Publicly Verifiable Grouped Aggregation Queries
on Outsourced Data Streams

Suman Nath !, Ramarathnam Venkatesan >
Microsoft Research, Redmond, USA

1 : 2 . .
suman.nath@microsoft.com, venkie@microsoft.com

Abstract—Outsourcing data streams and desired computations
to a third party such as the cloud is a desirable option to many
companies. However, data outsourcing and remote computations
intrinsically raise issues of trust, making it crucial to verify
results returned by third parties. In this context, we propose a
novel solution to verify outsourced grouped aggregation queries
(e.g., histogram or SQL Group-by queries) that are common in
many business applications. We consider a setting where a data
owner employs an untrusted remote server to run continuous
grouped aggregation queries on a data stream it forwards to
the server. Untrusted clients then query the server for results
and efficiently verify correctness of the results by using a small
and easy-to-compute signature provided by the data owner. Our
work complements previous works on authenticating remote
computation of selection and aggregation queries. The most
important aspect of our solution is that it is publicly verifiable—
unlike most prior works, we support untrusted clients (who can
collude with other clients or with the server). Experimental
results on real and synthetic data show that our solution is
practical and efficient.

I. INTRODUCTION

Data Stream Management Systems (DSMS) have become
increasingly important in many real world applications that
need to process massive amounts of streaming data. However,
acquiring and managing a DSMS capable of providing fast and
reliable querying service on high-throughput streaming data is
expensive. The cost further exacerbates when the target queries
are resource intensive and hence fault tolerance techniques
such as replication become very expensive [1]. Therefore,
not surprisingly, outsourcing data stream and the desired
computations to a third party server or the cloud becomes a
practical alternative to many companies. Outsourcing makes a
DSMS service, especially computation of expensive functions
on high volume streams, more affordable for parties with
limited resources.

» Example Scenarios. Consider an online marketplace where
sellers sell their items and buyers browse, buy, and leave
feedbacks on various items sold by sellers. To provide sellers
hints on what items buyers prefer to buy, the marketplace
collects users’ ratings on various products and lets sellers
query such ratings. For example, the marketplace can provide
average ratings of various groups defined by <product id, user
demographic> pair (by running a continuous Group-by,
Average query). The information can be important to the
sellers to identify popular products within various user demo-
graphics. However, memory footprint of such a query increases

linearly with the number of groups, which in this case can
be excessively high due to a large number of product id
and user demographic combinations. In one real click log
from Microsoft Bing search engine, we see ~ 10'? different
possible groups, requiring more than 3TB main memory
footprint,! even without any replication. The infrastructure
required for this can be too expensive for many companies.
Similar scenarios are common in sensor networks or in IP-
networks, where a base station or a network operator may want
to maintain statistics for a large number of groups defined by
<sensor event, time> or <IP address, port> combinations.
In these examples, the online marketplace, a base station, or a
network operator can offload computation to a third party such
as a Microsoft Windows Azure cloud service, which can use
techniques such as consolidation to make such computation
affordable.

We model the above examples with the following settings
shown in Figure 1. A data owner (e.g., the marketplace) with
limited resources, such as memory and bandwidth, outsources
(i.e., forwards) its data stream to a remote, untrusted server
(e.g., the cloud). The owner registers continuous queries on
the servers and allows clients (e.g., the sellers) to query the
server to receive results upon requests. Clients are in general
untrusted; they can be compromised, malicious, and colluding
with the server or competing with one another.

Outsourcing data and computation to third parties in the
above setting raises issues of trust. There are several reasons
why the data owner may not trust the server, and thus would
like to make sure that the clients are receiving the correct result
from the server. First, the server may run buggy software or
have a slow network, resulting in incorrect results. Second, the
server may have an incentive to return incorrect answers. Such
an incentive may be a financial one, if the real computation
requires a lot of work, whereas computing incorrect answers
requires less work and is unlikely to be detected by the client.
Third, in some cases, the application may be so critical that
the data owner wishes to rule out accidental errors during
the computation. Finally, a client may have competing interest
with other clients and it can collude with the server to provide
wrong answers to its competing clients.

To address the above issues, it is desirable for the data
owner and clients to be able to verify the correctness of the

! Assuming that an uncompressed list of 4-byte counters, one for each group,
is maintained in memory in order to support fast update on arrival of every
streaming tuple.

Server
(untrusted)

Clients
(untrusted)
Data owner
(resource-limited)

- Sl
oooo
Stream

Fig. 1.

Outsourced Stream Aggregation

results returned by the server. The verification process should
be cheap. We aim to design a small signature that the resource-
limited owner can maintain on streaming data and can send it
to a client for verification of results. The signature is usually
query dependent.

» Grouped-aggregation queries. In this paper, we consider
grouped aggregation queries in a streaming setting: Each new
data item is assigned to one or multiple groups, depending on
some application-specific grouping function, and an aggregate
is incrementally maintained for each group. At any time, a
client can query for the current aggregate values of all or
some of the groups. An example of such queries is a histogram,
where each item is assigned to a histogram bucket (i.e., group)
determined based on the value of the item, and a count is
maintained for each bucket. A more general example is the
SQL Group by, Sum query, where a sum is maintained
for each group. We focus on maintaining sum for each group,
with any type of grouping imposed on input data; related
aggregates such as count, average, standard deviation, etc.
can be supported trivially. Such queries are very common in
many scenarios such as our previous examples. We focus on
scenarios where the number of groups is extremely large, and
hence it makes sense to outsource the task of maintaining
aggregates for all the groups.

Recent works on outsourced verifiable computation [2],
[3], [4] achieve operation-sensitive verification of general
functionalities. The database community has also investigated
solutions for authenticating outsourced databases [5], [6], [7],
[8] and datastreams [9], [10], [11], [12], [13], [14], [15].
These works on database and streaming data do not support
grouped aggregation queries. More importantly, none of these
works supports public verifiability, the ability to enable an
untrusted client to verify the results. At a high level, these
works use the same secret to prepare data for outsourcing
and to verify results. To allow an untrusted client to verify
results, the owner needs to give its secret to the client. In our
marketplace scenario, a client may have incentives to collude
with the server to provide wrong answers to competing clients.
To do this, the client can reveal the owner’s secret to the server,
which can then silently produce incorrect results without
being detected. (More details in Section III.) PIRS [16],
which supports grouped aggregation on streaming data, suffers
from the same limitation. Recently, Papamanthou et al. has
proposed publicly verifiable techniques for optimal verification
of operations on dynamic sets [17]; but they do not consider
grouped aggregation queries and streaming data.

A. Contributions

» DiSH (§ IV). We address the above limitation with a novel
cryptographic authentication signature called DiSH (Digest
for Streaming Histograms). A DiSH consists of a secret «
and a signature s. In our protocol, the owner initializes a
DiSH with its random secret « and incrementally updates the
signature s on arrival of every streaming tuple with its value
and the secret. The signature s is computed in such a way that
results obtained from the server can be verified for correctness
by using s and g“, where g is a generator of a prime order
group. Under the hardness assumption of the Discrete Log
Problem [18], the server cannot provide an incorrect answer
that passes the DiSH verification. Moreover, since the owner
provides the clients only g, instead of «, malicious clients
cannot exploit the DiSH, even by colluding with other clients
or the server, to compromise the soundness of the protocol.
The most fundamental difference between DiSH and previous
related works is that DiSH is publicly verifiable, i.e., it enables
verification of results by a client who can be malicious and
potentially untrusted to the data owner.

Our solution is novel even from cryptographic point of
view. The analysis of our technique is similar to analysis of
several cryptographic techniques (e.g., message authentication
codes (MACs) or collision resistant hash functions such as
SHA). However, it is worth pointing out one subtle but
important difference: MACs and secure hash functions behave
like structureless random functions [19], while our required
public verifiability property is currently known to be efficiently
solvable only with additional algebraic structure [17]. There-
fore, MAC schemes or usual secure hash functions are not
usable here owing to our requirements on public verifiability.

» Extensions of DiSH (§ V and § VI). We also consider the
subset group query where the server continuously evaluates a
grouped aggregation query over a large collection of groups,
but various clients query and verify only subsets of the groups.
This is natural in scenarios where the number of groups is
large and different clients are interested in different subsets of
groups. In our previous marketplace example, one seller may
be interested in statistics related to electronics products only,
while another seller may be interested in fashion products only.
Requiring a client to verify all the groups together, instead of
only the groups it is interested in, may incur large commu-
nication and computation overhead. However, we show that
it is impossible for a limited-memory owner to support such
queries where clients can choose arbitrary subsets of groups
during query time. On the positive side, we show that our
protocol can be used to efficiently support such queries if the
subsets of groups various clients are interested in are known
a priori. In such a case, our protocol can maintain multiple
DiSHs, which can be combined later to verify various queries.
The extension exploits an interesting composability property
of DiSH. We also show how this property of DiSH can be
used to support various other scenarios such as distributed
data collection, queries over a sliding window, etc.

» Evaluation of DiSH (§ VII). We have evaluated our
protocol with two real datasets as well as with synthetic
datasets. Our experiments show that our protocol has a very
small overhead. More specifically, on an off-the-shelf laptop,
the owner can update a DiSH signature within a few tens
of microseconds, while a client can verify a result within a
few seconds. The overheads are reasonable and comparable
to the non-cryptographic solution PIRS that does not support
untrusted clients.

II. PROBLEM FORMULATION
A. System Model

We consider the system model shown in Figure 1. There
are three parties involved. The Data Owner collects relevant
data and intends to provide certain service on top of the data.
The Server is a third party that computes certain functions
on the data forwarded by the Owner and answers queries
on the Owner’s behalf. Finally, multiple Clients query the
Server for answers computed on the data stream. In the online
marketplace example described in Section I, the marketplace
is the Owner, the cloud is the Server, and various sellers are
the Clients. In some existing works [9], [10], [11], [12], [13],
the Data Owner and the Clients are referred to as the delegator
and verifiers respectively.

We assume that the Data Owner has limited memory, and
it cannot store and maintain aggregates for all the groups.
Each client has limited memory too and therefore, during
verification, it cannot store aggregates for all the groups in
memory (unless it needs all the groups). However, it can per-
form the verification in a streaming fashion—by incrementally
verifying a result while watching the result stream forwarded
by the Server. The Data Owner and the Server see the same
data stream. We assume that communication between the Data
Owner and the Server is lossless (e.g., with a TCP connection);
although our solution can be used with a lossy communication
channel as well (Section VI-C).

Without loss of generality, we assume that time is measured
in discrete ticks, incremented when a new tuple arrives. The
Owner and the Server maintain their own clocks (counters)
that simply count the number of tuples arrived so far. Let X
denote the entire (potentially infinite) stream and X7 denote
the portion of the stream so far at time 7 (i.e., 7-length prefix
of X). Table II-D shows the symbols we use.

B. Query Model

We consider a streaming grouped aggregation query that
partitions the streaming tuples into a set of (disjoint or over-
lapping) groups and incrementally maintains the sum of tuples
falling in each group. A tuple may belong to multiple groups.
Denote the 7-th tuple of X as t™ = (a,b”), an increment
value of b7 to the a’th group. Without loss of generality,
assume that the tuples in X are partitioned into n groups
{0,...,n — 1}. Thus, the query answer can be expressed
as a dynamic vector of integers r™ = [r],...,77_;] € N,
containing one sum value per group. Initially r° is the zero
vector. A new tuple ¢” = (a,b”) increments the corresponding

TABLE I
SYMBOLS USED IN THE PAPER

Symbol Meaning
X,X7 X = Entire stream, X" = 7-length prefix of X
n, k n = Number of possible groups, k& = [log, n]
m Maximum size of X
D A prime number > max (m, n)
r’, r] r” =Result vector, r; =Sum of group 4 at time 7

group a in r7 as 77 = 77! 4+ b7. When Count queries are
concerned, b” = 1 for all 7. We also assume that the L; norm
of the result r” is bounded by some large m; i.e., for any 7,
[r7 || = Z?;Ol |rT| < m. Our query model is the same as the
model considered in previous outsourced stream computation
work [16].

In terms of SQL query language, we are interested in queries
with the following structure:

SELECT G_1, ...,
FROM Stream
WHERE ...

GROUP BY G_1,

G_n, SUM(A_1l), ..., SUM(A_n)

G_n

The query is analogous to maintaining a histogram, where
one bucket is maintained for each group satisfying the WHERE
predicate. An example query in online marketplace applica-
tions looks like the following:

SELECT product_id, demographic_id,
SUM (purchase_volume)

FROM purchase_stream

GROUP BY product_id, demographic_id

We describe our solution by using the sum aggregate; a few
other aggregates (e.g., count, average, standard deviation, etc.)
can be easily supported as well.

C. Attack Model

We assume that none of the Server and Clients are trusted
by the Data Owner and they can potentially be malicious
and thus Byzantine. A malicious Server can provide incorrect
results to Clients. A malicious Client can collude with the
Server and other Clients, and can help the Server to cheat
with other clients. Note that the assumption about malicious
Clients enables the public verifiability property of our solution.
Consequently our attack model is more general than previous
related works [9], [10], [11], [13], [16], where Clients are
trusted and not allowed to collude with the Server.

D. Security Goals

Our goal is to enable a Client to verify whether a grouped
aggregation result reported by the Server is correct. Specifi-
cally, a Client should accept a reported result if and only if
it equals to the output of a correct execution of the query
over all the items in the datastream observed by the Owner.
More formally, we address the following problem: Given
a continuous grouped aggregation query, a data stream X7
with the correct results r” at time 7, design a small and
incrementally maintainable signature 7" such that for any 7,
given a result w” and a signature 77, we raise an alarm if
and only if w™ # r”.

III. POSSIBLE SOLUTIONS
We start with a number of possible solutions and point out
their limitations in satisfying our goal.
A. A Naive Solution

The Data Owner maintains r” (along with the Server).
On an authentication request from a Client at time 7, it
computes a hash of target groups in r™ and sends the hash
value to the Client. The Client can then compare the hash
value with the hash value computed on the result given by the
Server. Although this incurs a small network overhead for the
Data Owner, it imposes a large memory and computational
overhead.

B. Random Sampling

The Owner can reduce the memory overhead by maintaining
only a small fraction » < 1 of randomly sampled groups,
instead of all the n groups. For verification, the Owner then
sends a hash of the correct values of these sampled groups to
the Client, who then compares it with the hash of the values
returned by the Server. Then, if the Server cheats on 7 of the
n groups, the Client will be able to detect it with probability
1 — (1 —r)?, which is very small for practical values of r
and . In other words, to ensure a reasonable accuracy, the
value of 7 should be large, which means a large memory and
communication overhead of the Owner.

Moreover, this solution does not work with untrusted Clients
(who may collude with the Server). The Owner must tell a
Client which groups it is maintaining, so that the Client knows
which groups to check. A Client colluding with the Server and
leak the identity of those groups to the Server. After that, the
malicious Server can silently cheat on the groups not in the
set maintained by the Owner.

C. PIRS

PIRS [16], like our work, considers verification of stream-
ing grouped aggregation queries. However, unlike our cryp-
tographic approach, PIRS uses algebraic and probabilistic
techniques. In the basic version of PIRS, the Data Owner
chooses a secret random number « in Z, and over a given
r, incrementally maintains the synopsis

T(0) = (a1 (a—2)"" -

Given any w returned by the Server, the Client computes
the following:

T(w) = (a—

To verify a result w, the Client receives 7 (r) from the
Owner and accepts w as correct if 7(r) = T (w).

In PIRS, the Owner’s secret o must be known by the
Client for verification, and hence it requires the Owner to trust
the Client. An untrusted Client can share the value of a to
the Server, who can then easily construct incorrect answers
without being detected. Therefore, the PIRS mechanism does
not work in our model where clients can be untrusted and can
potentially collude with the Server. The limitation applies to
other existing streaming delegation protocols as well [9], [10],
[11], [12], [13].

(a—m)mt

nYo - (a—2)" - (a—n)¥nt

We address this limitation with a cryptographic solution.
Solutions based on sound cryptographic principles maybe a
little bit more expensive than simpler algebraic solutions such
as PIRS, but they are more secure against strong adversarial
attacks. For example, in PIRS, even with trusted Clients,
there is a small probability that an adversarial Server can
find a w # r such that 7(w) = 7 (r). Once such a single
collision is found, it can find the secret value o by solving the
polynomial [],(a—¢)"=" = 1. This can be done efficiently
for small values of . |w; — ;| (See Corollary 14.16 in [20]).
In contrast, our cryptographic solution would need a handful
of collisions to solve a system of equations, and the ability
to systematically cause collisions would imply solving the
Discrete Log Problem, which is conjectured to be hard [18].

Our goal is to design a small cryptographic digest that is a
function of values in different groups and can be incrementally
updated with arithmetic operations such as increment or decre-
ment within each group. However, existing cryptographic sig-
nature of MAC techniques support updates for edit operations
such as insertion and deletion of individual blocks of bits [21]
and are not applicable for arithmetic updates required for our
target grouped aggregation query. We address this limitation
in the next section by designing a novel cryptographic digest.

IV. OUR SOLUTION

Our solution follows the following basic structure. The
Owner maintains a small signature 77 computed based on
a secret s and the stream X7, where 7 is the current time.
The Server maintains the result r”. For verification at time 7,
the client receives r” from the Server, and the signature 7"
and a function f(s) of its secret from the Owner. The Client
then computes a new signature T7, based on r” and f(s), and
accepts r” to be correct if 77 =T".

We have three design goals:

1) 77 and s should be small and discriminative, i.e., the
signatures of two streams should be the same if and
only if both the streams provide the same grouped
aggregation result.

2) 77 should be incrementally computed from 77!,
which is crucial to be used in a streaming setting.

3) The function f should be one-way; i.e., a Client should
be not able to infer the Owner’s secret s from the value
of f(s) shared with it for verification.

The third goal is desired to deal with untrusted Clients. If a
malicious Client can infer s, it may share it with the Server.
The Server, knowing Owner’s secret, can silently generate an
incorrect result w” # r7 that yields 77 = T7, without being
detected to a Client. One implementation of the function f is
a carefully chosen encryption function that is compatible with
the other two design goals.

A. The DiSH Protocol: the Basic Version

We now develop a basic protocol that satisfies some of the
above design goals. The protocol is not efficient and we use
it only as the first step towards our final, efficient protocol
shown later in this section.

Suppose each tuple (a,b) € X belongs to the group
a € [0,n). Let w] denote the number of tuples in X7 with
the group ¢. Assuming that the size of stream X is bounded
by m, let p > max(m, n) be a prime number. All our compu-
tations are in the field Z,, i.e., all additions, subtractions, and
multiplication are done modulo p. Let g € (Z,)*.

Our basic protocol requires different parties to run the
following protocol.

» Protocol at the Owner O. O maintains a DiSH. A DiSH
consists of two components: a secret and a signature. The
secret component is initialized in the beginning once, while the
signature component is incrementally updated as new tuples
are seen. In the beginning of the protocol, O generates a secret
random number ¢; for each possible group i. These secret
values constitute the secret component s of O’s DiSH. The
signature component of the DiSH is denoted by 77 and is
updated as follows.

1) Initialize: 7° « 1.

2) On arrival of the 7’th tuple (a,b), set 77 « T7~1 x

gPab,
Thus, for any 7, 77 = H?:ol geii

» Protocol at the Server S. S maintains a vector r” of length
n such that »] denotes the sum of values of all tuples with
group ¢ in X7. More formally,
1) Initialize: r? +—0,0< I <n.
2) On arrival of the 7’th tuple (a, b) with group a, set r7
771 4+ b. Also, set 7 < r7 ' for all groups i # a.

» Verification protocol at a Client C. C receives the result
from S and verifies its correctness by receiving from O its
DiSH signature in plain text and DiSH secret in encrypted
form. More specifically:

1) C retrieves the result vector r” from S.2
2) C then retrieves TT,{]"”"',O <i<n-—1from O and
computes T =[], (g#*)"7 .

3) Finally, C accepts r” as correct only if 77 = T7.

Note that the Client does not require a large memory like
the Server. First, it can compute T™ with a limited memory
in a streaming fashion as the result vector r” arrives from
the Server. Second, unlike the Server who needs to maintain
the results in the main memory for fast updates, the Client can
store the results in disk for later use, or can discard the groups
it does not need. If the Client requires only a small subset of
groups, however, it can use another scheme we present in the
next section.

The signature 77 is similar to a MAC computed incre-
mentally over the stream A" (albeit the subtle differences
mentioned in Section I). It is easy to see that the protocol
satisfies the second goal. It also satisfies the third design
goal since the Owner’s secrets ; are shared with the Client
in encrypted form (i.e., raised to the powers of g); a more
rigorous proof will be given later. However, it does not satisfy
the first goal: the number of secrets ; is equal to the number

2 As an optimization, the Server can send only the nonzero groups.

Data Owner ¢ | | Server § Client €

T, encrypted

I

Result r

Signature T

Secrets
A B g
Pos -+ Pk1

Result and
its correctness

Fig. 2. The DiSH Protocol

of possible groups and can be extremely large. If the Owner
could accommodate all random values ¢;, it could simply
maintain the result vector r™ without requiring any help from
the Server. The network overhead of the Owner sending
encrypted secrets to the Client is also large. Moreover, if the
values of (; are not chosen carefully, the signature 77 may
not be discriminative enough; i.e., there may be collisions and
two streams with different values of r™ may produce the same
signature. We address these weaknesses in the next version of
the protocol.

B. Optimized DiSH

Instead of randomly generating ; for each group, we
can generate them by using a random function as follows.
Let po,p1,-..,pr—1 be random numbers within the range
[0,p — 1], where k = [log,n]. Suppose a has the binary
representation agag ...ax—1, and 8 is the function S(a) =
S ¥ aipi. Finally, a is the function a(a) = gA#(®+5 The
value AB(a) + B is then used in place of ¢, in the basic
version of the protocol.

For completeness, we now present the details of our opti-
mized protocol. A sketch of the protocol is shown in Figure 2.
It requires different parties to run the following protocol.

» Protocol at the Owner O. In the beginning of the protocol,
O generates secret random numbers A, B, pg, p1,-- - Pk—1,
all smaller than p, and g € (Z,)*. These secret values
constitute the secret component of O’s DiSH. The signature
component of the DiSH is denoted by 77 and is updated by
following the protocol below.

1) Initialize: 70 « 1

2) On arrival of the 7’th tuple (a,b), set 77 « T7~1 x

a(a)’

Thus, for any 7, 77 = H?;Ol a(i)wi.

Note that the value of b in the tuple (a,b) can be negative
as well, which implies decrementing the accumulated value
of group a by |b|. Since Z, does not support division, we
first need to compute a(a)~!, the multiplicative inverse of
a(a) in Z, (e.g., in O(logp) time by using Euclid’s ged
algorithm [22]). Then we can compute o(a) 7.

» Protocol at the Server S. Same as the basic version.

» Verification protocol at a Client C. C receives the result
from S and verifies its correctness by receiving from O its
DiSH signature in plain text and DiSH secret in encrypted
form. More specifically:

1) C retrieves the result vector r™ from S.

2) C then retrieves 77, g4”0, ..., g2 ¢B from O and

computes T™ = H?;ol((nj\i7»:1 gApj)gB)T"T'

3) Finally, C accepts r’ as correct

TT — ’I[“T-

This protocol satisfies, in addition to the last two goals,
the first goal as well. The size of the secret maintained at the
Owner and sent to the Client is [log, n]|+2 (in contrast to n in
the basic version). Moreover, as we will show next, the DiSH
signature has strong security properties that make it hard for
the Server to cheat (and make collisions unlikely). Also note
that the secrets of the Owner are shared with a Client only in
encrypted form (i.e., raised to the powers of g), which ensures
the security of our protocol even when clients are malicious or
colluding with the Server. We will elaborate on this security
property in the next section.

only if

C. Synchronization

As mentioned before, the Owner and the Server maintain
their own clocks in terms of the number of tuples in the stream;
i.e., both increment their own clocks on arrival of a new tuple.
Due to communication lag between the Owner and the Server,
their clocks can differ. Now, since the signature 7 at the
Owner and the result r at the Server evolve as new tuples
arrive, a client needs to run the verification protocol with 7"
and r” for a same 7. Such synchronization can be achieved
easily with the following schemes.

» Query-ahead. When a Client wants to verify the query
results at a certain time 7, it will send its requests to the
Owner and the Server shortly before time 7. The Owner will
send its DiSH signature and the Server will send the result
when their own clocks reach 7.

This scheme requires the Client to plan ahead and make
requests some time before it needs the result. If the Client
cannot afford this, it can use the next scheme.

» Buffering. For this scheme, we require that:

1) The Client contacts the Owner and the Server within
a small time window of length k (i.e., within which at
most k tuples arrive). And,

2) The Owner keeps a buffer of the last & tuples.

Then, the Client first requests the Server for r” for the Server’s
current clock time 7 and then it contacts the Owner to get a
T 7. Even if the Owner’s current time is rT,7 7' —7 <k, it can
produce r” from its buffer of k£ previous tuples. This works
because the Owner gets to see a tuple before the Server sees
it. Alternative to Step (2) above, the Owner can maintain last
k versions of its signature 7, in which case the Client can first
get a r” from the Server and then ask the Owner to provide
the appropriate signature at time 7.

D. Security Analysis

We now show that, following our protocol, a Client will be
able to detect whenever the Server cheats with an incorrect

3 As an optimization, the Server can send only the nonzero groups.

result, even when the Server colludes with a number of other
Clients. The security analysis of our protocol uses the hardness
assumption of the Discrete Log problem.

» Discrete Log Problem. If p is prime and g,h € Z;, we
write log, (h) = z if x € Z satisfies g = h. The problem of
finding such an integer z for a given g, h € Z; (with g # 1)
is called the Discrete Log Problem.

The problem is conjectured to be hard: there is no known
polynomial time algorithm for the Discrete Log problem [18].
Many cryptographic algorithms, including elliptic curve cryp-
tography, are based on the hardness assumption of the Discrete
Log problem. (By using standard Pholig-Hellman method, one
can always assume that the underlying group is of prime
order [23].) Based on this hardness assumption, we prove the
following lemmas in Appendix.

Lemma 4.1: There is no efficient algorithm D that, given
the inputs (g, g2, ..., ¢g%), can compute (o, g, ..., 0) 7
(0,0,...,0) such that [[, g% = 1.

Lemma 4.2: There is no efficient algorithm F that, given
the inputs g2, g4ro, gAr1, ... gAP1 for any values of A, B,
£0,P1, - -+ Pe—1, can compute A/B.

We now prove the soundness of our protocol under the
worst-case assumption that S colludes with some malicious
Clients C and exploits all the information O shares with the
C for verification.

Theorem 1: If S gives an incorrect output r’ # r, computed
by exploiting all information shared between O and C, C will
be able to detect the incorrectness.

Proof: Under our protocol, C concludes r = r’ only if

n-1 [.
T = [Tico ((Ukjie=1 gAPe)gP)ri, e, if

S (AB() + Byrs = S (ABG) + B!
1=0 =0

Denoting 7} = r; + J; (mod p), the above is true only if

n—1

n—1
A B(i)di=—-BY &
=0 =0

Since r # 1/, (dg,02,...,0n—1) # (0,0,...,0). Accord-
ing to Lemma 4.2, S or C cannot compute A/B or B/A.
Therefore, for S to cheat C with r’ in place of r, both the
following equations need to be true: (a) ZZ’;OI d; = 0 and (b)
Yo B(i)s; = 0.

However, according to Lemma 4.1, given (95(0), g?m
g?=1) S cannot efficiently generate r’ with deltas
(60,015 6n—1) # (0,0,...,0) such that], g#®% = 1,
or y_.3(i)d; = 0. This completes the proof. |

E. Complexity Analysis

For analysis purpose, we assume that p is the smallest
prime number that is larger that max(m,n). According to
Bertrand-Chebyshev theorem [24], p < 2max(m,n). The
space complexity of DiSH at the Data Owner is O(logn), due
to the logarithmic number of p values it needs to maintain. On
arrival of each tuple, the Owner needs to compute the function

B(), which can be done in O(logn) time and the function «(),
which can be done in time O(log m-+logn) (by exponentiation
with repeated squaring). In addition, for a Sum query with a
new tuple (a,b), the Owner needs to compute «(a)®, which
needs O(logb) time.

For verification of a single query result, a Client needs
to receive 7 and encrypted secrets, which incurs O(logn)
communication cost for the first time verification and O(1)
cost for subsequent verifications (since encrypted secrets of a
DiSH can be reused). To verify the result, for every nonzero
group a, the Client needs to first multiply ¢gZ and all g7+, 1 <
i < logn, in O(logn) time, and then compute its power
of w; in O(logw;) time. Denoting the number of nonzero
groups as |r|, the total time required for a single verification
is O([r[(log n + 3 ;log w;)) = O(|r|log i7*).

Theorem 2: DiSH requires O(logn) space at the Data
Owner, spends O(logmn) (respectively, O(logmnb)) time
to process a tuple for count (respectively, sum with value b)
queries, transfers O(logn) bits from the Owner to a Client,
and O(]r|log %) time to verify a result r.

V. QUERIES ON SUBSETS OF GROUPS

We have so far considered a single continuous Group-
by query and verifying all the groups together. In many
applications, a Client may be interested in only a subset of
the groups the Server is monitoring. In our online marketplace
example, the marketplace may run a continuous Group-by
query on all possible product types. Then, some sellers may
be interested in only the groups involving electronics products,
while some others may be interested in groups involving
fashion products only. One naive approach to this would be to
require all Clients to retrieve and verify all the groups and then
to ignore the groups they are not interested in. However, when
the total number of groups is large, retrieving and verifying
all the groups may impose prohibitively large communication
and computation overhead. In this section we consider more
efficient solutions that enable a Client to retrieve and verify
only the subset of groups it is interested in.

We consider two variants of such queries. In dynamic
subset queries, Clients can choose arbitrary subsets of groups,
without telling the Owner a priori which groups they will be
querying on. In static subset queries, Clients a priori decide
which subsets of groups they will be querying in future so
that the Owner can tailor its signatures accordingly. Although
dynamic subset queries are ideal, we show that supporting such
queries is impossible for a limited memory Owner. On the
other hand, static subset queries can be supported efficiently.

A. Hardness of Dynamic Subset Queries

We now show that supporting dynamic subset queries with a
small limited memory at the Data Owner is hard. The argument
is information theoretic and it depends on how the protocols
at the Data Owner and the Client work and our conclusion
holds for any general protocols. For concreteness, we first
assume that the Owner and the Client use protocols similar
to ours; we will relax this assumption later. The Discrete Log

problem is considered hard on multiplicative groups inside
finite fields, and our protocols use linear combinations that
appear in exponents of a generator g. For simplicity, we now
consider the group written additively so that we can focus on
linear combinations.

Let 4 < n be the size of the Owner’s memory. Given a
query, we need to verify the result vector r of length n with
non-negative integer entries (with zero values in the groups not
appearing in the query). In a protocol like ours, the Owner also
uses a secret vector 6 of length with n non-zero entries from
the finite field F),, where 0; is the secret used for group 7. In
our protocol, ; is random and given by the function (i).* We
also assume that the Owner is deterministic and works in two
modes: traffic monitoring mode, and the verification mode. In
the traffic monitoring mode it inspects a new tuple and updates
its signature based on the group and the value of the tuple. In
the verification mode it accepts an input S C {0,..,n—1}. If it
can produce a verification signature restricted to the groups in
S, it returns the signature to the Client. However, the Owner
may not have necessary information in its limited memory to
produce such a signature, in which case it outputs SORRY,
denoting that it is unable to verify the query. In a protocol
like ours, the Owner computes the inner product of r and 6
restricted to S, namely F,(S) =). g7:0; modp. Note that
in the verification mode, the Owner does not change its state.
When it is clear we write F'(S) instead of F,(S). We have
assumed p < n and so we expect the Owner not to be able
to store information about every subset of S. We now show
that under mild assumptions even a random S can make the
Owner to fail to verify the results of groups in .5, forcing it
to output SORRY.

We consider a query adversary, who can generate arbitrary
queries to the Owner and tries to make the Owner to fail to
verify the results of his queries.” We assume that the traffic
through the Owner is generated by a stochastic process (or
a deterministic process, with a mild assumption we mention
next). In view of © < n, we now make the following mild
assumption:

Assumption 1 (Entropy assumption): The entropy of the
vector r exceeds 2u. This means the Owner can not store the
entire vector r in its memory using any encoding techniques.

However, the Owner may store limited information in its
memory about the traffic it sees. For example, it may store
information about a subset S’ and this set S’ may change
with time.

Note that the above entropy assumption alone does not
necessarily imply the hardness of dynamic subset queries. For
example, if the Owner knows all future queries within next
one hour and if the queries are limited to a small number
of subsets, it may be able to maintain information necessary

4Our proof does not depend on the randomness property of 6;, suggesting
that 6; can be deterministic as well.

3 Another more powerful type of adversary is a traffic adversary, who, in
addition to generating arbitrary queries to the Owner, can introduce arbitrary
tuples or re-arrange the order of arrival of tuples in the data stream. Since a
traffic adversary is strictly more powerful than a query adversary, our claims
for a query adversary naturally follow to a traffic adversary.

to verify those small number of queries. Moreover, it may be
able to dynamically update the information so that it can verify
queries in subsequent hours as well. However, as the following
lemma shows, this is not possible with a query adversary who
can generate arbitrary queries.

Lemma 5.1: Let the traffic be generated by a stochastic
source so that the entropy assumption holds. The query
adversary can find a subset S of groups such that the Owner
can not verify the query on this set correctly.

Proof: Let v > 1 be fixed. After the arrival of i-th tuple
let ¥ = {51,5%,...,Sg} be the queries that the Owner can
verify correctly. We do not make any assumption on what the
Owner has stored but we assume that 3 is well-defined. For
an S € X let Ig be the binary vector that is its characteristic
function, namely Ig(j) = 1, if and only if j € S. Let ¥’
C X be a largest subset such that {Ig|S € X'} are linearly
independent as vectors over [},. We consider two cases.
Case 1: Y/ is unique. Let M be the matrix formed by writing
the vectors Ig, S € ¥ as rows. If |X/| = n, then we can
uniquely find r since MDr = h where D = diag(0y, ...0,)
and h is the column vector of respective answers from the
Owner for inputs S in ¥’. But this contradicts the entropy
assumption. If |¥'| < n, the dimension of the space V'
spanned by Y’ is less than n. Then, the probability that the
vector Ig for a random S is linearly dependent of the row
vectors in M is the same as the probability that it falls in V,
and the probability is 1/p < 1/2 for a large prime p. Thus
S ¢ X' and by the definition of ¥’ the Owner has to output
SORRY in this case. Since this holds for any 7 > 1, we have
our lemma.

Case 2: Y’ is not unique. Then we find a collection of vectors
Y’ C X that span the vector space of largest dimension and
take this space as V' in the above analysis to have our lemma.
This space will be unique, since given two distinct vector
spaces V and V' the span of their unions will have a larger
dimension.]

In the above, we assumed that the Owner generates sig-
natures in a way our protocol does. Now we relax these
assumptions to show that the hardness conclusion holds for
arbitrary protocols.

» Probabilistic Signature Function. In the above we as-
sumed that the Owner follows a deterministic protocol and
does not change its verification state so that the set ¥ is
well defined. But our incompressibility arguments extend to
any probabilistic protocol in a simple fashion. Let w be
a sequence whose entropy is denoted by H(w). Now, a
randomized algorithm uses a sequence of random unbiased
coin flips (denoted by p) along with its input w and one
can view it as a deterministic algorithm once p is specified.
Since p may help in compression of w, the conditional entropy
H(wl|p) < H(w). However, since p is independent of w, these
entropies are equal. Thus we have the standard fact that w can
not be compressed any better by a randomized algorithm than
a deterministic one; for more details see [25].

» General Signature Function. In the above we used the

Que:y 1 Que:ry 2 Query 3 Query 4
A A
r 10 1T \ T 1
’ I I B
Groups based on age income location product id

(a) Multiple Queries with Different Partitioning

Queryl Query2 Query3 Query 4
A L A A

f r
I Y I O
Groups based on product id

(b) Multiple Queries with Different Subsets

Fig. 3. Multiple queries with (a) different partitioning and (b) different
subsets of groups.

function F.(S) = F(S) =), g7t where 0; is fixed, and
the linear structure allowed us to solve a resulting system of
equations efficiently. A general deterministic function F,.(S)
need not be linear, and given many query values one may not
get a system of equations that is easy to solve. For example,
this would be the case if a protocol outputs a encrypted
version of), o 7;0;. But all F.(S) must satisfy the following
consistency condition so that it can be useful for answering
grouped aggregation queries: If r # r’ then there must exist an
S such that F,.(S) # F,..(S). The consistency condition puts
a restriction on F}.: querying on all possible S and obtaining
the values of F'(S) will define a unique r. Such an F', and the
associated recovery algorithm for r (using exhaustive search
over a table rows indexed by r, columns indexed by .S, with
r,S) entry being F,.(S) will yield a compression and coding
technique for the vector r using only a coding of size y. This
contradicts the entropy assumption which states the Owner has
too small a memory in comparison to the entropy of r.

B. Static Subset Queries

We now consider a relatively easier problem of answering
multiple queries on apriori known subset of groups. Our
solution uses an important property of DiSH.

Proposition 1: DiSH is decomposable, that is, for any r;
and ry, 7(ry + r2) = T (r1)7(rz), under the same secret
component of DiSH.

The above property allows us to maintain DiSH over small
subsets of groups and to combine them to produce DiSH for
larger subsets.

» Overlapping Subsets of Groups. In general, subsets of
groups different Clients are interested in may overlap. For
example, one Client may be interested in the sales counts
of various electronic products, while another Client may be
interested in that of various fashion products (some electronic
products can be classified as fashion products as well). Fig-
ure 3(b) shows the scenario. Assume that various Clients are
interested in u such queries, where the ¢’th query is interested
in a subset s; of groups and the subsets in various queries may
overlap with each other.

One naive solution would be to maintain one DiSH at the
Owner for all groups and to require each Client to verify the
complete result (including the groups it is not interested in).
However, this would require the Server to send the complete
result (with all the groups) to the Client, incurring high
communication and computation overhead, especially when

the Client is interested in only a small subset of all the groups.
Another solution would be to maintain v DiSH synopses at the
Owner, where the ¢’th DiSH is computed over only the tuples
that belong to any of the groups in the ith query. Then a Client
receives only the results of groups in s; and verifies it with the
i’th DiSH signature received from the Owner. However, this
requires the Data Owner to update up to u DiSH signature,
one for each Client, on arrival of every tuple. This can be
prohibitively expensive for a large number of Clients and high-
speed streams.

The O(u) update cost can be avoided by partitioning and
merging the query ranges as follows. For simplicity assume
that u queries are interested in u different ranges of groups
(e.g., Client i is interested in the range of groups o; = l;,l; +
1,...,r;, denoted as [I;,7;], and so on). For example, assume
that the partitioning scheme creates 10 groups and three
Clients are interested in the groups with ranges o; = [1, 5],
os = [1,6], and o3 = [3,8] respectively. We can partition
these ranges into the smallest number of non-overlapping sub-
ranges that can be combined to produce all the query ranges:
G = [172], (o = [3,5}, (3 = [6,6], (4 = [7, 8] Then, the
Data Owner can maintain one DiSH signature for each of
these sub ranges. Due to the decomposability property of DiSH
synopses, these can be combined to produce DiSH signature
for any of the original ranges. For example, the synopses for
¢1 and (5 can be multiplied to produce the signature for o; to
verify the first Client’s answer.

It is easy to see that given u queries with different ranges,
corresponding non-overlapping sub-ranges can be computed in
O(ulogu) time by sorting. Moreover, there can be at most 2u
such non-overlapping sub-ranges. Therefore, the Owner needs
to maintain at most 2u DiSH synopses—a small overhead
given the small size of DiSH signatures. However, since sub-
ranges are non-overlapping, each tuple belongs to only one
sub-range and hence the Owner needs to update only one of
the DiSH synopses, making the update cost O(1).

» Concurrent Queries on Various Partitioning Schemes. In
real applications, subset queries may involve groups on various
dimensions. Consider a Client who is interested in two Group-
by queries on a single attribute (e.g., number of mp3 players
sold) but with different partitioning on the input tuples (e.g.,
one on various age groups, and the other on various income
levels), and wishes to verify both of them together. Figure 3(a)
shows such a scenario. Suppose a Client registers queries on
u such orthogonal dimensions, where the ¢th query partitions
the tuples into n; groups for a total of n = Z;L:l n; groups.

A naive solution for this approach would be to maintain u
DiSHs and to apply w instances of our protocol. This would
result in O(u) space, O(u) update cost, and O(u) verification
cost. However, by treating all u queries as one unified query
with n groups, we can use our protocol to verify the combined
vector r. More specifically, the modified protocol maintains
one DiSH and on receiving one tuple, it updates the DiSH
signature w times, once for each of the w groups the tuple
belongs to. Thus, even though the update cost remains O(u),
the space complexity and the verification cost reduces down

to O(1), which is same as a single query verification.
Overlapping subsets and concurrent partitioning can be

combined: a query can use various partitioning schemes and

choose a subset of groups from each partitioning scheme.

VI. EXTENSIONS

The decomposability property of DiSH allows our protocol
to support various other scenarios, as discussed below.

A. Distributed Data Collection

In some scenarios, it is natural for a Data Owner to employ
multiple proxies, each of which independently forwards tuples
to the Server. In some other scenarios, multiple mutually
trusted Data Owners may push data to a single data repository
in one Server. Queries from Clients are then made over all the
tuples forwarded by all the proxies. For example, a sensor
network may have multiple base stations for practical reasons.
Each base station can forward its tuples to a central Server
that users can query.

The decomposability property of DiSH can naturally al-
low verification of grouped aggregation queries in the above
model: All proxies or Data Owners use the same DiSH
secret (this is why they all need to be mutually trusted) and
independently maintains local DiSH signatures on whatever
tuples they see and forward to the Server. To verify a query
result, a Client collects DiSH signatures from all proxies or
Owners, multiplies them to generate a global DiSH signature,
and uses the global DiSH to verify the answer according to
our original protocol in Section IV-B.

B. Handling a Sliding Window

The decomposability property of DiSH also allows us to
extend DiSH for periodically sliding windows using standard
techniques [26]. Suppose a Client is interested in the statistics
collected over a window of last u days, sliding the window by
1 day at a time. Then, we can build a DiSH for every 1-day
period, and keep it in memory until it expires from the sliding
window. The DiSH for the entire window of last u days is
given by multiplying all the unexpired DiSHs. DiSH for any
subset of days within the last v days can be computed in a
similar fashion if needed. Various window sizes between 1 to
u days can also be supported by decomposing the u days into
a number of dyadic intervals, as discussed in [16].

C. Tolerating Communication Losses

In [16], authors present how to use PIRS to verify grouped
aggregation results when the communication between the
Owner and the Server is lossy and hence incorrect values of a
small number of groups are acceptable. The authors present
an exact and an approximate solution for raising alarms only
when the number of errors exceeds a predefined threshold.
This solution thus allows some room of error for the server
(e.g., using semantic load shedding): as long as there are not
too many errors (less than a threshold) in the final result, the
Server is still considered trustworthy. The authors also present
a polylogarithmic space solution to locate and rectify incorrect
groups for a small number of errors.

Data set Update time | Verification time
Bing Click Log 27uSec ~ bSec
World Cup Dataset 30uSec ~ 1Sec

Fig. 4. Overhead at the Owner (update time per tuple) and at a Client
(verification time per result) under two real data sets

The above solutions use PIRS as a black box. Since DiSH
provides the same semantic interface as PIRS (with public
verifiability and stronger security guarantee), DiSH can also
be used as a black box in these solutions. We omit the details
here for brevity.

VII. EXPERIMENTS

We have implemented our protocol using GNU C++ and
the NTL library®, which provides big integers and modular
arithmetic. We assume that group ids are 512-bit numbers and
the total number of items is less than 2°!2. We set p as the
smallest prime above 2512, The experiments are run on an off-
the-shelf desktop PC with Intel Core2 Duo 2.5GHz CPU and
4GB RAM.

A. Real workloads

We first use two real data sets to evaluate the computa-
tion overhead at the Owner and the Client. The Bing Click
Log is a stream of clicks from the Microsoft Bing search
engine. The log contains around 10 million records, with each
record containing attributes such as user IP address, search
term, clicked url, etc. Here we are interested in a grouped
count query: counting the frequencies of various (search-term,
clicked URL) pairs. Such statistics are important to discover
high click-through-rate URLs for various search terms. The
second data set, World Cup Dataset, consists of Web server
logs from the 1998 Soccer World Cup. Each record in the
log contains several attributes such as a timestamp, a client
ID, response size, etc. We used the log of days 50 and 51 that
have about 100 million records and 370,000 unique users. Here
we are interested in a grouped sum query: counting the total
number of bytes sent to each user (i.e., sum of response sizes
of all requests by a user).

On the Data Owner side, we are interested in how much
time it takes to update the DiSH signature on arrival of a single
tuple. On the Client side, we are interested in how much time it
takes to verify the result it receives from the Server. Figure 4
shows the overhead of our protocols in terms of these two
metrics for our two real data sets. As shown, for both data sets,
the Owner takes around 30uSec to update its signature for a
single tuple, implying that it can handle more than 30,000
tuples per second on a off-the-shelf desktop, several orders of
magnitude more than the tuple arrival rates in both our real
data sets. The update cost is slightly higher for the World Cup
Dataset, showing the additional overhead of handling a Sum
query over a Count query.

For comparison, we have also implemented PIRS. We found
that our protocol is 5-10x slower that PIRS. This is because
PIRS protocol requires multiplication, while our protocol re-
quires exponentiation and multiplication. Exponentiation could

Shttp://shoup.net/ntl/

o 40 T T T T
=2 ////
[0} 30 r T
£ 20} 1
o)
< 10 1
°
Q O 1 1 1 1
> 1 o4 o8 512 516 520
Increment
Fig. 5. Update cost per tuple at the Owner

be avoided by precomputing/caching exponentiated values
(e.g., a(a)® in optimized DiSH); but we did not implement the
optimization as we believe performance of DiSH is acceptable
and the relative performance overhead is a small price to
support untrusted clients and to provide stronger cryptographic
security guarantee.

Figure 4 also shows the time required to verify a result at
a Client. For the Bing Click Log and the World Cup Dataset,
it takes around 5 sec and 1 sec to verify a result respectively.
The higher verification overhead for the Bing Click Log is due
to a large number of groups in the data set. Such a verification
time is reasonable in practice because (a) it is comparable to
the time required to download a new result from the Server
and the verification can be done in the background while the
result is being downloaded, and (b) clients are not expected to
make queries very frequently since the result may not change
significantly within a small time window.’

B. Synthetic Datasets

The computational complexity of our protocol depends on
three factors: (i) number of groups, and (ii) average increment
value per tuple (for grouped count queries, the value is 1),
and (iii) average accumulated value per group. The cost of
updating a signature at the Owner depends on (ii), while the
cost of verifying an answer by a Client depends on (i) and (iii).
We now use synthetic datasets to experimentally evaluate our
protocol under these various factors.

» The Owner. Computational complexity of the owner
depends on the average increment value per tuple. Figure 5
shows the cost of updating a DiSH signature for a single tuple,
as a function of the increment value. As shown, the update can
be done very fast (< 50u.5), allowing the Owner to be capable
to handle more than 20,000 updates per second. Note that
updating a signature for a value v requires an exponentiation
of power v, which can be done in O(logv) time. This is also
shown in Figure 5—the update cost increases logarithmically
with the increment size.

» The Client. Computational complexity of a Client depends
on both the number of nonzero groups and the average size of
a nonempty group. Figure 6(b) shows the verification time at a
Client as functions of these two factors. As expected, the cost
increases linearly with the number of nonempty groups. Within
each group, the verification requires exponentiation, and hence
the cost increases logarithmically with the average group size.

7With a large number of clients, the server may still need to answer queries
frequently; but the verification cost is distributed among all the clients.

10* | " 2%%roups ' 1
g 102 } 22* groups 4
% LN S e 2% araups]
E 102 | 28 groups 1
1 group
-6 . . ' .
10 1 o4 28 12 16 520
Avg. group size
Fig. 6. Verification cost per query at a Client
Single- UnOptimized- Optimized-
DiSH DiSH DiSH
Update time T9uSec 823 uS (10 Clients) | 81uSec
(At the Owner) 8191 uSec (100)
79.5 mSec (1000)
Verification time | 14.6 Sec | 29.6 uSec 12.1 uSec
(At a Client)

Fig. 7. Overhead at the Owner (update time per tuple) and at a Client
(verification time per result) for subset queries

Overall, the cost is reasonably small—it is less than 1 second
even for a result containing 2'% nonempty groups.

C. Subset Queries

We now use the Bing Click Log to evaluate our protocols
to verify queries involving subsets of groups. We consider
queries involving three orthogonal dimensions we can extract
from the log: user’s location (obtained from the geo-location
of user’s IP address), clicked business category (obtained by
using a yellowpage directory), and query time. Within each
dimension, we consider the same query as before: a grouped
count query on groups given by various (search-term, clicked
URL) pairs. We vary the number of Clients. Each Client makes
a query on a random subset of 300 consecutive groups. For
comparison, we consider three different schemes:

e Single-DiSH: Here the Owner maintains a single DiSH
over all the groups, and each Client verifies all the groups
together.

e Unoptimized-DiSH: Here the Owner maintains multiple
DiSHs, one for each query. On arrival of a tuple, the
Owner updates all of them. To verify a result, a Client
retrieves the appropriate DiSH. This is essentially one of
the naive solutions mentioned in Section V-B.

o Optimized-DiSH: Here the Owner uses the optimizations
described in Section V-B.

Figure 7 shows the computational overheads of various
schemes. As shown, the single-DiSH scheme that uses a single
DiSH for all queries has a very high verification overhead (the
communication overhead not shown here is also large). This
is because a Client needs to verify all the groups, even though
it is interested in a small subset of groups. The use of subset-
aware multiple DiSHs significantly reduces this verification
cost, since a Client can verify only the groups it is interested
in. However, a naive way of using multiple DiSHs, as is
done in unoptimized DiSH, can introduce significant update
cost. In the unoptimized DiSH scheme, the update cost per
tuple increases almost linearly with the number of Clients in
the system. For example, with only 1000 Clients, the Owner
needs close to 80 milliseconds to update its signature for each

tuple, limiting it to process only 12 tuples per second. Thus,
the scheme can easily become impractical for a large number
of Clients. Optimized-DiSH avoids this problem: in addition
to reducing the verification time at a Client, it also reduces
the update time at the Owner. Moreover, these costs remain
independent of the number of Clients in the system, allowing
Optimized-DiSH to scale to a large number of Clients.

VIII. RELATED WORK

As mentioned in Section I, the database community
has investigated solutions for authenticating outsourced
databases [5], [6], [27], [28], [7], [8] and datastreams [9], [10],
[11], [13], [12], [14], [15], [16]. However, unlike our solution,
none of these solutions support all three design goals: public
verifiability, streaming data, and grouped aggregation queries.

The cryptography community has also investigated delega-
tion protocols that ensure verifiable results [2], [9], [3], [11],
[4], although many of these works are of theoretical interest
only. For example, the memory delegation protocols in [11]
rely on existence of efficient fully homomorphic encryption
algorithm and a polylog PIR algorithm. The notion of a non-
interactive streaming verifier, who must read first the input
and then the proof under space constraints, was formalized
in [10] and extended in [13]. Goldwasser et al. [29] give a
powerful interactive protocol that achieves a polynomial time
prover and super-efficient verifier for a large class of problems.
Even though Goldwasser et al. do not explicitly present their
protocols in a streaming setting, it has been subsequently
noted that for a large class of computations, the verifier can
operate in a streaming fashion. More recently, Cormode et
al. [12] introduce the notion of streaming interactive proofs,
extending the model of [10] by allowing multiple rounds of
interaction between prover and verifier. In contrast to our
work, these works do not support public verification—all these
works assume that the delegator (i.e., the data owner) and
the verifier (i.e., the client) are the same entity, or mutually
trusted. Moreover, our solution is non-interactive, and hence
more efficient in practice than interactive protocols. Recently,
Papamanthou et al. has proposed publicly verifiable techniques
for optimal verification of operations on dynamic sets [17]; but
they do not consider grouped aggregation and streaming data.

IX. CONCLUSION

We have proposed DiSH, a small and efficient signature to
verify outsourced grouped aggregation queries on streaming
data. Our work complements previous works on authenticating
remote computation of selection and aggregation queries.
Unlike prior work on remote grouped aggregation queries, our
solution is publicly verifiable—we support untrusted clients
(who can collude with themselves or with the server) and pro-
vide stronger cryptographic guarantees. Experimental results
on real and synthetic data show that our solution is practical
and efficient.

REFERENCES

[1] M. Balazinska, H. Balakrishnan, S. Madden, and M. Stonebraker,
“Fault-tolerance in the borealis distributed stream processing system,”
in SIGMOD, 2005.

[8]
[9]
[10]
(1]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

B. Applebaum, Y. Ishai, and E. Kushilevitz, “From secrecy to soundness:
efficient verification via secure computation,” in /CALP, 2010.

K.-M. Chung, Y. Kalai, and S. Vadhan, “Improved delegation of com-
putation using fully homomorphic encryption,” in CRYPTO, 2010.

R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-
puting: outsourcing computation to untrusted workers,” in CRYPTO,
2010.

P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine, “Authentic data
publication over the internet,” J. Comput. Secur., vol. 11, pp. 291-314,
April 2003.

F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic authen-
ticated index structures for outsourced databases,” in SIGMOD, 2006.
H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan, “Verifying com-
pleteness of relational query results in data publishing,” in SIGMOD,
2005.

H. Pang and K.-L. Tan, “Authenticating query results in edge comput-
ing,” in ICDE, 2004.

S. Benabbas, R. Gennaro, and Y. Vahlis, “Verifiable delegation of
computation over large datasets,” in CRYPTO, 2011.

A. Chakrabarti, G. Cormode, and A. Mcgregor, “Annotations in data
streams,” in ICALP, 2009.

K.-M. Chung, Y. Kalai, F.-H. Liu, and R. Raz, “Memory delegation,” in
CRYPTO, 2011.

G. Cormode, J. Thaler, and K. Yi, “Verifying computations with
streaming interactive proofs,” Electronic Colloquium on Computational
Complexity (ECCC), vol. 17, no. 159, 2010.

G. Cormode, M. Mitzenmacher, and J. Thaler, “Streaming graph com-
putations with a helpful advisor,” in Annual European conference on
Algorithms: Part I (ESA), 2010, pp. 231-242.

F. Li, K. Yi, M. Hadjieleftheriou, and G. Kollios, “Proof-infused streams:
enabling authentication of sliding window queries on streams,” in VLDB,
2007.

S. Papadopoulos, Y. Yang, and D. Papadias, “Cads: continuous authen-
tication on data streams,” in VLDB, 2007.

K. Yi, F. Li, G. Cormode, M. Hadjieleftheriou, G. Kollios, and D. Sri-
vastava, “Small synopses for group-by query verification on outsourced
data streams,” ACM Transactions on Database Systems (TODS), vol. 34,
no. 3, pp. 1-42, 2009.

C. Papamanthou, R. Tamassia, and N. Triandopoulos, “Optimal verifi-
cation of operations on dynamic sets,” in CRYPTO, 2011.

D. Stinson, Cryptography: Theory and Practice,Second Edition, 2nd ed.
CRC/C&H, 2002.

A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. CRC Press, 1996.

J. V. Z. Gathen and J. Gerhard, Modern Computer Algebra, 2nd ed.
New York, NY, USA: Cambridge University Press, 2003.

M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptography
and application to virus protection,” in ACM STOC, 1995.

D. E. Knuth, The Art of Computer Programming, (Addison-Wesley Series
in Computer Science and Information. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1978.

S. Pohlig and M. Hellman, “An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance,” IEEE Trans-
actions on Information Theory, vol. 24, pp. 106-110, 1978.

D. Bressoud and S. Wagon, A Course in Computational Number Theory.
John Wiley and Sons, 2000.

A. K. Zvonkin and L. A. Levin, “The complexity of finite objects and the
development of the concepts of information and randomness by means
of the theory of algorithms,” Russian Mathematical Surveys, vol. 25,
no. 6, pp. 83-124, 1970.

M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream
statistics over sliding windows: (extended abstract),” in SODA, 2002.
E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and in-
tegrity in outsourced databases,” ACM Trans. Storage, vol. 2, no. 2, pp.
107-138, 2006.

G. Nuckolls, “Verified query results from hybrid authentication trees,”
in DBSec, 2005.

S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating computa-
tion: interactive proofs for muggles,” in ACM STOC, 2008.

J. A. Horwitz, “Applications of cayley graphs, bilinearity, and higher-
order residues to cryptology,” Ph.D. dissertation, Stanford University,
September 2004.

X. APPENDIX
A. Proof of Lemma 4.1

To prove Lemma 4.1, we use the following lemma (Lemma
2.4.1 in [30]):

Lemma 10.1: [30] If kq,ko,...,ks are nonzero integers
such that, for i # j,k; # £k; (mod p); and w € Z3\{0},
then®

s/2 s 5
Ul;gb ; ko-1ywi = j:§+1 k,-1(jyw; = 0(mod p) | < 1—5—2‘

We now prove Lemma 4.1.

LEMMA 4.1. There is no efficient algorithm D that, given
the inputs (g, g2, ..., g%), can compute (a1, g, . ..,) 7
(0,0,...,0) such that [], g“* = 1.

Proof: The proof is by reduction from the Discrete Log
problem. Suppose such a D exists. We now show that, D can
be used to efficiently solve the Discrete Log Problem, which
contradicts with its hardness assumption.

Suppose we want to solve the Discrete Log Problem i = ¢*
(i.e., given h and g, we want to compute x). Then, we generate
random numbers 71, ¥s, . . . , 7% and give a random permutation

of G = (h",... hVe/z gVk/241 | g7) as inputs to D.
Then, the output of D is (o, aa, ..., a) # (0,0,...,0) such
that
k/2 m
ey it Yy, aivi=0 (D
i=1 i=k/2+1
According to Lemma 10.1, we can generate 71,72, ..., Yk

such that > %%,y # 0, with a probability of
1/polynomial (k). Thus, with a polynomial number of tries,
we will be able to find a value of = from Equation 1. This
gives a polynomial time attack, contradicting the hardness of
Discrete Log problem.

More precisely, let n denote the length of the prime p. If we
are given collision finder C that runs in time T'(n) to break
our system, the lemmas show we can use C and break the
system in time O(T'(n)k?) (since the collision probability is
bounded by 1/k?, we need to run C' O(k?) times). In particular
if T'(n) is polynomial in n and k is polynomial as well, then
the overall attack will be polynomial time, contradicting the
hardness of discrete log in the first place. Discrete log problem
is believed to take infeasible time to solve, with current record
being (ec(°8 p)!/*(log log p)2/3), for some constant ¢. Thus even
if Lemma 4.1 should have only negligible probability, as long
as s2 does not approach this bound, Lemma 4.2 will hold. m

B. Proof of Lemma 4.2

LEMMA 4.2. There is no efficient algorithm JF that, given
the inputs gB, g0, gAP1 ... g2 1 for any values of
P0, P15y - - - Pk—1, can compute A/ B.

Proof: If such an F exists, one can solve the Discrete Log
Problem oo = 3% as follows. He generates k arbitrary numbers

Y0y V15 - - -5 Vk—1 and gives B, f¥V0 fEN L BFVR-1 as inputs
to F to produce x and, thus to solve the Discrete Log Problem.
|

85, denotes the permutation group over {1,2,...,s}.

