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ABSTRACT

Compressing attributes on 3D point clouds such as colors or nor-
mal directions has been a challenging problem, since these attribute
signals are unstructured. In this paper, we propose to compress such
attributes with graph transform. We construct graphs on small neigh-
borhoods of the point cloud by connecting nearby points, and treat
the attributes as signals over the graph. The graph transform, which
is equivalent to Karhunen-Loève Transform on such graphs, is then
adopted to decorrelate the signal. Experimental results on a number
of point clouds representing human upper bodies demonstrate that
our method is much more efficient than traditional schemes such as
octree-based methods.

Index Terms— Graph transform, compression, 3D point cloud,
3D voxel model

1. INTRODUCTION

Capturing 3D models for real-world scenes has been an active re-
search topic for decades, with wide applications in gaming, telep-
resence, heritage preservation, etc. Thanks to the commoditization
of 3D depth sensors, it has become easy to digitize the world into
3D models with millions of points. Such point cloud data usually
occupy a large amounts of storage space, and demand efficient com-
pression algorithms to store and transmit effectively.

One possibility is to convert the point clouds into polygonal
meshes, which can be compressed with a large body of existing
methods [1]. Polygonal meshes are easy to edit and ideal for syn-
thetic 3D objects, which have been used extensively in gaming.
However, the conversion process is usually computationally expen-
sive, thus making it difficult to be applied in real-time applications
such as telepresence.

Consequently, many researchers have opted to compress the
point cloud directly. For instance, in their renowned QSplat paper,
Rusinkiewicz and Levoy [2] used a compact representation of 48
bits to encode the position, normal and color attributes of each 3D
point. Ochotta and Saupe [3] partition the point set into clusters and
project them onto a regular grid, such that the corresponding height
field can be encoded using 2D wavelet transforms. In [4] and [5], the
authors propose to compress the point cloud with an octree decom-
position of 3D space. The child cell configurations are further coded
predictively based on a local surface estimation. More recently,
Jiang et al. [6] further improved cell configuration prediction based
on tangent-plane-continuity maximization and hierarchical proba-
bility estimation of occupancy codes. Kammerl et al. [7] present a
technique for comparing the octree data structures of consecutive
point clouds, thus enabling temporal prediction between point cloud
frames in a teleoperation application.

Despite the many efforts in point cloud compression, most of
them focus heavily on the efficiency of coding the 3D point posi-

tions instead of their attributes (e.g., colors and normals). These
attributes are critical in rendering the point cloud with high quality.
However, unlike traditional images and videos, these attributes lie on
a completely unstructured point cloud, and are thus difficult to com-
press. Recent work [5] encodes color with a linear de-correlation
transform followed by adaptive quantization along each transformed
axis. While this scheme is fast, it can only achieve coding efficiency
similar to an octree-based method.

In this paper, we propose to apply graph transform on the com-
pression of point cloud attributes. We assume the 3D positions of
the point cloud have already been coded, and form an octree data
structure. We then traverse the octree and construct a graph for each
branch of leaves at certain levels of the octree. Graph transform is
then applied to the attributes in order to compress them efficiently.
Experimental results on a number of point clouds representing hu-
man upper bodies demonstrate that our method is much more effi-
cient than traditional schemes, such as octree-based compression.

The rest of the paper is organized as follows. Section 2 first
gives an introduction to graph transform, and then explains its appli-
cation on point clouds. The quantization and entropy coding of the
transformed coefficients require some special treatment, and are ex-
plained in Section 3. Experimental results and conclusions are given
in Section 4 and 5, respectively.

2. GRAPH TRANSFORM

2.1. Background

Graphs are generic data representations that can be used to describe
signals in numerous applications, including social networks, energy,
transportation, etc. Graph signal processing has attracted a lot of
research interest recently [8][9]. In this paper, we consider one par-
ticular technique called graph transform. Graph transform is a lin-
ear transform determined by the underlying graph structure, and has
been shown to be very useful in compressing certain types of sig-
nals, such as mesh geometry [10][11], depth maps [12][13][14], or
images/videos [15][16]. In the following, we present a very brief
introduction on graph transform based on the analysis in [15].

Start with a generic graph G = (V = {1, · · · , n}, E), where
V represents the set of nodes in the graph, and E represents the
set of edges. Let us define a multivariate Gaussian random vector
x = (x1, · · · , xn)T on the graph nodes, often referred as a Gaussian
Markov Random Field (GMRF), with mean µ and precision matrix
Q ≥ 0 (semi-positive definite). Its probability density is:

p(x) = (2π)−
n
2 |Q|

1
2 exp

(
− 1

2
(x− µ)TQ(x− µ)

)
, (1)

and Qij 6= 0⇔ {i, j} ∈ E for all i 6= j. (2)

Here the precision matrix Q is the inverse of the covariance matrix
Σ in a typical multivariate Gaussian distribution. The above repre-
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Fig. 1. Forming a graph based on point clouds on an octree block.
Here n1, · · · , n6 are the nodes of the graph, and w1, · · · , w3 are
weight values defined on the graph edges.

sentation includes degenerated GMRFs where the determinant of Q
can be zero. Partial correlations between variables can be directly
obtained from Q, since [17]:

ρ(xi, xj |x \ {xi, xj}) = −
Qij√
QiiQjj

, i 6= j, (3)

where ρ(xi, xj |x \ {xi, xj}) represents the partial correlation be-
tween xi and xj given all other variables.

It is not difficult to show that the eigenvector matrix of the pre-
cision matrix is in fact identical to the Karhunen-Loève Transform
(KLT) [15], which is optimal for decorrelating the input signal x.
Since the above analysis is conducted for a signal residing on a
graph, we denote the transform graph transform.

In practice, provided a graph with correlations between nodes,
one could always define a precision matrix Q, thus implicitly as-
suming a GMRF model over the graph. Afterwards, form a linear
transform matrix by stacking Q’s eigenvectors, and apply the trans-
form matrix on the graph signal. Similar to KLT, graph transform
can compact the energy of the signal very effectively, making it ideal
for signal compression.

2.2. Graph Transform for Point Cloud Attributes

We assume that the point cloud has already been organized into an
octree, where each occupied leaf node is a voxel that represents a
point from the point cloud. We choose an octree since there have
been many existing approaches [4][5][6][7] that adopt this data
structure; although it is not a necessary condition for the proposed
method to work. We further assume that the octree is encoded with
a certain compression scheme, which can be successfully recon-
structed at the decoder. Our goal is to compress the attributes on the
point cloud, such as colors and normals. Without loss of generality,
we use color attributes as an example in this paper.

Consider a small branch of the octree at a certain level repre-
senting, for example, a block containing k × k × k voxels. Among
these voxels, N may be occupied by the point cloud. Fig. 1 shows
such a block with 4 × 4 × 4 voxels and N = 6 occupied ones (la-
beled as shaded cubes). We can form a graph by connecting nearby
occupied voxels, and assigning a weight to each edge of the graph.
For instance, if we only consider connecting voxel nodes with their
26 neighbors that have a maximum distance of 1 along any axis, we
can form a simple graph as in Fig. 1. The weights on the graph shall

describe the attribute similarity between nodes, and we set them as
inversely proportional to the distances between voxels, i.e.,

w1 = 1, w2 =
1√
2
, w3 =

1√
3
. (4)

An adjacency matrix can be defined from the graph as:

A =


0 w3 w2 0 0 0
w3 0 w1 w3 0 0
w2 w1 0 w2 0 0
0 w3 w2 0 w1 w2

0 0 0 w1 0 w1

0 0 0 w2 w1 0

 (5)

Let D = diag(d1, · · · , d6) be a diagonal matrix, whose elements
di =

∑
j aij , where aij are the elements in adjacency matrix A.

We may then construct a precision matrix Q of the graph as:

Q = δ(D−A), (6)

where δ is a scaler that is related to the graph signal’s variance. Note
Q is guaranteed to be positive semi-definite, and is often referred as
the non-normalized graph Laplacian.

There can be many different ways to construct the graph and
choose the edge weights on a given point cloud, even without the
overlayed octree structure. The above example works reasonably
well in our experiments and resembles some existing work in the
literature [12]. A better graph and its weights can certainly be
constructed, e.g., by collecting statistics from many training point
clouds. However, given the variety of topologies, it may require
an extremely large number of training examples in order to be
statistically meaningful.

Consider the eigenvalue decompoistion of Q:

Q = ΦΛΦ−1, (7)

where Λ = diag(λ1, · · · , λ6) is a diagonal matrix containing Q’s
eigenvalues. The eigenvector matrix Φ of the precision matrix Q
can then be used to transform the color signal defined on the graph
nodes. This transform is optimum for a signal following the un-
derlying GMRF model with precision matrix Q [15]. Furthermore,
the associated eigenvalue of each eigenvector corresponds to the in-
verse of the expected variance of the associated transform coefficient
(we’ll use this in Section 3).

We stress again that the octree structure is encoded and decoded
prior to – and separately from – the color information, e.g., using
any of the schemes presented in [4][5][6][7]. Thus, both the encoder
and decoder can form the same precision matrix for each block of
the octree, and no overhead is incurred.

3. QUANTIZATION AND ENTROPY CODING

For each block, theN×N Graph Transform Φ is computed based on
the occupancy of the voxels, as defined in Eqs. (4)-(7). Afterwards,
the (color) signal residing on theseN nodes is made into threeN×1
vectors (corresponding to the YUV components). Each of the three
vectors (YUV) is then encoded separately. Let us denote the vector
derived from the Y component as y. This vector’s transform for the
block is computed as f = Φy, and quantized as fq = round(f/Q),
where Q is the quantization step size. The quantized vector is then
entropy coded. After all blocks are encoded for the Y component, U
and V components are encoded similarly.



bitrate(bpv) SNR Y(dB) SNR U(dB) SNR V (dB)
PCL encoder

14.15 52.0 54.6 54.5
11.34 44.3 51.2 50.8

8.40 38.0 47.0 46.3
5.70 32.1 41.9 41.4
3.30 26.9 37.7 36.9
1.48 23.0 34.0 33.3

Proposed Graph Transform encoder
5.36 52.1 54.7 54.6
1.74 44.3 51.4 50.8
0.36 38.1 47.1 46.4
0.16 28.4 38.2 38.2

Table 1. Comparison between our algorithm and the PCL encoder
for color data. Distortion (in dB) is measured as the average over 6
point clouds for Y, U, and V.

Because of the way Φ is constructed, the first, and possibly a
few more coefficients of f of each block correspond to DC terms.
For instance, if the block has m disconnected subsets of points, the
first m coefficients in f will correspond to the average of each of
the the connected sub-regions, multiplied by the square root of the
number of voxels in the sub-region. Additionally, the eigenvalues
associated with all these coefficients will be zero. The rest of the
coefficients in f are AC terms. We treat DC and AC terms differently
during entropy coding, as explained below.

3.1. Entropy coding the AC terms

We use a simple arithmetic encoder [18][19] to encode the AC ele-
ments of fq by assuming an underlying zero mean Laplacian proba-
bility distribution. Note the variance of each element of fq is differ-
ent – it depends on the number of non-empty voxelsN in each block,
the connectivity between the voxels, etc. Fortunately, the eigenvalue
decomposition process for finding the transform matrix Φ gives us
the clue: the eigenvalue of each eigenvector is inversely proportional
to the expected variance of the corresponding coefficient.

Thus, instead of computing a probability table for the coeffi-
cients, we assume all (unquantized) coefficients follow a contin-
uous scaled Laplacian distribution, with a diversity parameter in-
versely proportional to the square root of the corresponding eigen-
value. More specifically, we assume the coefficients have the follow-
ing probability density function:

p(xi) =

√
λi

2σ
exp{−

√
λi|xi|
σ

}, (8)

where xi is the ith AC coefficient, and λi is its corresponding eigen-
value; σ is the base diversity parameter of the underlying Laplacian
distribution, which shall be updated every time a new coefficient is
encoded.

The probability tables required by the arithmetic encoder are de-
rived from the above Laplacian distribution. After encoding a new
coefficient, we update the base diversity parameter as:

σ ←

√(
kσ2 +

1

2
λi‖xiq‖2

)
/(k + 1), (9)

where k is the total number of previously encoded AC coefficients;
xiq is the quantized coefficient of xi. The parameter σ is initialized
to a small constant number at the beginning of each point cloud.
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Fig. 2. Compression performance (in dB) vs. bitrate (in bpv) for
the proposed encoder using a Graph Transform and DCT for octree
level 5, 6, 7 and 8 (corresponding to cube sizes of 16, 8, 4 and 2).
The curves are the average of all 6 scenes used in our experiment.

3.2. Encoding the DC term

The DC coefficients need to be handled differently from the AC com-
ponents. Given a DC coefficient di, we first remove the mean by
computing d∗i = di −

√
Ni/Ni−1d̂i−1, where Ni is the number

of connected voxels corresponding to di, and d̂i−1 is the (decoded)
value of last DC term. Afterwards, we assume the difference signal
follows a Laplacian distribution:

p(d∗i ) =
1

2ρ
√
Ni

exp{− |d
∗
i |

ρ
√
Ni

}, (10)

where ρ is an adaptive diversity parameter. After encoding d∗i , we
update ρ as:

ρ←

√√√√(kρ2 + ‖d̂∗i ‖2
2Ni

)
/(k + 1), (11)

where d̂∗i is the decoded prediction difference; k is the total number
of previously encoded DC coefficients; and ρ is re-initialized to a
small constant for each point cloud.

4. EXPERIMENTAL RESULTS

We conducted experiments on 3D point clouds constructed by a
real-time high resolution sparse voxelization algorithm as presented
in [20]. Our system consists of 8 cameras mounted on a 5 × 5 × 5
foot cube pointing slightly downward on the top edges in an oc-
tagonal configuration. A human subject was seated at the center of
the rig. The captured videos are processed on a high-end graphics
card using a silhouette-based voxel carving algorithm in real-time.
See [20] for more details. We applied the proposed algorithm on a
total of 6 different scenes, with 2 of them shown in Fig. 3.

The sparse voxelization algorithm outputs an octree directly due
to the multi-resolution nature of its design. For our experiments,
we limit the octree to 9 levels, which corresponds to a resolution of
512×512×512 voxels, or roughly 2mm accuracy in the real-world.
A typical point cloud for a human upper body contains between
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Fig. 3. Rendering results for point clouds compressed with different quantization steps. (a) original point cloud. (b) Q = 4. (c) Q = 8. (d)
Q = 16. (e) Q = 32. (f) Q = 64. Here Q is the quantization step size. All results are using graph transform at level 6 (8× 8× 8 voxels).

500,000–750,000 3D points with color attributes. The octree struc-
ture is compressed with the children pattern sequence [21], which
we will improve later with more recent schemes such as [5][7]. The
experimental results presented in this section focus only on the com-
pression of the color attributes of the generated point cloud.

We had some difficulty in finding an appropriate baseline for
comparison. One of the most widely used point cloud encoders is
the one built into the Point Cloud Library (PCL) [22]. Comparison
between the PCL and our encoder is shown in Table 1, where the
reported numbers are the average value of all 6 scenes. It can be
seen that the performance of the PCL encoder on color attributes
is poor. For example, for a luminance reconstruction error around
38dB, PCL requires over 8.4 bits per voxel (bpv), while our encoder
requires less than 0.36 bpv. In other words, the PCL coded bitstream
is more than 23 times larger than that coded by the proposed method.

Since one of the objectives of this paper is to introduce the graph
transform to the application of point cloud attribute compression, we
decide to compare the results against a similar encoder as ours, ex-
cept it uses the N -point 1D DCT instead of the graph transform Φ.
We point out that in [15] the authors have shown that 1D DCT is
a special case of graph transform, where the graph is constructed
as a 1D chain and the precision matrix is defined as the standard
Laplacian matrix. We would like to show that by allowing voxels
to connect to 3D neighbors instead of 1D neighbors (in a depth-first
scan order), the resultant graph transform is more effective in decor-
relating the signal, thus leading to better compression performance.

The experimental results are shown in Fig. 2. We tested differ-
ent block sizes, where level 5 block has 16 × 16 × 16 voxels, level
6 block has 8 × 8 × 8 voxels, level 7 block has 4 × 4 × 4 voxels,
and level 8 block has 2 × 2 × 2 voxels. It can be seen that graph
transform significantly outperforms the N -point 1D DCT for level
5, 6 and 7. At the same bit rate, the PSNR difference can be up to 1-
3 dB depending on the operating bit rate. At the same PSNR, graph
transform may spend only half of the bit rate compared with DCT.
When the block size is too small (e.g., level 8), it is expected that
graph transform and DCT will have similar performance, since vox-
els in the same small block will probably always have very similar
colors.

Fig. 2 also shows that for graph transform, the larger the block
size, the better the compression performance, since more voxels are
decorrelated together in each block. On the other hand, larger block
size also implies slower encoding speed. Graph transform is struc-

ture dependent, and it cannot be pre-computed due to the large num-
ber of variations in point cloud structure. The eigenvalue decom-
position of the precision matrix Q has complexity on the order of
O(N3), therefore the more valid voxels in a block, the slower it runs.
For example, on a single core 3.0GHz CPU, given a point cloud with
about 520,000 points, level 8 graph transform takes about 0.85 sec-
onds, level 7 takes about 8.2 seconds, level 6 takes 141 seconds, and
level 5 takes 109.8 minutes. The trend is very clear. We note that
our code is not heavily optimized, and we expect things to run much
faster if the graph transforms of different blocks are run in parallel,
possibly on a GPU.

In the case of N -point 1D DCT, we note that larger block sizes
do not improve coding efficiency. We attribute this phenomenon to
possible color discontinuity when forming the 1D voxel chain. For
a particular scene, one may be able to find better octree traversal
algorithms than the currently adopted depth-first traversal scheme.
However, we expect graph transform to always perform better than
1D DCT, since correlations in the 3D space are always better con-
sidered in the graph transform.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a novel graph transform based approach
for encoding 3D point cloud attributes. Considering that the 3D point
cloud’s position information can be encoded prior to the attributes,
graph transform appears to be an ideal solution since no overhead is
incurred to construct the graph for unstructured point clusters. Our
experimental results showed a significant improvement over tradi-
tional methods.

There are a few directions that can be explored in the future.
First, the scheme to construct the graph in each block (Section 2.2)
is rather simple. One possible drawback is that it would create too
many isolated sub-graphs if the point cloud is not very dense. More
sophisticated approaches such as those based on k-nearest neighbors
could be used instead. Second, the work in this paper focuses on
encoding single point clouds. For sequences of point clouds, such
as that generated by our real-time sparse voxelization scheme [20],
we need to further explore the temporal relationship between point
clouds in neighboring frames.
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