-localized AND
gate requires four independent signals: two inputs, one output, and
one internal signal strand that ensures independence of inputs and
outputs. Every additional layer in a linear cascade requires three
additional sequences: one input, one output and one internal sig-
nal. The second input is provided by the upstream gate. As shown
in Figure 9, an AND gate using localized components requires four
different signals, two signals corresponding to external inputs and
two internal signals. All information about the logic is encoded in
the spatial arrangement of the hairpins. Every additional layer re-
quires one additional external input but no new internal sequences.
In the non-localized gate, input binding and output release are im-
plemented as three sequential strand displacement reactions: The
second input can bind only if the first input is present. In contrast,
in the localized gate, binding of the two inputs is independent and
can occur in parallel. Its latency is proportional to only two se-
quential strand displacement reactions. This inherent parallelism
can enhance reaction speed by a constant for each AND gate.

We next compare working circuits: a half-adder, a full adder, and
an n-bit full adder. If we use dual-rail logic and choose a half-adder
design based on the truth table, we can implement a half adder with
four AND gates followed by fan-out to produce two output signals
(carry and sum) from each gate. In the non-localized case, this
requires a total of 16 unique signals: 4 inputs, 8 internal signals
and 4 outputs. The localized case requires 13 signals: 4 inputs, 4
outputs and 5 internal signals for logic gates, fan-out and crossover
(see Figure 12). A full adder accepts one additional external input,
which, in a dual-rail circuit, requires two more signals. Then, we
need four additional AND gates, four fan-out units and a dual-rail
OR gate that connects the two half-adders. For the localized full
adder (Figure 12, (d)), sequences can be reused for all 8 AND and
OR gates, fan-out gates and additional “wire” crossings, bringing

8

A₀
B₀

H(A₀,Y)
H(B₀,Y) H(X,Y)

+ F(Y,X)

X

Input A₀

Input B₀

H(B₀,Y) output

output

Fuel
H(A₀,Y)

H(X,Y)

B₀

A₀

X

F(Y,X) Input B₀

Input A₀

1

2a

2b

Input Input Output

Figure 10: OR logic with two inputs,A0 andB0 (top left diagram, diagonal opposites in origami), and one outputX (top left diagram,
right side).

F(ZY,Y)

s*

s*

s

z

s

z*

s
H(X,Y)

s*s

s
s*

s

y*

x

s* s

x*

z

s* s

x*

y

s* s

z*

s s* s

x*

y

s*s

x*x

s
z

s* s

x*

y

s*s

x*x

s

z

s*
z*

s

s

s*s

x*

y

yy*

y

y

y

y
y*y y*

y

ss*

s

y*

x

y

x*x

s* s

x*

y

H(X,Y)H(X,Y)

X

H(X,ZY) H(X,ZY)

X

F(ZY,Y)

H(X,ZY)H(X,ZY) H(X,Y)H(X,Y)

+ F(ZY,Y) + F(Y,X)

X X

X

X

1 2

3

4

5

Output OutputInput

Figure 11: Fan-out gate with one input (top left diagram, middle hairpin) and two outputs (top left diagram, left and right ends).

A₀

A₁
B₀

B₁

A₀

A₁

B₀

B₁

C₀

C₁

S₀

S₁

H(B₁,Y)

H(A₁,Y)

H(A₀,Y)

H(B₀,Y)

H(A₀,Y)
H(B₀,Y)

H(A₁,Y)
H(B₁,Y)

H(X,Y)

H(I,Y)

F(Y,X) + F(ZI,J) + F(J,I)

H(X,-)

H(X,ZI)

H(X,-)

H(X,-)

H(X,-)

H(X,ZI)

H(X,ZI)

H(X,ZI)

H(X,C₀)

H(X,ZI)

H(I,Y)

H(X,Y)

H(X,Y)

H(X,Y)

H(I,S₁)

H(I,S₀)

H(I,C₁)

H(X,Y)

H(X,Y)

A₀

A₁
B₀

B₁

A₀

A₁

B₀

B₁

C₀

C₁

S₀

S₁

C₀

C₁

C₀

C₁

C₀

C₁

S₀

S₁

iⁿ

iⁿ

iⁿ

iⁿ

out
¹

¹

¹

²

²

²
¹

S₀¹

S₀¹

S₁¹

S₁¹

²

C₀

C₁out

ha
lf

ad
de

r

ha
lf

ad
de

r

a) b)

c) d)

Figure 12: Multiple representations of a half-adder circuit on an origami tile ((a) through (c)). As shown in (d), another half-adder
and simple logic can be added to make a full adder.

9

the total number of distinct sequences to 15. In contrast, for the
non-localized case, we need 8 additional internal signals to imple-
ment the AND gate and fan-out as well as 2 additional signals for
the OR gate. In an n-bit adder, each additional bit contributes 4
new input and 2 output sequences. The non-localized case requires
10 new internal sequences (and thus 16 total) for each adder; for the
localized case, the number of sequences grows only because of ex-
ternal inputs and additional outputs (and thus only 6 new sequences
per additional bit).

The trade-off is likely less favorable in terms of circuit speed.
In order to connect inputs and outputs in the localized case, we
may need considerable amounts of “wiring,” i.e., transmission lines
that are not necessary in the diffusive case. This suggests that an
optimal approach combines localized circuit elements that fit con-
veniently on a single origami, e.g., a single adder, with diffusive
signals that enable communication between origamis. We intend to
explore this trade-off in future work.

5.2 Assessing Practicality
Even though simulation tools for strand displacement systems

are becoming increasingly sophisticated [19, 13], experimental val-
idation is still necessary. For example, there is currently no simula-
tion tool capable of reliably simulating hairpin-based systems. This
also means that many systems parameters — such as the lengths of
various domains — are best determined through experimental test-
ing. Furthermore, all experimental strand displacement systems ex-
hibit some degree of undesirable side reactions, which can be due
to errors in the DNA synthesis, imperfect complex assembly, or
bad sequence design. The main challenge in evaluating any DNA
system is properly determining system parameters (in this case do-
main lengths and hairpin spacing) and characterizing components
(kinetic rates and yield), which requires many repeats under vary-
ing experimental conditions and design iterations, each taking on
the order of hours to run.

Figure 13 presents experimental data for one of our proposed de-
sign elements, a three-step transmission line that includes a trans-
lation step. The input strand is designed to open the first hairpin,
triggering fuel binding and subsequent opening of the second and
third hairpins, similar to Figure 7. The final step is to detect that
the reaction has happened. This is accomplished by using a flu-
orophore probe, a duplex that initially has a fluorophore attached
to the end of one of its strands and a quencher attached to the end
of the other strand, adjacent to the fluorophore. The proximity of
a quencher prevents fluorescence. When the transmission line re-
leases its output, it displaces the strand attached to the quencher
and activates the probe to produce a detectable fluorescence sig-
nal. The solution used in the experiment has multiple copies of the
transmission line, so fluorescence gradually increases over time as
more probes are activated, as shown in Figure 13.

The three hairpins and the strand that connects them were mixed
at equal concentration in solution (a buffer, TAE, consisting of Tris
base, Acetate acid, EDTA and 12.5 nM magnesium (Mg2+) that
improves hybridization by maintaining a pH and salt concentration
similar to physiological conditions). They were annealed to form
the complete transmission line. Separately, the two strands that
form the probe were annealed in a similar manner. The fuel was
annealed separately, as well. Four separate experiments were per-
formed: in each, the transmission lines were mixed with an equal
quantity of probe and then mixed with: no further strands (Track
curve); input only (Track + Input); fuel only (Track + Fuel);
or a combination of both fuel and input (Track+Fuel+ Input).
Each of these elements represents a separate experiment and is de-
noted by a separate curve on Figure 13 (right). The transmission

line and probe do not interact in isolation, which is confirmed by
the fact that the addition of either an individual input or fuel re-
sults in little increase in fluorescent signal. A combination of both
input and fuel increases fluorescence, which indicates that the sig-
nal has been propagated from one end of the track to the other
because that is the only way to open the probe. Interaction be-
tween localized components in the field of synthetic DNA motors
has demonstrated that the rate of interaction between two local-
ized components is much higher than interactions between freely
diffusing components [2, 17]. Given the similar length scales, we
attribute the signal to interactions within the same track as opposed
to interaction between different tracks.

5.3 Discussion

Performance. Computation time for biochemical circuits can be
shown to scale linearly with circuit depth. The delay is shorter for
co-localized components compared to diffusive ones. Simulation
of the interaction rate between two linked objects shows a speedup
of several orders of magnitude. This becomes more apparent with
lower circuit concentrations, as the localized interactions are inde-
pendent of concentration. Our experiments show that non-localized
gates are slower and have lower yield compared to localized gates.
Provided fuel is abundant, computation rate scales linearly with
number of layers. In practice, it is not yet clear how much delay
can be further reduced for localized DNA components, but it is safe
to say that computation times will be in minutes to hours, which is
mostly appropriate for the kinds of applications they target.

In-cell environment. The environment of a cell can potentially
be hostile to DNA-based circuits. Transitions are the main worry:
many molecules in cells bind to DNA, which may inhibit toehold
formation or branch migration, equally affecting designed and leak-
age interactions. Separate studies show that DNA structures are
stable in cell lysate (solution produced when cells are destroyed by
disrupting their cell membranes) and within cells. A different nu-
cleic acid (locked nucleic acid, a form of modified RNA) resistant
to nucleases could be used. Dilution due to cell division should also
be considered, but the division is long enough (∼1 day for mam-
malian cells in culture) for several sequential reactions to complete.

6. RELATED WORK
Several groups have used strand displacement to engineer feed-

forward Boolean logic circuits of increasing complexity [33, 29,
23]. Chandran et al. [6] have proposed a design for strand displace-
ment-based Boolean logic circuits with spatially localized compo-
nents. The paper contains an interesting discussion of the potential
speed-up that could be achieved in a circuit where all components
are localized. However, unlike the present work, the authors do not
attempt to reduce code pressure through the repetition of sequence
domains. Outputs produced in one reaction step need to physically
reach the next gate with the proper orientation to serve as input, a
key issue not fully addressed. Furthermore, no experimental verifi-
cation of the proposed mechanisms is discussed.

Multiple groups showed that DNA nanostructures can serve as
nanoboards for the controlled placement of proteins, gold nanopar-
ticles, carbon nanotubes, quantum dots and various other compo-
nents with interesting chemical, optical, and electronic properties
(reviewed in the literature [20, 34]). In particular, Pistol et al.
used a DNA lattice to arrange a nanoscale computational circuit
with optical components [22, 21]. In contrast, our proposal orga-
nizes DNA-based information processing mechanisms in a DNA
origami.

10

0

100000

200000

300000

400000

500000

0 10000 20000 30000 40000 50000 60000 70000

Track + Fuel + Input

Track + Fuel
Track + Input
Track

Input Fuel

Track

Probe

time (s)

flu
or

es
ce

nc
e

s*s

s

a₀ a₀*

s* s

x*

y

s* s

x*

yy

s*
s

y*

x

0

100000

200000

300000

400000

500000

0 2 4 6 8 10 12 14 16 18 20
time (hours)

Track + Fuel + Input

flu
or

es
ce

nc
e

Track
Track + Input
Track + Fuel

0

100000

200000

300000

400000

0 2 4 6 8 10 12 14 16 18 20

Track + Fuel + Input

Track + Fuel

Track + Input

Track

time (hours)

flu
or

es
ce

nc
e

s* s

a₀

a₀*

s* s

x*

y

s*

x*

y

s
s* s

y*

x

t

t

t*

r

r*

s

Figure 13: Three-anchorage transmission line (left). An input strand is designed to initiate signal transmission along the track.
Activation of a fluorescent probe by the final anchorage allows detection of the transmitted signal (right). When mixed with fuel,
input or no strands at all, minimal output is detected. A combination of both input and fuel results in a signal increase, as designed.

Pierce and collaborators used DNA hairpin motifs similar to the
one used in the present work for the programmed self-assembly of
linear and branched polymer structures [8, 38]. Autonomous prop-
agation of a DNA signal along a track has been achieved in the
area of molecular motors, where a DNA “cargo” is moved between
track locations. Movement is powered by the turnover of a DNA
fuel hairpin and strand displacement [10, 2, 18, 17] or the cleaving
of a DNA backbone [15, 36]. Such systems rely on interactions be-
tween localized track components to keep the cargo moving along
the same track in a single direction. However, the nature of using
a single cargo means no fan-out may be achieved. All of these pa-
pers focus on molecular motion and not on computation. Still, they
provide further support for the experimental approach outlined in
this paper.

Our long-term goal is to develop circuits that can be used for di-
agnostic and therapeutic applications in living cells. Many of the
ingredients for such an approach are already available: DNA hair-
pins have recently been used to enable multiplexed RNA imaging
with sub-cellular resolution [7]. Origami-based biosensor arrays
[11] are being developed, and delivery of complex nanostructures
to cells has been demonstrated [16]. The technology introduced in
this paper provides the computation that can connect the sensing of
disease markers to a targeted therapeutic response.

7. CONCLUSIONS
This paper introduced DNA strand displacement computing to

the computer architecture community, discussed major associated
architectural challenges, and proposed practical localized DNA cir-
cuits. We evaluated the benefits of localization and showed it to be
a key improvement that enables composability and simplifies the
design of larger circuits. With this work, we have taken another
important step in the long journey toward in-cell computation. The
field is exciting and new, and fascinating challenges lie ahead. We
hope this paper motivates other computer architects to apply their
expertise toward tackling these challenges.

Acknowledgments
We thank the members of the UW Sampa group and the anonymous
reviewers for their feedback and help. We also thank Sandy Kaplan
for her effort editing the manuscript. This work was supported in
part by the National Science Foundation under grant CCF-1162141
and fellowships from the Alfred P. Sloan Foundation.

References
[1] L. Adleman. Molecular computation of solutions to combinatorial

problems. Science, 266(5187):1021, 1994.

[2] J. Bath, S. Green, K. Allen, and A. Turberfield. Mechanism for a di-
rectional, processive, and reversible DNA motor. Small, 5(13):1513–
1516, 2009.

[3] L. Cardelli. Strand algebras for DNA computing. DNA Computing
and Molecular Programming, pages 12–24, 2009.

[4] L. Cardelli. Two-domain DNA strand displacement. Mathematical
Structures in Computer Science, 23(02):247–271, 2013.

[5] R. Carlson. The changing economics of DNA synthesis. Nature
Biotechnology, 27(12):1091–1094, 2009.

[6] H. Chandran, N. Gopalkrishnan, A. Phillips, and J. Reif. Localized
hybridization circuits. DNA Computing and Molecular Programming,
pages 64–83, 2011.

[7] H. Choi, J. Chang, L. Trinh, J. Padilla, S. Fraser, and N. Pierce. Pro-
grammable in situ amplification for multiplexed imaging of mRNA
expression. Nature Biotechnology, 28(11):1208–1212, 2010.

[8] R. Dirks and N. Pierce. Triggered amplification by hybridization chain
reaction. Proceedings of the National Academy of Sciences of the
United States of America, 101(43):15275, 2004.

[9] S. Douglas, I. Bachelet, and G. Church. A logic-gated nanorobot
for targeted transport of molecular payloads. Science Signalling,
335(6070):831, 2012.

[10] S. Green, J. Bath, and A. Turberfield. Coordinated chemomechanical
cycles: a mechanism for autonomous molecular motion. Physical
Review Letters, 101(23):238101, 2008.

[11] Y. Ke, S. Lindsay, Y. Chang, Y. Liu, and H. Yan. Self-assembled
water-soluble nucleic acid probe tiles for label-free RNA hybridiza-
tion assays. Science, 319(5860):180, 2008.

[12] Y. Krishnan and F. Simmel. Nucleic acid based molecular devices.
Angewandte Chemie International Edition, 50(14):3124–3156, 2011.

[13] M. Lakin, S. Youssef, L. Cardelli, and A. Phillips. Abstractions
for DNA circuit design. Journal of The Royal Society Interface,
9(68):470–486, 2012.

[14] Q. Li, G. Luan, Q. Guo, and J. Liang. A new class of homogeneous
nucleic acid probes based on specific displacement hybridization. Nu-
cleic Acids Research, 30(2):e5–e5, 2002.

[15] K. Lund, A. Manzo, N. Dabby, N. Michelotti, A. Johnson-Buck,
J. Nangreave, S. Taylor, R. Pei, M. Stojanovic, N. Walter, et al.
Molecular robots guided by prescriptive landscapes. Nature,
465(7295):206–210, 2010.

[16] Q. Mei, X. Wei, F. Su, Y. Liu, C. Youngbull, R. Johnson, S. Lindsay,

11

H. Yan, and D. Meldrum. Stability of DNA origami nanoarrays in cell
lysate. Nano Letters, 11(4):1477–1482, 2011.

[17] R. Muscat, J. Bath, and A. Turberfield. A programmable molecular
robot. Nano Letters, 11(3):982, 2011.

[18] T. Omabegho, R. Sha, and N. Seeman. A bipedal DNA brownian
motor with coordinated legs. Science, 324(5923):67, 2009.

[19] A. Phillips and L. Cardelli. A programming language for compos-
able DNA circuits. Journal of the Royal Society Interface, 6(Suppl
4):S419–S436, 2009.

[20] A. Pinheiro, D. Han, W. Shih, and H. Yan. Challenges and opportu-
nities for structural DNA nanotechnology. Nature Nanotechnology,
6(12):763–772, 2011.

[21] C. Pistol, W. Chongchitmate, C. Dwyer, and A. Lebeck. Architectural
implications of nanoscale-integrated sensing and computing. Micro,
IEEE, 30(1):110–120, 2010.

[22] C. Pistol, C. Dwyer, and A. Lebeck. Nanoscale optical computing
using resonance energy transfer logic. Micro, IEEE, 28(6):7–18, 2008.

[23] L. Qian and E. Winfree. Scaling up digital circuit computation with
DNA strand displacement cascades. Science, 332(6034):1196, 2011.

[24] L. Qian, E. Winfree, and J. Bruck. Neural network computation
with DNA strand displacement cascades. Nature, 475(7356):368–372,
2011.

[25] A. Rajendran, M. Endo, Y. Katsuda, K. Hidaka, and H. Sugiyama.
Programmed two-dimensional self-assembly of multiple DNA
origami jigsaw pieces. ACS Nano, 5(1):665–671, 2011.

[26] P. Rothemund. Folding DNA to create nanoscale shapes and patterns.
Nature, 440(7082):297–302, 2006.

[27] V. J. Schüller, S. Heidegger, N. Sandholzer, P. Nickels, N. Suhartha,
S. Endres, C. Bourquin, and T. Liedl. Cellular immunostimula-
tion by CpG-sequence-coated DNA origami structures. ACS Nano,
5(12):9696–9702, 2011.

[28] G. Seelig and D. Soloveichik. Time-complexity of multilayered DNA
strand displacement circuits. DNA Computing and Molecular Pro-
gramming, pages 144–153, 2009.

[29] G. Seelig, D. Soloveichik, D. Zhang, and E. Winfree. Enzyme-free
nucleic acid logic circuits. Science, 314(5805):1585, 2006.

[30] N. Seeman. Nanomaterials based on DNA. Annual Review of Bio-
chemistry, 79:65–87, 2010.

[31] W. Shih and C. Lin. Knitting complex weaves with DNA origami.
Current Opinion in Structural Biology, 20(3):276–282, 2010.

[32] D. Soloveichik, G. Seelig, and E. Winfree. DNA as a universal sub-
strate for chemical kinetics. Proceedings of the National Academy of
Sciences, 107(12):5393, 2010.

[33] K. Takahashi, S. Yaegashi, A. Kameda, and M. Hagiya. Chain reaction
systems based on loop dissociation of DNA. DNA Computing: 11th
International Workshop on DNA Computing, DNA11, Lecture Notes
in Computer Science, 3892:347–358, 2006.

[34] C. Teller and I. Willner. Organizing protein–DNA hybrids as nanos-
tructures with programmed functionalities. Trends in Biotechnology,
28(12):619–628, 2010.

[35] A. Walsh, H. Yin, C. Erben, W. M.J., and A. Turberfield. DNA cage
delivery to mammalian cells. ACS Nano, 5(7):5427–5432, 2011.

[36] S. Wickham, M. Endo, Y. Katsuda, K. Hidaka, J. Bath, H. Sugiyama,
and A. Turberfield. Direct observation of stepwise movement of a
synthetic molecular transporter. Nature Nanotechnology, 6(3):166–
169, 2011.

[37] S. Woo and P. Rothemund. Programmable molecular recognition
based on the geometry of DNA nanostructures. Nature Chemistry,
3:620–627, 2011.

[38] P. Yin, H. Choi, C. Calvert, and N. Pierce. Programming biomolecular
self-assembly pathways. Nature, 451(7176):318–322, 2008.

[39] B. Yurke and A. Mills. Using DNA to power nanostructures. Genetic
Programming and Evolvable Machines, 4(2):111–122, 2003.

[40] D. Zhang and G. Seelig. Dynamic DNA nanotechnology using strand-
displacement reactions. Nature Chemistry, 3(2):103–113, 2011.

[41] D. Zhang, A. Turberfield, B. Yurke, and E. Winfree. Engineering
entropy-driven reactions and networks catalyzed by DNA. Science,
318(5853):1121, 2007.

[42] D. Zhang and E. Winfree. Control of DNA strand displacement ki-
netics using toehold exchange. Journal of the American Chemical
Society, 131(47):17303–17314, 2009.

12

