
Appendix to “The Health of Software Engineering

Research”

David Lo

School of Information Systems

Singapore Management University

Singapore

davidlo@smu.edu.sg

Nachiappan Nagappan and Thomas Zimmermann

Research in Software Engineering (RiSE)

Microsoft Research

Redmond, USA

{nachin,tzimmer}@microsoft.com

Abstract - This appendix contains the full survey that we conducted in Microsoft (Appendix A) and the top-5 research ideas that

were rated by developers, testers, and program managers, respectively (Appendix B).

APPENDIX A: FULL SURVEY

1. Which best describes your primary work area? (required) *This question is required.

Development

Test

PM

Other Please enter an 'other' value for this selection.

2. Which of the following best describes your role? (required) *This question is required.

Individual Contributor

Lead

Architect

Manager

Executive

Other Please enter an 'other' value for this selection.

3. How many years have you worked in the software industry? (decimals okay) (required) *This question is required.

4. Please answer the following questions about demographics. (required) *This question is required.

Did you major in computer science or a related field (such as computer engineering, information systems)? Yes No

Do you have an advanced degree (MSc, PhD, etc.)? Yes No

5. In your opinion, how important are the following pieces of research? Please respond to as many as possible. (at least 1 response

required) *This question is required.

Technique to identify files that contain a bug from the description of that

bug (in a bug report). Essential Worthwhile Unimportant Unwise
I don't

understand

Empirical study examining factors affecting the cost and effectiveness of

test suite augmentation techniques Essential Worthwhile Unimportant Unwise
I don't

understand

Empirical study of a community portal used by a closed source software

project to characterize artifacts shared there and highlighting benefits

and possible shortcomings Essential Worthwhile Unimportant Unwise
I don't

understand

Mutation based test data generation approach that is capable of killing

both first and higher order mutants Essential Worthwhile Unimportant Unwise
I don't

understand

Defect prediction technique to identify defects that break pre-existing

functionality (breakage defects) and defects in files that had relatively

few pre-release changes (surprise defects). Essential Worthwhile Unimportant Unwise
I don't

understand

A concurrency model that is better than existing model in terms of not

extraneously introducing behaviors infeasible in the actual system, not

extraneously excluding actual behaviors, and isolating the challenging

features for analyses to focus on
Essential Worthwhile Unimportant Unwise

I don't

understand

An empirical study to test how effective are techniques that are able to

help migrate client code between library versions with incompatible

APIs work in practice Essential Worthwhile Unimportant Unwise
I don't

understand

A technique to recover missing links between bug reports and bug fixing

commits. It takes into account not only textual features but also source

code features of the changed code corresponding to the commit logs. Essential Worthwhile Unimportant Unwise
I don't

understand

An empirical study on the feasibility of CIT for 5- and 6-way feature

interactions that takes into account constraints and test case prioritization Essential Worthwhile Unimportant Unwise
I don't

understand

Technique to scale up concolic testing based on interpolation, that

greatly mitigates path-explosion by subsuming paths that can be

guaranteed to not hit a bug Essential Worthwhile Unimportant Unwise
I don't

understand

A change interaction is when where several program changes are found

to affect the result of a program statement via program dependencies.

The paper proposes an approach to generate test cases which witness

change interaction errors.
Essential Worthwhile Unimportant Unwise

I don't

understand

A reachability question is a search across feasible paths through a

program for target statements matching search criteria. The paper reports

the result of an empirical study that reported that reachability questions

are common and often time consuming to answer.
Essential Worthwhile Unimportant Unwise

I don't

understand

A verification approach for parameterized system (i.e., a parametric

infinite family of systems) which tries to improve efficiency by limiting

search to a maximum path length Essential Worthwhile Unimportant Unwise
I don't

understand

Technique to find links between e-mails and the software artifacts they

discuss Essential Worthwhile Unimportant Unwise
I don't

understand

A new approach to controlling concurrency which eases the task of

implementing sophisticated locking schemes and provide static checks to

automatically detect many data races. Views consist of view declarations

that describe which views of an object may be simultaneously held by

different threads, which object fields may be accessed through a given

view, and which methods can be called through a given view.

Essential Worthwhile Unimportant Unwise
I don't

understand

Technique to dynamically infer likely deterministic specifications for

parallel programs given a set of inputs and schedules Essential Worthwhile Unimportant Unwise
I don't

understand

An automated tool that assists programmers with refactoring

synchronized blocks into ReentrantLocks and ReadWriteLocks, to make

exploring the performance tradeoffs among these constructs easier. Essential Worthwhile Unimportant Unwise
I don't

understand

Empirical study that quantifies how the choice of programming language

impacts software quality and developer productivity Essential Worthwhile Unimportant Unwise
I don't

understand

Empirical study that investigates if social network analysis metrics

computed based on information stored in software development artifacts

represent actual socio-technical relationships. This is done by examining

if developer networks can be matched with developer perceptions.
Essential Worthwhile Unimportant Unwise

I don't

understand

A tool that allows developers to reap the benefits of both static and

dynamic typing, throughout the development process, and without the

burden of manually separating their program into statically and

dynamically-typed parts.
Essential Worthwhile Unimportant Unwise

I don't

understand

An algorithm to fix a bad configuration by generating range fixes (i.e.,

the options to change and the ranges of values for these options) Essential Worthwhile Unimportant Unwise
I don't

understand

Empirical study about how developers practice program comprehension

under time and project pressure, and which methods and tools proposed

by researchers are used in industry. Essential Worthwhile Unimportant Unwise
I don't

understand

A technique to classify email lines into five categories (i.e., text, junk,

code, patch, and stack trace) Essential Worthwhile Unimportant Unwise
I don't

understand

An automated technique to maintain CSS rules by identifying obsolete

CSS rules, DOM elements that some rules affect, and impact if some

CSS rules are removed. Essential Worthwhile Unimportant Unwise
I don't

understand

A technique that takes a textual change request (e.g., a bug report), a

single snapshot (release) of source code, and an initial source code entity

that is impacted by the change, and outputs the other source code

entities.
Essential Worthwhile Unimportant Unwise

I don't

understand

A tool for making software architecture consistent with implementations

during software development. The tool supports deep separation of

generated and non-generated code, an architecture change model,

architecture-based code regeneration, and architecture change

notification.

Essential Worthwhile Unimportant Unwise
I don't

understand

Approach to automatically extract FAQs from sources of software

development discussion, such as mailing lists and Internet forums Essential Worthwhile Unimportant Unwise
I don't

understand

Empirical study on how the increased transparency found on GitHub

influences developers' testing behaviors. Essential Worthwhile Unimportant Unwise
I don't

understand

Automatic unit test generation for programs written in C/C++. The

proposed approach improves the coverage obtained by feedback-directed

random test generation methods, by utilizing concolic execution on the

generated test drivers and by employing non-linear solvers for numeric

computations.

Essential Worthwhile Unimportant Unwise
I don't

understand

A technique that extends Alloy to presents a set of scenarios from a

specification. Different from Alloy, Aluminium ensures that the

generated scenarios are minimal and allows users to augment a scenario

by providing new tuples.
Essential Worthwhile Unimportant Unwise

I don't

understand

An automatic testing technique to reveal subclasses that cannot safely

substitute their superclasses. Essential Worthwhile Unimportant Unwise
I don't

understand

Empirical study on the impact of issue report misclassification (feature

request -> bug, bug -> feature request) to bug prediction. Essential Worthwhile Unimportant Unwise
I don't

understand

A domain specific language and a distributed computing infrastructure to

allow users to query and get information from a large number of

software repositories. Essential Worthwhile Unimportant Unwise
I don't

understand

A multi-objective decision support approach to help balance project risks

and duration against overtime, so that software engineers can better plan

overtime. Essential Worthwhile Unimportant Unwise
I don't

understand

A technique that creates a context-aware edit script from two or more

examples, and uses the script to automatically identify edit locations and

transform the code. Essential Worthwhile Unimportant Unwise
I don't

understand

Automated technique for reliability estimation that combines simulation,

invariant inference and probabilistic model checking Essential Worthwhile Unimportant Unwise
I don't

understand

A generic, extensible framework which brings sketching functionality to

Eclipse Graphical Editing Framework based diagram editor. Sketch

features can be dynamically injected and used without writing a single

line of code.
Essential Worthwhile Unimportant Unwise

I don't

understand

An approach to automatically re-write web pages so that these pages can

be displayed with less energy consumption. Essential Worthwhile Unimportant Unwise
I don't

understand

Tiered framework for combining behaviour models that are used to

generate operational strategies for adaptive systems to allow for graceful

degradation when some assumptions are broken, and progressive

enhancement when those assumptions are satisfied or restored.
Essential Worthwhile Unimportant Unwise

I don't

understand

An approach to help developers deal with errors due to failure in

recognizing feature dependencies when maintaining software product

line. The approach infers interfaces to features (a set of provides and

requires clauses to describe dependencies among features) that are

relevant to a code change task.

Essential Worthwhile Unimportant Unwise
I don't

understand

6. On the previous page, you selected the following research idea as "Unwise":

"Technique to identify files that contain a bug from the description of that bug (in a bug report)."

To help us better understand your response, could you please explain why.

APPENDIX B: TOP RESEARCH IDEAS PER ROLE

TABLE I. TOP RESEARCH IDEAS (DEVELOPERS)

Paper Summary Total E-Score EW-Score U-Score

A new technique that not only detects leaks, but also points developers to the locations where the
underlying errors may be fixed.

13 0.69 1.00 0.00

An approach to help developers identify and resolve conflicts early during collaborative software

development, before those conflicts become severe and before relevant changes fade away in the
developers' memories.

22 0.68 0.82 0.00

Technique that clusters callstack traces to help performance analysts effectively discover highly

impactful performance bugs (e.g., bugs impacting many users with long response delay).
15 0.67 1.00 0.00

Debugging tool that uses objects as key abstractions to support debugging operations. Instead of
setting breakpoints that refer to source code, one sets breakpoints with reference to a particular object.

13 0.62 0.92 0.08

Automatic generation of efficient multithreaded random tests that effectively trigger concurrency

bugs.
15 0.60 0.93 0.07

TABLE II. TOP RESEARCH IDEAS (TESTERS)

Paper Summary Total E-Score EW-Score U-Score

A technique to monitor if a system fulfils its requirements expressed as probabilistic properties (e.g.,

performance, reliability, safety, and availability requirements) at runtime.
6 0.83 1.00 0.00

A methodology to drive the adaptation of a service-oriented system to meet QoS requirements of
several concurrent users in its volatile operating environment.

7 0.71 1.00 0.00

A technique to engineer applications with a self-healing layer for service-oriented systems that

dynamically reveals and fixes interoperability problems.
7 0.71 1.00 0.00

A technique to recover missing links between bug reports and bug fixing commits. It takes into

account not only textual features but also source code features of the changed code corresponding to

the commit logs.

7 0.71 0.86 0.00

A semi-automated lightweight code analysis tool to help create an explicit, end-to-end argument,

based on concrete evidence, that a system satisfies a critical property. It generates a list of side

conditions that correspond to assumptions to be discharged about the code and the environment in
which it executes.

6 0.67 0.83 0.00

TABLE III. TOP RESEARCH IDEAS (PROGRAM MANAGERS).

LAST 5 RESEARCH IDEAS RECEIVE THE SAME SCORES AND THUS WE LIST ALL OF THEM.

Paper Summary Total E-Score EW-Score U-Score

Empirical study on how agile teams self-organize themselves by identifying roles that developers play. 5 0.80 0.80 0.00

Debugging tool that uses objects as key abstractions to support debugging operations. Instead of
setting breakpoints that refer to source code, one sets breakpoints with reference to a particular object.

5 0.80 0.80 0.00

Combination of highly configurable project, team and contributor dashboards along with individual

event feeds to help developers accomplish extensive awareness (i.e., awareness of various different

aspects ranging from overall project status and process bottlenecks to current tasks and incoming

artifacts)

10 0.70 1.00 0.00

A technique to find null-pointer dereferences as a target for finding bugs in concurrent programs using

testing. It observes an execution of a concurrent program under test and predicts alternate interleavings

that are likely to cause null-pointer dereferences.

6 0.67 1.00 0.00

Technique to make runtime reconfiguration of distributed systems in response to changing

environments and evolving requirements safe and being done in a low-disruptive way through the

concept of version consistency of distributed transactions

6 0.67 1.00 0.00

Technique to merge N models into one model. This technique is relevant when one would like to

merge a set of related products into a product line or consolidating model views of multiple

stakeholders.

6 0.67 1.00 0.00

Automated testing of JavaScript code in isolation from the server code and database contents by
automatic inference of formal server interface description.

6 0.67 1.00 0.00

Symbolic analysis algorithm for buffer overflow detection that scale to millions of lines of code

(MLOC) and can effectively handle loops and complex program structures.
6 0.67 1.00 0.00

