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Abstract
Knowledge encoded in semantic graphs such as Freebase

has been shown to benefit semantic parsing and interpretation
of natural language user utterances. In this paper, we propose
new methods to assign weights to semantic graphs that reflect
common usage types of the entities and their relations. Such
statistical information can improve the disambiguation of en-
tities in natural language utterances. Weights for entity types
can be derived from the populated knowledge in the seman-
tic graph, based on the frequency of occurrence of each type.
They can also be learned from the usage frequencies in real
world natural language text, such as related Wikipedia docu-
ments or user queries posed to a search engine. We compare the
proposed methods with the unweighted version of the semantic
knowledge graph for the relation detection task and show that
all weighting methods result in better performance in compari-
son to using the unweighted version.
Index Terms:Semantic knowledge graphs, entity types, spoken
language understanding, relation detection, spoken dialog sys-
tems.

1. Introduction
Semantic knowledge graphs, such as Freebase[1], encode fac-
tual world knowledge in triples of a pair of entities and their
relation, for example, the triple

<"Avatar",directed by,"James Cameron">
encodes that one of the directors of the movie Avatar is James
Cameron. Such knowledge encoded in the semantic graphs in
the form of entities and their relations can be useful for spo-
ken language understanding (SLU) when detecting them in nat-
ural language utterances and determining their types and rela-
tion. For example, lists of entities of a specific type (such as
gazetteers of movie names and actor names) have been com-
monly used for interpretation of natural language user queries
in spoken dialog systems [2, 3, 4]. Entity lists/gazetteers can be
formed from triples in semantic graphs, mined from the web or
provided by third parties. When used as is, such lists usually
introduce noise to spoken language understanding, as for exam-
ple, commonly used terms could also be entities (for example,
Up, and Holiday Inn are movie names). Previous work by [3]
used an approach based on search queries and clicked URLs to
assign a weight to each entity term to estimate if a term is more
commonly used in natural language as an entity or not. They
have shown the benefit of these weights for the slot filling and
domain detection tasks. However, many entities are ambiguous
as they are involved in many types of relations in the encoded
knowledge. For example, in the domain of movies, many actors
also direct or produce movies; or in the domain of organiza-
tions, the founder of a company is frequently the CEO of the

same company or is on its board of directors.
When user requests are mapped to queries in a query lan-

guage such as SQL or SPARQL, in addition to knowing that
a sequence is an entity, it is also necessary to specify its type
or relations it invokes. For example, for an utterance such as
”I want to see something with Brad Pitt”, the common under-
standing would be movies where Brad Pitt acted in. The query
to the back-end knowledge source for this utterance would re-
quire specifying him as the actor, even though he may be listed
in several types of roles, such as an actor or producer of movies.

In this paper, we tackle the problem of entity type ambi-
guity and investigate three methods for introducing weights to
semantic graph entity types, with the end goal of improving in-
terpretation of natural language user queries to a conversational
interaction system. The first method requires a fully populated
semantic knowledge graph (i.e. all entities and their relations
with others are specified) and hence provides an upper bound. It
estimates the posterior probability of each entity type based on
the entries in the semantic graph. The second and third meth-
ods require a large text corpus, and are both based on the as-
sumption that, entity types that are used more frequently in nat-
ural language for a specific entity should be weighted higher
during SLU. Hence, these methods rely on instances of each
entity in natural language text, such as Wikipedia documents
and web search queries, and do not require a complete knowl-
edge graph where all relations of all entities are marked. The
second method uses a seeded version of latent Dirichlet allo-
cation (SLDA) [5] where entity types in the original lists are
used as prior information. The third method, which we call as
seeded feature propagation (SFP), is based on representing en-
tities and entity types as context vectors, where context features
are propagated from unambiguous entities to entity types, and
then similarity between each entity and entity type is computed
and normalized to obtain probabilities.

We show the contribution of each entity weighting method
on the SLU relation detection task. Specifically, our goal
is to find all relations invoked in a user utterance (i.e.,
film.directed by in ”James Cameron movies”) as well
as to convert them to search queries to the back-end knowledge
sources. In our previous work, we proposed methods to boot-
strap relation detection models from web documents [6] and
discovering new relation types from large text corpora [7]. Se-
mantic knowledge graphs have also been used for SLU seman-
tic parsing tasks in dialog systems [8, 9, 10, 11] and question
answering [12, 13, among others].

In the next sections, we first describe the semantic resources
used and the relation detection task. Then, we present methods
for estimating weights for entities and their types. We show
results comparing all methods for both unsupervised and super-
vised learning for the relation detection task.
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2. Semantic Graphs
The Semantic Web is a collaborative movement aiming at con-
verting the unstructured and semi-structured documents into a
structured semantic network [14, 15, 16]. In 1997, W3C first
defined the Resource Description Framework (RDF), a simple
yet very powerful triple-based representation for the semantic
web. As RDFs became more popular, triple stores (referred
as semantic knowledge graphs) covering various domains have
emerged, such as Freebase [1] and YAGO2 [17]. In 2008, W3C
proposed the SPARQL RDF query language to retrieve and ma-
nipulate the data in knowledge bases. In this work, we target
mapping natural language spoken queries addressed to a con-
versational agent into SPARQL queries to Freebase. In our ap-
proach, this task includes linking entities in user queries to the
semantic graph entities and determining the relations that need
to be included in the SPARQL query as described in the next
section.

3. Relation Detection for Language
Understanding

Relation detection task was originally formulated as part of
Message Understanding Conferences (MUC) [18], and evalu-
ated through NIST knowledge base population tracks [19], and
aims to detect and classify instances of relations, where a re-
lation is defined as a meaningful connection between two en-
tities [20]. Since then, there has been a wide body of work,
mainly related to detecting relations between two candidate en-
tities in natural language text using supervised and unsupervised
classification based methods [21, 22, 23, 24, 25, 26, among oth-
ers] and relation discovery from natural language text [27, 28,
among others].

In this paper, we propose a relation detection task for
spoken language understanding that aims to detect all rela-
tions invoked in user utterances, with the goal of automati-
cally forming SPARQL queries that correspond to user utter-
ances. Each relation implies the presence of a triple in the

Figure 1: Example user utterances with their SPARQL map-
ping.

SPARQL query to a back-end knowledge source, and the en-
tity values in these triples are then resolved using the words
of the utterance. For example, in Figure 1, relation de-
tection aims to find detecting film.genre and film.directed by
relations, given the utterance ”Show me horror movies by
Steven Spielberg”. Once these relations are detected, two
triples are invoked: <?movie,film.genre,?genre> and
<?movie,film.directed by, ?director>. The val-
ues of the variables in these triples, such as ?movie and
?genre, are looked up in the utterance and included in the
query to the back-end knowledge source. An advantage of this
approach is that, even when the value of a variable is not ex-
tracted because of a system error, the movies would be listed
with their genre information, enabling better error recovery
strategies for conversational systems.

We treat relation detection as a multi-class, multi-label (i.e.
each utterance can invoke more than one relation) classification
problem, where the goal is to find the most probable relations
given a user utterance.

Figure 2: z1, . . . , zs represent entity types from the seman-
tic graph. Yellow background shows entity tokens (i.e., wn),
thick links show entity type information encoded in the seman-
tic graph (i.e., wn is marked in the graph as an entity of two
types zi and zs). E is the prior knowledge added as labeled
random variable to the graphical model.

4. Approach
We investigate three methods for weighting entity types: one
based on a fully populated semantic graph, and two based on
natural language text corpora.

4.1. Entity Type Weights from the Populated Semantic
Graph (SG-weighted)
For each entity surface form, ei in the semantic graph, we count
the number of times the specific entity is observed with a spe-
cific type, tj , denoted by C(ei, tj) in the populated knowledge.
Here, by type, we mean that the entity was observed as the ob-
ject of a relation associated with the type. For example, if an en-
tity was observed as an object of ”film.directed by” relation, we
consider that the entity was used as type ”film.director”. Then,
we estimate a weight for each entity and type pair as:

PSG(tj |ei) =
C(ei, tj)∑

k∈T C(ei, tk)

where T denotes the set of all possible entity types. For ex-
ample, if ”Brad Pitt” is listed as a producer of 15 movies
and as starring in 45 movies, a weight of 0.25 is assigned to
”film.producer” and 0.75 is assigned to ”film.actor”.

4.2. Seeded LDA (SLDA-*-weighted)
Mixture modeling of documents into topical semantic clusters is
proven to be effective for SLU tasks, where the goal is finding
the global aspects such as domain, topic, or intent of a given
utterance [29, 30, 31]. Our seeded topic modeling approach is
based on the semi-supervised LDA presented in [32, 33], which
is depicted in Fig. 2 graphically in comparison to the standard
LDA. The prior information we use for the seeded LDA (SLDA)
is defined by the input entity type clusters, while capturing the
entity type distributions in our dataset. In the figure, z represent
the latent entity type variables and w represent the ngram tokens
in sentences, where words corresponding to entities are joined
into a single token (i.e., ”brad pitt” is mapped to ”brad pitt”.)

Our model views each sentence invoking a mixture of en-
tity types. We inject the entity information we obtain from the
input list of entities and their types as prior knowledge into
the SLDA model as labeled latent entity types. Specifically,
we obtain a matrix of entity-type by entity realizations matrix,
E∈It×s. This matrix contains for each t different n-grams (en-
tity realization) obtained from the knowledge graph, a binary
vector −→e n={0,0,1,1,. . . ,0,0} per each s different entity type,
i.e., −→e n=1,..,t∈ Is. Thus, in Figure 2, the blank circles in-
dicate latent variables, whereas blue and yellow filled circles
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indicate known variables. E is the prior knowledge injected as
binary matrix and s is the number of latent entity types corre-
sponding to known entity clusters (depicted as the green plate
on the graph).

In our model, we attribute each ngram (in a given docu-
ment) to a possible semantic entity type. We also would like
to build a more focused model, where there is a one-to-many
map between the semantic entity classes and latent topics. To
achieve this, we use an informative prior during Gibbs sam-
pling, which pulls word-entity relations from the entity relation
matrix. Specifically, at training time, we provide prior entity re-
lation matrix E, for ngrams, which we know a priori that they
correspond to one or more entity types in our corpus. For ex-
ample, an actor name such as ”brad pitt” in a given sentence,
”..in the movies directed by brad pitt..” can be sampled from
”film.actor” type (one of the designated s types) or it could also
be sampled from ”film.producer” type (also one of the desig-
nated s topics).

We sample the ngrams which do not exist in the entity re-
lation matrix, i.e., −→e n∈E, from those topics designated for the
semantic entity classes, namely the topics corresponding to en-
tity types that get value 1 in the −→e n vector. Similarly, for the
unlabeled ngrams, we let the algorithm decide which topic that
word should belong to.

During model training and inference, we use this entity type
matrix as restrictive information when generating each word in
each sentence. We reserve s number of latent topics z1, . . . , zs
to sustain a correspondence between the latent topics and the
semantic labels (entity types) as shown in the graph representa-
tion of SLDA. The rest of the topics, zs+1, . . . , zK may or may
not correspond to any entity type in our corpus.

After training the SLDA model, we calculate a probabil-
ity of each type, given an entity, based on the final entity type
assignments of the training corpus.

4.3. Seeded Feature Propagation (SFP-*-weighted)
SFP forms initial entity type cluster representations from un-
ambiguous entities similarly to earlier work on word sense dis-
ambiguation [34] and computes similarity of each ambiguous
entity to these clusters. This method represents each entity ei
with a vector Ei of |V | terms, where in this case, V denotes
the set of ngrams in the vocabulary of the corpus. Each term
in this vector could be a frequency of the term, or other term
weights. The entities can also be represented as entity embed-
dings [35, 36]. In this work, we compute term weights from the
context where these entities occur in the large corpus.

Similarly, we represent entity types as vectors, Tj of |V |
terms. The type vectors are formed by propagating context fea-
tures from all the entities that are unambiguously marked as
having a single type in the semantic graph:

Tj =
∑
k

Ek

where Ek are the vectors of the entities that are marked only as
type tj in the original entity type list.

Then, the probability of being in type tj for an entity ei is
computed as:

PV S(tj |ei) =
exp(SIM(Ei, Tj))∑

m∈di exp(SIM(Ei, Tm))

where SIM denotes a similarity measure, and we use cosine
similarity in the experiments. The set di is the set of all types
assigned to entity ei in the original entity type list.

Query Statistics Training Test
No. with SPARQL annotations 3,338 1,086
% with no relation (i.e. entity only) 10.1% 9.1%
% with 1 relation 70.4% 69.2%
% with 2 relations 10.2% 10.7%
% with 3 or more relations 1% 1.6%
% not covered by graph 8.3% 9.4%

Table 1: Relation detection data sets used in the experiments.

In this work, we do not perform iterations that update entity
type vectors as ambiguous entities are associated with them as
in [34], but our method can be extended as such.

5. Experiments
5.1. Data Sets
All our experiments use list of entities from the publicly avail-
able Freebase semantic knowledge graph. The list includes
820K entities of 78 entity types, including movie names, actors
and release dates.

For estimating entity type weights with SLDA and SFP
methods, we use two large corpora: Wikipedia movie domain
documents (wiki) and movie domain search queries from Bing
search query click logs (QCL) from a period of 3 months
(October-December, 2013). The Wikipedia film domain doc-
ument set contains 592K sentences and 10.6 million words.
These documents were segmented into sentences using the
Splitta tool [37] and used in training SLDA (SLDA-wiki)
and SFP (SFP-wiki). The resulting entity dictionary includes
weights over different entity types for the 182K entities ob-
served in the Wikipedia documents. From QCL, we only use
queries whose users clicked on movie domain Wikipedia web
pages, and excluded queries that are shorter than 8 words, as
there may not be enough context in such queries. The resulting
data set contains 540K queries and 5.1 million words. Simi-
larly, we used queries in training SLDA (SLDA-QCL) and SFP
(SFP-QCL). Only 45K of the Freebase entities were observed
in these queries, hence the SLDA and SFP methods estimate
weights for only this subset.

We experimented with the formed dictionaries and associ-
ated entity type weights in relation detection experiments. The
relation detection data sets are crowd-sourced utterances ad-
dressed to a conversational agent and are described in Table 1.
Both the training and test sets were manually annotated with
SPARQL queries, which we used to extract the relation anno-
tations. Similar to a categorization of web search queries [38],
we created a categorization of the conversational agent queries.
Note that, in such natural language query data sets, the distri-
butions of entity bearing, and entity+relation bearing user ut-
terances are very different than those of web search queries.
Around 10% of the training and test sets do not include invoca-
tion of a relation. These are mainly queries with just an entity
(such as ”Brad Pitt”). Most (around 70%) of the queries include
only a single relation (such as, film.genre in ”find funny
movies”). The data sets also include movie domain queries that
are not covered by the semantic graph (i.e., the invoked rela-
tions are not encoded in the semantic graph, such as ”add this
movie to my queue”).

5.2. Results
We train a multi-class, multi-label classifier that estimates rela-
tions for each user utterance using icsiboost [39]. We extract
word unigrams, bigrams, and trigrams as classification features.
When a dictionary is available, we match ngrams in the example
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Method: Unsupervised Supervised
Training Data: None Unlabeled Labeled
Data Set: Training Test Test Test

(1 iter) (Avg. 3)
No Dict. - - - 84.1%
Unweighted Dict. 20.2% 21.2% - 82.3%
SG-weighted Dict. 35.6% 34.6% 38.3% 85.4%
SLDA-wiki-weighted Dict. 34.6% 34.0% 37.3% 84.9%
SLDA-QCL-weighted Dict. 31.2% 30.9% 32.3% 84.7%
SFP-wiki-weighted Dict. 32.2% 30.9% 35.7% 85.0%
SFP-QCL-weighted Dict. 28.4% 31.5% 32.8 % 84.5%

Table 2: F-measure results of unsupervised learning experiments. *-wiki-* and *-QCL-* are experiments where Wikipedia documents
and web queries are used for training, respectively. The semantic graph upperbounds and the best results are indented and boldfaced.

utterance with entities. When an ngram in the utterance matches
an entity, we use the highest weighted type for the matching en-
tity and its weight as additional features. For the unweighted
dictionary, we use presence of all matching entity types as bi-
nary features. For evaluation, we compute relation detection
F-measure.

5.2.1. Unsupervised Learning
We first experiment with fully unsupervised learning, which
simply matches all word ngrams in user utterances to the list
of entities. For each matching entity, the highest weight type
is added to the list of relations for the given utterance. For
the unweighted dictionary, we use all types of all the matching
entities. The first two result columns of Table 2 show results
from these experiments on relation detection training and test
set examples. The third column shows results from unsuper-
vised learning experiments in the presence of unlabeled training
examples. In these results, the annotations from the first result
column are used as labels of the training examples, and a classi-
fier is trained using those. All methods improve significantly in
comparison to the unweighted entity and entity type dictionar-
ies. The best F-measure we achieve using fully unsupervised
learning is with the SG-weighted entity types. The F-measure
with SLDA-wiki method, which does not require a fully popu-
lated semantic graph is very close to the SG-weighted method.

5.2.2. Supervised Learning Experiments
We also experiment with supervised learning, where a labeled
set of examples are used for training the relation detection clas-
sifier. Since our data sets are small, we experimented with 3
random ways of splitting the training and test sets and averaged
results over those. Final column of Table 2 shows F-measure
from these experiments. When labeled training data is avail-
able, the use of an unweighted dictionary may even hurt the
relation detection F-measure (82.3%) over use of word ngrams
only (84.1%). All methods for weighting entity types improve
over using ngrams only. Figure 3 shows F-measure with varying
sizes of labeled training sets (where at each point, 3 random sub-
sets of training examples are used, resulting in averaging over 9
experiments). As seen, over all training subsets, SG-weighted
and SLDA-wiki perform the best.

5.3. Discussion
The Wikipedia documents include 22.2% and search queries in-
clude 5.5% of all the entities. We tried adding the remaining
entities to the learned dictionaries with weights from the SG-
weighted dictionaries, however did not achieve any improve-
ments in performance over using the SG-weighted dictionary by
itself. Similarly, we analyzed if the weights in one of the dic-

Figure 3: F-measure learning curves over varying training data
set sizes, from supervised classification experiments. Experi-
ments are performed over 3 different training and test subsets,
and 9 F-measures are averaged for each point in the plot.

tionaries were better than others. We reduced the list of entities
in the SG-weighted dictionary to the ones that were observed in
the training corpora (hence included in the other methods). We
obtained only small improvements from this over the full dic-
tionary, showing that filtering infrequent entities (as found from
large text corpora) from the full set of entities in the knowledge
graph may help relation detection.

Note that, the relation detection approach in this paper fo-
cuses on entities in user utterances and relations implied by
them. Hence, relations not implied by entities, such as the
film.directed by in the second example of Figure 1 are
not targeted in this work. Such relations can be found by our
previous approach that mines patterns from web documents, us-
ing pairs of entities [6]. Our future work includes joining the
two approaches.

6. Conclusions
We present three methods for computing entity type weights
to enrich semantic knowledge graph entities with probabilistic
weights. We show the use of such weights in the SLU rela-
tion detection task. All three methods result in improvements
in relation detection performance. Even when a fully populated
semantic graph is not available, our proposed methods perform
significantly better relation detection than using no dictionary
or an unweighted dictionary.
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