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Abstract— Taxi ridesharing can be of significant social and 

environmental benefit, e.g. by saving energy consumption and 

satisfying people’s commute needs. Despite the great potential, 

taxi ridesharing, especially with dynamic queries, is not well 

studied. In this paper, we formally define the dynamic 

ridesharing problem and propose a large-scale taxi ridesharing 

service. It efficiently serves real-time requests sent by taxi users 

and generates ridesharing schedules that reduce the total travel 

distance significantly. In our method, we first propose a taxi 

searching algorithm using a spatio-temporal index to quickly 

retrieve candidate taxis that are likely to satisfy a user query. A 

scheduling algorithm is then proposed. It checks each candidate 

taxi and inserts the query’s trip into the schedule of the taxi 

which satisfies the query with minimum additional incurred 

travel distance. To tackle the heavy computational load, a lazy 

shortest path calculation strategy is devised to speed up the 

scheduling algorithm. We evaluated our service using a GPS 

trajectory dataset generated by over 33,000 taxis during a period 

of 3 months. By learning the spatio-temporal distributions of real 

user queries from this dataset, we built an experimental platform 

that simulates user real behaviours in taking a taxi. Tested on 

this platform with extensive experiments, our approach 

demonstrated its efficiency, effectiveness, and scalability. For 

example, our proposed service serves 25% additional taxi users 

while saving 13% travel distance compared with no-ridesharing 

(when the ratio of the number of queries to that of taxis is 6).   

I. INTRODUCTION 

Ridesharing is a promising approach for saving energy 

consumption and assuaging traffic congestion while satisfying 

people’s needs in commute. Ridesharing based on private cars, 

often known as carpooling or recurring ridesharing, has been 

studied for years to deal with people’s routine commutes, e.g., 

from home to work [6][2]. Recently it became more and more 

difficult for people to hail a taxi during rush hours in 

increasingly crowded urban areas. Naturally, taxi ridesharing 

[12] is considered as a potential approach to tackle this 

emerging transportation headache.  

In contrast to the recurring ridesharing, taxi ridesharing is 

more challenging as both passengers’ queries and positions of 

taxis are highly dynamic and difficult to predict: 1) any user 

can submit a query anytime and anywhere, which is real-time 

in most cases; and 2) a taxi constantly travels on roads, 

picking  passengers up and dropping  them off. Its destination  

 

depends on that of passengers, while passengers could go 

anywhere in a city.  

In this paper, we study the dynamic taxi ridesharing 

problem in a practical setting and design a system called T-

Share. Consider that an organization (e.g. a company or a 

transportation authority) that operates a dynamic taxi 

ridesharing service. Taxi drivers can independently determine 

when to join and leave the service. Passengers submit ride 

queries in real time via a mobile device, e.g., a smart phone 

(assume they are willing to share the ride with others). Each 

query indicates the origin and destination locations of the trip, 

as well as time windows constraining when the passenger 

wants to be picked up and dropped off. On receiving a new 

query, the operation centre will dispatch an “appropriate” taxi 

which is able to satisfy both the new query and the trips of 

existing passengers who are already assigned to the taxi. The 

updated schedules and routes will be then given to the 

corresponding taxi driver and passengers. 

In this study, we pursue a two-fold goal. The primary 

purpose is to investigate the potential of taxi ridesharing in 

serving more taxi ride queries by comparing with the case 

where no ridesharing is conducted. Additionally, we try to 

reduce the total travel distance of these taxis (so as to reduce 

the energy consumption) when doing the ridesharing. The 

second goal is to build a dynamic ridesharing service 

applicable for the practical use, i.e. serving a large number of 

queries quickly. We will show how we approach this goal by 

applying a fast taxi searching algorithm and the lazy shortest 

path calculation strategy.  

To the best of our knowledge, our work is the first to 

consider dynamic ridesharing for a large number of taxis. We 

place our problem in a practical setting by exploiting a real 

city road network and the enormous historical taxi trajectory 

data. The contribution of this paper is multiple-dimensional:  

 We propose a taxi searching algorithm and a scheduling 

algorithm which together can quickly serve dynamic 

queries while significantly reducing the total travel 

distance of taxis in ridesharing.  That is, these algorithms 

promise a small query processing time; and at the same 

time a large amount of energy and greenhouse gas 

emission is saved. 

 By exploiting the taxi trajectory dataset, we build an 

experimental platform which can produce taxi ride 
*1 The work was done when the first author was doing an internship in 
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queries conforming to the real query distribution over 

space and time. We believe that the platform is of great 

value in many other related urban and transportation 

computation problems such as traffic prediction. 

 We perform extensive experiments to validate the 

effectiveness of taxi ridesharing as well as the efficiency 

and scalability of our proposed taxi ridesharing service. 

According to the experimental results, the fraction of 

queries that get satisfied is increased by 25% via 

ridesharing when taxis are in high demand. Furthermore, 

120 million liter of gasoline can be saved each year in 

Beijing by taxis alone if ridesharing is allowed.  

The rest of this paper is organized as follows. In Section II, 

we formally define the dynamic taxi ridesharing problem and 

overview our proposed service. Section III introduces the 

spatio-temporal index of taxis. Section IV describes two 

flavours of taxi searching algorithms. Section V describes the 

scheduling module and the lazy shortest path calculation. We 

present the evaluation in Section VI and summarize the 

related work in Section VII.  

II. OVERVIEW 

A. Preliminaries 

Definition 1 (Query) A query   is a passenger’s request for 

a taxi ride that is associated with a timestamp     indicating 

when the query is submitted, a pickup point    , a delivery 

point    , a time window      defining the time interval 

when the passenger needs to be picked up at the pickup point, 

and a time window      defining the time interval when the 

passenger needs to be dropped off at the delivery point. The 

early and late bounds of a pickup window are denoted by 

       and       ; Likewise,        and        stand 

for that of a delivery window.  

For the sake of description simplicity, each query here only 

represents one passenger. But our approach is readily applied 

to the case where a query represents multiple passengers. In 

practice, a passenger only needs to explicitly indicate     and 

      , as most information of a query can be automatically 

obtained from a passenger’s mobile phone, e.g.,     and    . 

In addition, we assume that both        and        equals 

to    , and        can be easily obtained by adding a fixed 

value, e.g. 5 minutes, to       .  

Definition 2 (Schedule) A schedule   is a temporally-

ordered sequence of pickup and delivery points of   queries 

  ,   ,……    such that for every query   ,  =1,…n, either 1) 

     precedes      in the sequence, or 2) only      exists in 

the sequence.  

It is clear from the definition that the schedule dynamically 

changes over time. For example, a schedule involving 2 

queries    and    could be                     at 

a certain time. The schedule is updated to           
     once the taxi has passed pickup point     . 

Definition 3 (Taxi Status) A taxi status   represents the 

instantaneous state of a taxi and is comprised of a taxi 

identifier     ,  a timestamp    , a geographical location    , 
the number of on-board passengers     and a schedule    .  

Definition 4 (Satisfaction) Given a taxi status   and a query 

 , we say that   satisfies   if and only if (i)     is smaller 

than the seat capacity of the taxi; (ii)   can pick up the 

passenger of   at     no later than       , and drop off her 

at     no later than       ; (iii)   can pick up and drop off 

existing passengers in     no later than the late bound of their 

corresponding pickup and delivery time windows. 

TABLE I summarizes a list of essential notations used 

throughout the paper. (Some notations are introduced later.) 

TABLE I A LIST OF NOTATIONS 

Notation Definition 

  A query for a taxi ride 

    The birth time of query   

     The pickup point of query   

    The delivery point of query   

      The pickup time window of query   

     The delivery time window of query   

  A taxi status 

    The current schedule of taxi status   

    The current location of taxi status   

  A grid cell 

  The anchor node of grid cell   

     The taxi list of grid cell   

    
 

 The temporally-ordered grid list of grid cell   

    
     The spatially-ordered grid list of grid cell   

B. The Dynamic Taxi Ridesharing Problem 

In this study, we consider the dynamic taxi ridesharing 

problem defined as follows: given a fixed number of taxis 

traveling on a road network and a stream of queries (i.e. a 

sequence of queries in ascending order of their birth time), we 

aim to serve each query   in the stream by dispatching the 

taxi which satisfies   with minimum additional incurred 

travel distance on the road network.  

The salient character of our problem definition lies in that 

we aim to minimize the increased travel distance for each 

individual query  . This is obviously a greedy strategy and it 

does not guarantee that the total travel distance of all taxis for 

all queries is minimized. However, we still opt for this 

definition due to two major reasons. 

First, the dynamic taxi ridesharing problem inherently 

resembles a greedy problem. In reality, taxi users usually 

expect that their requests can be served immediately. Given 

the rigid real-time context, the ridesharing service only has 

information of currently available queries and thus can hardly 

make optimized schedules based on a global scope, i.e. over a 

long time span.  

Second, the problem of minimizing the total travel distance 

of all taxis for the whole query stream is NP-complete. We 

prove this statement as follows. The problem of optimizing 

travel distance for all taxis for the whole query stream, 

denoted by Total Distance Optimization Taxi Ridesharing 

Problem (TDOTRP), can be formalized as the following 

decision problem: given a stream of queries     a start time    



(   is the smallest value among the birth time of any query in 

  ) and a set of taxi statuses    at   , a road network    in 

which each road segment is associated with a speed limit, a 

number           and a number     , plan a schedule for 

each taxi such that the total travel distance of all taxis is no 

larger than   and the fraction of satisfied queries is at least   

precent. The TDOTRP is NP-complete because we can prove 

that it is a generalization of the Travelling Salesman Problem 

with Time Window (TSPTW), which has already been proved 

to be NP-complete [19]. The input of a TSPTW instance 

includes a start time   ,   vertices {1, 2,..., n} in which vertex 

1 is the depot vertex, the pair-wise distances between vertices 

and a number     . Each vertex   is also associated with a 

time window            , where              for all 

         . The question is to find out whether or not there is 

a cycle route of distance no larger than    such that a 

salesman can leave the depot, i.e. vertex 1 at   , visit each 

vertex   (           ) once within their corresponding time 

window and return to the depot.  

An instance of the TDOTRP ITDOTRP can be constructed 

from  an instance of the TSPTW problem ITSPTW by: (i) create 

the road network of ITDOTRP using the vertex pair-wise distance 

of ITSPTW; (ii) place one vacant taxi at vertex 1 and let the start 

time       ; (iii) create a query    for each vertex   such that 

           , and                ,          for 

       ; In other words, every vertex   (         ) of 

ITSPTW is considered as a dummy query of which the pickup 

point (time window) coincides the delivery point (time 

window) and the query is known a priori; (iv) let  =100, 

which means ITDOTRP needs to satisfy all the queries, and 

    .  
The above construction completes the proof that TDOTRP 

is a generalization of TSPTW. Since TDOTRP is clearly in 

NP, therefore, we have proved that TDOTRP is NP-

complete.□ 

C. Framework of the Dynamic Taxi Ridesharing Service 

The framework of our dynamic taxi ridesharing service is 

shown in Fig. 1. As depicted by the broken red arrows, a taxi 

uploads its status   (defined in Definition 3) to the operation 

centre when joining in the ridesharing service, or when a 

passenger gets on or off the taxi, or at a frequency (e.g., every 

20 seconds) while connected to the service. The system 

maintains spatio-temporal index of the taxis for the purpose of 

fast user query processing. The index will be updated once a 

new status of a taxi is received or a taxi’s route is re-scheduled 

by the service. 

A passenger submits a query   (refer to Definition 1 for 

details) to the system and receives a response    from the 

service. As demonstrated by the solid blue arrows, all 

incoming queries of the system are streamed into a queue    

and are processed according to the first-come-first-serve   

principle. For each   at the top of the query queue, the system 

invokes the Taxi Searching module to search for a set of 

candidate taxis         which is likely to satisfy the query 

based on the latest index. Given the result set        , the 

system invokes the Scheduling module to insert the query into 

the schedule of a taxi in the set         which satisfies   with 

minimum increase in travel distance. If the query is satisfied 

(see Definition 4), the service (i) informs the passenger with 

response    (which is comprised of the ID of the taxi 

scheduled to pick her up and the estimated pickup time); (ii) 

sends    (the new schedule) to the taxi, and updates the 

spatio-temporal index accordingly. Otherwise, the response 

   asks the passenger to modify the query or resubmit it later. 

An early response    may be sent to the passenger (as 

illustrated by the blue dotted arrow) if the taxi searching 

module returns an empty taxi set.  

In addition, a pricing scheme is also designed to charge a 

ridesharing passenger properly, providing taxi drivers with 

more profit, and reducing the expense of each individual 

passenger compared to a single-passenger ride. 

 
Fig. 1 Framework of the dynamic taxi ridesharing service 

III. INDEX 

Remember that the taxi searching module aims to quickly 

select a small set of taxis which is likely to satisfy the new 

query with a small increase in travel distance. It is easy to see 

that a necessary condition for a taxi to satisfy a query   is that 

the taxi needs to be able to pick up the passenger of   on time, 

i.e. before timestamp       . This observation naturally 

suggests us to look for taxis “near” the pickup point of  . 

From this point of view, this problem resembles the K Nearest 

Neighbour (KNN) problem for moving objects [4] as both 

problems are interested in finding moving objects in the 

proximity of a static point. However, unlike in the KNN 

problem where the number of returned objects is explicitly 

determined by the given number  , the number of taxis to be 

retrieved here is not bounded by any fixed value but implicitly 

decided by the temporal constraints of the query. In other 

words, in this problem we need to use the query’s time 

windows to filter out unsatisfactory taxis.  

To achieve this goal, a straightforward approach as in 

[3][15] is that, for each taxi we calculate the shortest path 

between the current position of the taxi and the pickup point 

of the new query and see if the corresponding travel time is 

smaller than the available time, i.e. the difference between 

current time and       . Unfortunately, given the real-time 

context, this approach is too time-consuming because the 
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shortest path computation is expensive and the number of 

taxis is huge. In other words, we want a taxi searching process 

that is both fast and selects taxis wisely such that the selected 

taxis can satisfy the query with a reasonable small increase in 

travel distance over their existing schedules. The problem of 

the straightforward approach lies in that it needs to calculate a 

shortest path for each taxi, which is prohibitively expensive in 

time. What if we use a pre-computed distance to approximate 

the distance of the shortest path? Though the distance is not 

exact anymore, the time-consuming problem completely goes 

away. Inspired by this idea, we propose a spatio-temporal 

index of taxis. In the rest of this section, we describe how the 

index is built and updated.  

We partition the road network using a grid. (Other spatial 

indices such as R tree can be applied as well, but we envision 

that the high dynamics of taxis will cause prohibitive cost for 

maintaining such an index.) As shown in Fig. 2 A), within 

each grid cell, we choose the road network node which is 

closest to the geographical centre of the cell as the anchor 

node of the cell (represented by a blue dot in Fig. 2 A). The 

anchor node of a grid cell    is thereafter denoted by   . We 

pre-compute the distance, denoted by     , and travel time, 

denoted by    , of the shortest path on the road network for 

each anchor node pair    and   . Quite a few advanced travel 

time prediction techniques [25] (e.g., incorporating real time 

traffic conditions) can be applied to estimate the travel time. 

However, since the traffic prediction is not a focus of this 

paper, we just use the speed limit of road segments to 

calculate travel time     for the sake of simplicity. The 

distance and travel time results are saved in a matrix as shown 

in Fig. 2 B). The matrix is thereafter referred to as the grid 

distance matrix.  

 
Fig. 2 Grid partitioned map and the grid distance matrix 

Now imagine that each grid cell collapses to its anchor 

node, that is, all the points in one cell fall to its anchor node. 

Then the distance between any two arbitrary points equals to 

the distance between two corresponding anchor nodes. In 

other words, the grid distance matrix provides an 

approximated distance of the road network shortest path 

between any two geographical points at the grid cell level. 

Using this approximated distance, we can completely avoid 

the expensive shortest path calculation at the stage of taxi 

searching.  

Each cell has some internal data structure for the purpose of 

taxi searching. Specifically, each grid cell    maintains three 

lists: a temporally-ordered grid cell list (     
 ), a spatially-

ordered grid cell list (      
 ), and a taxi list (      , as 

illustrated in Fig. 3 (here we only describe how to build the 

lists and leave their usage in Sec. IV when we introduce the 

taxi searching algorithms). 

     
  is a list of other grid cells sorted in ascending order of 

the travel time from these grid cells to    (temporal closeness). 

Likewise,      
  is a list of other grid cells sorted in ascending 

order of the travel distance to    (spatial closeness). The 

spatial and temporal closeness between each pair of grid cells 

are measured by the values saved in the grid distance matrix 

shown in Fig. 2 B). For example,     measures the temporal 

closeness from    to   , and     measures the spatial 

closeness from    to   .  

These two grid cell lists are static. That is to say, they are 

only computed once. It is worth mentioning that cells that are 

neighbours in the grid may not be neighbours in a grid cell list 

because the distance is measured in the road network instead 

of a free space. 

The taxi list       of grid cell    records the IDs of all taxis 

which are scheduled to enter    in near future (typically within 

a temporal scope of one or two hours). Each taxi ID is also 

tagged with a timestamp    indicating when the taxi will enter 

the grid cell. All taxis in the taxi list are sorted in ascending 

order of the associated timestamp   .       is updated 

dynamically. Specifically, taxi    is removed from the list 

when    leaves   ; taxi    is inserted into the list when    is 

newly scheduled to enter   . If taxis are tracked (see [20]), 

when new GPS records are received from taxis, taxi lists need 

to be updated. Specifically, when a new GPS record from    is 

received, denote by    the current cell in which    is located, 

the timestamp associated with    in the taxi list of cell    and 

cells to be passed by    after    need to be updated.  

 
Fig. 3 Spatio-temporal index of taxis 

IV. TAXI SEARCHING ALGORITHMS 

A. Single-side Taxi Searching 

Now we are ready to describe our first taxi searching 

algorithm. For the sake of the clarity of description, please 

consider the example shown in Fig. 4. Suppose there is a 

query   and the current time is     .    is the grid cell in 

which     is located.   ’s temporally-ordered grid cell list 

     
 

  is shown on the right of Fig. 4.    is the first grid cell 

selected by the algorithm. Any other arbitrary grid cell    is 

selected by the searching algorithm if and only if Eq. (1) holds, 
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where     represents the travel time from grid cell    to grid 

cell   . Eq. (1) indicates that any taxi currently within grid 

cell    can enter    before the late bound of the pickup 

window using the travel time between the two grid cells (if we 

assume that each grid cell collapses to its anchor node). 

                    (1) 

To quickly find all grid cells that hold Eq. (1), the single-side 

searching algorithm simply tests all grid cells in the order-

preserved list      
 

 and finds the first grid cell    which fails 

to hold Eq. (1). Then all taxis in grid cells before    in list 

     
 

 are selected as candidate taxis.  

 
Fig. 4 The single-side taxi searching algorithm 

In Fig. 4, grid cell   ,    and    are selected by the 

searching algorithm. Then for each selected grid cell   , the 

algorithm selects taxis (in      ) whose    is no later than 

          . For instance, Fig. 5 shows how taxis are 

selected from grid cell    and   .  

 
                           Fig. 5 Choose taxis from the selected grid cells 

The taxi which can satisfy   with the smallest increase in 

travel distance must be included in one of the selected grid 

cells (under the assumption that each grid cell collapses). 

Unfortunately, this algorithm only considers taxis currently 

“near” the pickup point of a query (thus called single-side 

search). As the number of selected grid cells could be large, 

this algorithm may result in many taxis retrieved for the later 

scheduling module (therefore increasing the entire 

computation cost), which is certainly not desirable for a rigid 

real-time application like taxi ridesharing. Actually, the 

spatiotemporal factor on the delivery point of queries also 

provides us with opportunities to reduce the number of grid 

cells to be selected. Along this idea, we propose a dual-side 

searching algorithm as an effort for striking a balance between 

the distance optimality and the computation cost. 

B. Dual-Side Taxi Searching 

At its core, the dual-side searching is a bi-directional 

searching process which selects grid cells and taxis from the 

origin side and the destination side of a query simultaneously.  

To dive into the details of the algorithm, consider the query 

illustrated in Fig. 6 where    and    are the grid cells in 

which    and    are located respectively. Squares filled 

with stripes indicate the possible grid cells searched by the 

dual-side searching algorithm at     side. They are 

determined by the temporal closeness between a query and 

taxis (Refer to Eq. 1 for details). The red number in each such 

grid cell indicates its relative position in the spatially-ordered 

grid list of   . Squares filled with dots indicate the grid cells 

accessed by the dual-side searching algorithm at     side. 

Any grid cell    other than    is selected by the searching 

algorithm at     side if and only if Eq. (2) holds, which 

means that any taxi currently in    can enter    before the late 

bound of the delivery window (assumes that grid cells 

collapse).  

                  (2) 

 
Fig. 6 Overview of the dual-side taxi searching algorithm 

Similar to finding all grid cells in which Eq. (1) holds, all 

grid cells in which Eq. (2) holds can be quickly determined by 

scanning the temporally-ordered grid list      
  in order. All 

grid cells within the searching boundary at     side are then 

considered. Fig. 6 shows    is the only satisfying cell in this 

example. 

Fig. 7 further illustrates the dual-side searching algorithm 

step by step. The algorithm maintains a set    and a set    to 

store the taxis selected from     and     side respectively. 

Initially, both    and    are empty.  The first step in the 

searching is to add the taxis selected from taxi list       to set 

   as depicted in Fig. 7 A), and add the taxis selected from 

taxi list        to set   , as depicted in Fig. 7 B).  Then the 

algorithm calculates the intersection of    and   . If the 

intersection is not empty, the algorithm stops immediately and 

returns the intersection set. Otherwise, it expands the 

searching area by including one other grid cell at each side at 

a time.  

To select next cells, we use the following heuristic: for a 

taxi  , the closer some cell to be passed by   is to    and the 

closer some cell to be passed by   is to    (measured in the 

distance between the anchor nodes of the cells), the smaller 
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the  ’s scheduled travel distance increases after insertion of 

the query. Thus, for the purpose of minimizing the increased 

travel distance, the next grid cell included at     side is 

chosen as the next element in the spatially-ordered grid list 

     
  which holds Eq. (1). Similarly, the next grid cell 

included at     side is always chosen as the next element in 

the spatially-ordered grid list      
  which holds Eq. (2).  

In this example, since the intersection of    and    

produces an empty set, the algorithm expands at     side to 

include    (indicated by the broken red rectangle) and adds 

taxis selected from       as depicted in Fig. 7 C). At     side, 

the algorithm covers    and adds taxis as indicated in Fig. 7 

D).  

 
Fig. 7 Calculation of the taxi set in the dual-side searching  

Unfortunately, the intersection set of    and    remains 

empty. Consequently, the algorithm continues to expand the 

searching area at both sides. Thus,    is selected at     side; 

but no grid cell can be further included at the     side. After 

adding the taxis selected from       into set    as shown in 

Fig. 7 E), we finally find        and        as the 

intersection between    and   . So the searching algorithm 

terminates. 

The pseudo code of the dual-side searching is presented in 

Algorithm 1. The dual-side searching algorithm may not 

always find the taxi with the minimum travel distance increase 

for a query. However, as a compensation for the small loss in 

distance optimality, the algorithm selects far fewer taxis for 

the following scheduling module, therefore reducing the 

computation cost. We found in the experiments that the 

number of selected taxis is reduced by 50% while the increase 

in travel distance is just 1% over the single-side search 

algorithm. 

V. SCHEDULING MODULE 

Given the set of taxi statuses         retrieved for a query 

  by the taxi searching algorithm, the purpose of the 

scheduling module is to insert   into the schedule of the taxi 

which satisfies   with minimum additional travel distance. In 

the rest of this section, Part A describes how to insert a query 

  into the schedule of a taxi status  , and Part B introduces 

the lazy shortest path calculation strategy, which is used to 

speed up the computation involved in the scheduling.   

 

A. Insertion Feasibility Check 

Given a new query   and a taxi status  , consider how to 

determine whether or not   can be inserted into     and how 

to perform the insertion if appropriate. As in [8][16],  here we 

assume that the order of points in the current schedule remains 

intact when inserting a new query to the schedule. Then at a 

high logical level, the insertion can be separated into two 

stages: (i) insert the pickup point of the query    ; (ii) insert 

the delivery point of the query    . For example, Fig. 8 

shows one possible way to insert query   into schedule 

                   . Among all possible ways of 

insertion, the system chooses the insertion way that minimally 

increases the travel distance. So the scheduling module is thus 

able to choose the taxi   out of the taxi status set         
which incurs the minimum increase in travel distance. 

 
Fig. 8 One possible insertion of a query into a schedule 

For each insertion possibility (uniquely identified by the 

position   and   at which     and     is inserted into the 

schedule), the system uses Algorithm 2 to evaluate its 

feasibility. We refer to each such invocation of Algorithm 2 as 

an insertion feasibility check. For instance, consider the 
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example shown in Fig. 8. To insert     immediately after 

point     , the algorithm first checks whether the 

corresponding taxi is able to arrive at     before       . If 

not, then the insertion fails. Otherwise, the algorithm then 

computes the travel time delay    due to the insertion of     

using Eq. (3), where → denotes the estimated dynamic travel 

time (e.g. using the technique proposed in [25]) of the 

quickest path from one location to another location, and     

represents the time spent waiting for the passenger if the taxi 

arrives     early, i.e. ahead of       .  

   (          (             (           (3) 

If the time delay results the late arrival at any point after 

    in the original schedule, then the insertion fails. For this 

purpose, we introduce the notion of slack time. Denote by    

and    the projected arrival time at the pickup point     and 

the delivery point    . Then the slack time at     and    , 

denoted by (       and (       respectively, is calculated by 

Eq. (4) and Eq. (5). 

  (                   (4) 

 (                 (5) 

Thus, we can use the slack time as the shortcut to check 

whether the delay due to an insertion destroys the timely 

arrivals at any subsequent point in the schedule. As depicted 

in Fig. 8, points with grey background should be examined for 

the slack time check after the insertion of    . That is, if  

       (         (         , then the insertion fails. If     

is inserted successfully, the system proceeds to insert     in a 

similar way. The increased travel distance is calculated when 

both     and     are inserted successfully. 

 

Now let us consider the computation cost of the scheduling 

module. For each schedule     composed of   points, there 

are at     positions to insert the pickup point     and 

      positions to insert the delivery point     into    , 

given that   is the position at which     is inserted. That is to 

say, there are  (    possible ways of insertion in total. And 

for each possible way of insertion, shortest path calculation is 

invoked as many as four times, as depicted in Fig. 8 where 

each labelled leg represents one shortest path calculation. 

Unfortunately, the cost of shortest path calculation is 

expensive in a real-time application like the dynamic taxi 

ridesharing studied here. Thus, accelerating the execution of 

the insertion feasibility check is critical to the scalability of 

the system.   

Some existing work considers ignoring some insertion 

possibilities. For instance, [16] suggests two alternative 

insertion strategies. One strategy is only checking the 

insertion ways in which the query is inserted at the beginning 

of the schedule. That is, the system always requires the taxi to 

reroute for the pickup point of the new query right away. If 

the insertion fails, the taxi is no longer considered. Another 

strategy is to apply the optimization function to both stages of 

the insertion. For example, the pickup point is inserted as so to 

increase the travel distance minimally. When the delivery 

point is inserted, no other position for the pickup point will be 

considered. Though these strategies speed up the insertion 

process, it is not clear how much the quality of the chosen 

insertion will deteriorate. Thus we aim to expedite the 

insertion process by speeding up the calculation itself instead 

of eliminating some insertion possibilities. 

B. Lazy Shortest Path Calculation Strategy 

In this part, we propose a lazy shortest path calculation 

strategy that leverages the pre-computed grid distance matrix, 

the triangle inequality and caching to speed up the feasibility 

check process. The essence of the proposed strategy is to 

delay the shortest path calculation until the calculation is 

needed.  

Recall that the road network is partitioned into grid cells. 

Whenever the insertion feasibility check is invoked, the 

calculation of shortest path is deferred or avoided by the 

following logic: if the shortest path between the origin 

location   and the destination location   has been previously 

calculated, then the algorithm simply retrieves the path from 

the cached results; otherwise, instead of directly calculating 

the shortest path, the algorithm first calculates the lower 

bound of the travel time between   and   using the pre-

computed travel time between grid cells and the triangle 

inequality. For example, consider a taxi currently at point   

and a new query with pickup point at  . Denote by    and    

the grid cell in which   and   are located respectively. By 

applying the triangle inequality, we have Eq. (6), where → 

denotes the estimated dynamic travel time from one location 

to another location. 

            (      (      (6) 

Since     is pre-computed, and (      and (      are 

usually easy to calculate as the origin and destination pair is 

confined within one grid cell, the lower bound of     can be 

obtained instantaneously. Given the lower bound, the 

feasibility of an insertion may be determined much quicker. If 



the time window constraint cannot be satisfied even for the 

lower bound of the shortest path, then the insertion way must 

be infeasible. Only when the lower bound does not violate 

time constraints, the algorithm needs to proceed to compute 

the shortest-time path between points   and  . Clearly, the 

lower bound delays the shortest path calculation until the time 

when the calculation is absolutely needed. In addition, state-

of-art shortest path algorithms, e.g. [10], can be applied to 

speed up on-line shortest path calculations. 

It is evident that the grid size will affect the effectiveness of 

lazy shortest path calculation strategy. On one hand, if the 

granularity of the grid is too coarse, i.e. each grid cell is too 

large, the routing within a grid cell will be expensive, which 

defeats the primary purpose of the lazy strategy; on the other 

hand, if the granularity of grid is too fine, i.e. each grid cell is 

too small, the cost of updating the taxi list of the grid cells, i.e. 

updating the timestamps when taxis are going to enter the 

cells, will be high.  

C. Pricing Scheme 

As our goal in this study is to propose a complete practical 

taxi ridesharing service, we provide a simple yet effective 

pricing scheme. We believe that it is reasonable to assume 

following properties for a pricing scheme: (i) taxi fare per 

mile is higher for multiple passengers than for a single 

passenger; (ii) the taxi fare of shared distances is evenly split 

among the riding passengers; as a result, the more people 

share a ride, the lesser each individual pays for the ride.  

Based on these two properties, we propose the following 

pricing scheme. Denote by p the regular taxi fare per mile.  

Let   (     be the fare inflating parameter, that is, the taxi 

fare per shared mile is (     . The taxi fare for shared 

miles is evenly split among all passengers involved. 

Consequently, the taxi fare for each passenger is likely to be 

reduced if she shares a certain distance during the trip. The 

taxi fare of each passenger can be then automatically 

calculated by Eq. (7), where    is the travel distance shared 

by   passengers, and   is the capacity of the taxi.  

        (       
 (        ⁄   (7) 

On the other hand, the total fare for all taxi drivers is 

calculated by Eq. (8), where    is the total travelled distance 

that is not shared and    is the total travelled distance that is 

shared. We will examine the appropriate value for   to make 

ridesharing profitable for taxi drivers. 

               (   (         (8) 

VI. EVALUATION 

A. Setting 

1)  Dataset 

Road networks: We perform the experiments using the real 

road network of Beijing, which contains 106,579 road nodes 

and 141,380 road segments.  

Taxi Trajectories: The taxi trajectory dataset contains the GPS 

trajectory recorded by over 33,000 taxis during a period of 87 

days spanning from March to May in the year of 2011. Each 

of 87 days has a single file contains all the trajectories 

recorded during the day. The total distance of the dataset is 

more than 400 million kilometres and the number of points 

reaches 790 million. After trip segmentation, there are in total 

20 million trips, among which 46% are occupied trips and 54% 

are non-occupied trips. We map each occupied trip to the road 

network of Beijing using the map-matching algorithm 

proposed in [24]. Each trip then can be viewed as a query with 

windows size equals to 0. Fig. 9 shows the distribution of 

pickup and delivery points of the queries in the dataset over 

road segments in a day. It is clear that queries are distributed 

sparsely over the road network. 

 
A) Pickup points                                 B)    Delivery points 

Fig. 9 Distribution of queries over road segments 

2)  Experimental Platform 

The historical trajectory dataset conceals rich information 

regarding 1) the distribution of the queries on the road 

network over time of day, and 2) the mobility patterns of the 

taxis. In order to validate our proposed service under practical 

settings, we mine the trajectory dataset to build an 

experimental platform, which generates a realistic query 

stream and initial taxi statuses for our experiments. We 

envision that this platform can be applied to many other 

relevant urban and transportation computation problems. 

Query Stream: The goal is to generate dynamic queries that 

are as realistic as possible. For this purpose, we first discretise 

one day into small time bins, denoted by    and denote all 

road segments by   . We assign all historical queries into time 

bins based on the birth time of queries. Assume that the 

arrivals of queries on each road segment approximately follow 

a Poisson distribution during time frame   , where each frame 

has a fixed length spanning   time bins. Thus, we can learn 

    , i.e. the parameter of the Poisson distribution for road 

segment    during time frame   . Specifically, for each road 

segment   , we count the number of queries that originated 

from    within time frame   , denoted by    , and learn the 

distribution of the destination road segment of these queries, 

denoted by    . Then we calculate     based on     using Eq. 

(9) and generate a query stream that follows a Poisson process 

with parameter    .  

            (9) 

For each query   generated in frame    with the origin road 

segment being   , the destination road segment is generated 

according to the distribution    .        and        equals 

to    , i.e. the birth time of the query.        is calculated by 

applying a fixed window size.         equals to the sum of 
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the late bound of the pickup time window and the average 

travel time between the origin and destination pair learned 

from the GPS trajectory dataset.   

Note that the taxi GPS trajectory dataset only reveals the 

number of queries that got served. In reality there are also 

many queries unsatisfied and disappeared due to the shortage 

of taxis. In order to take such queries into consideration, we 

introduce a system parameter  , which stands for the ratio of 

the actual total number of queries to the number of queries 

extracted from the historical data. The inflated number of 

queries therefore equals to the number of queries extracted 

from the trajectory dataset multiplying  . We refer   to as the 

query inflation multiplier thereafter. Fig. 10 shows how the 

inflated number and the extracted number of queries fluctuate 

during a day (the time frame is 1 hour and  =2 in the figure). 

 
Fig. 10 Inflated and extracted number of queries during a day 

Initial Taxi Statuses: To keep the characteristics of the 

realistic scenario, we use the real taxi statuses by slicing the 

historical trajectories at a certain timestamp. Specifically, we 

select a date and choose a particular second of day as the 

timestamp when the experiment starts, denote it by   . We 

scan all the GPS records of the selected date to determine the 

initial states of taxis. A taxi status   is set to be occupied if it 

is recorded occupied crossing timestamp   .The initial 

schedule of   can be initialized according to the record. A taxi 

  is set to be vacant if it is recorded vacant both just before 

and right after   . The concept of “just before” and “right after” 

is controlled by a temporal parameter, which is set to be 2 

minute. All remaining taxis are then considered as not 

recorded and thus not used in the simulation. 

According to the setting mentioned above, we built a 

prototype system whose screenshot is shown in Fig. 11. The 

red polyline stands for the route that has been traversed in a 

schedule, the green part for the route to be travelled, and a 

person pin aligned with a “+” and “-” symbol for the pickup 

and delivery point of a query, respectively. 

 

Fig. 11 A screenshot of T-Share prototype showing the route of a taxi 

3)  Framework 

The set of queries and initial states used in all validation 

experiments are generated with parameters listed in TABLE II.  

We first conduct experiments comparing the performance 

of the non-ridesharing method and different dynamic 

ridesharing methods (described soon) by varying the value of 

 . We also evaluate and analyse the efficiency and scalability 

of the ridesharing service by comparing competing 

ridesharing methods. Then we verify the benefit of the lazy 

shortest path calculation strategy in reducing computation cost, 

given different grid sizes. Finally, we investigate how the 

profit of taxi drivers affected under the proposed pricing 

scheme.   

TABLE II PARAMETER SETTING FOR QUERY GENERATION 

Notation Definition Value 

   The start time of simulation 9 am 

   The end time of simulation 9:30 am 

      The number of taxis 2,980 

   The pickup window size 5 minute 

 (    The length of a time bin 5 minute 

  The # of time bins in a frame 12 

4)  Measurements 

The performance of the ridesharing service is evaluated by 

following measures. 

Relative Distance Rate (RDR): Define the distance of a query 

  as the distance between its pickup point     and its 

delivery point    . Denote by     the sum of distances of 

queries that get satisfied and by    the total distance travelled 

by all taxis in the ridesharing. RDR is calculated by Eq. (10). 

            (10) 

RDR evaluates the effectiveness of ridesharing by measuring 

how much distance is saved compared to the case where no 

ridesharing is practiced.  

Satisfaction Rate (SR): is the fraction of queries get satisfied 

in the ridesharing (exclude queries that are already served by 

taxis at the initial state in the query counting). SR is a crucial 

criterion measuring the effectiveness of the ridesharing system. 

Number of Road Nodes Accessed Per Query (#RNAPQ): is the 

number of accessed road network nodes per query.  

Number of Grid Cells Accessed Per Query (#GCAPQ): is the 

number of accessed grid cells per query.  

Number of Taxis Accessed Per Query (#TAPQ): This 

measurement records how many taxis per query are accessed 

for insertion feasibility checks by the scheduling module. 

RNAPQ, GCAPQ, TAPQ are indicators for computation cost 

of the system since the majority on-line computation is done 

in the scheduling.  

5)  Competing Methods 

We compare the performance of one non-ridesharing 

method and four flavours of our proposed ridesharing method.  
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The Non-Ridesharing method (NR) forbids ridesharing and 

assumes that when a taxi becomes vacant, it moves towards 

the passenger that it can pick up at the earliest time among all 

queries it can satisfy. Since the scheduling is done by the 

central server, there is no need to worry about the competition 

between taxis. 

We create four flavours of ridesharing method based on 

two choices, i.e. one choice made in the taxi searching step 

and the other choice made in the scheduling step. Specifically, 

a ridesharing method is said to be dual-side if the dual-side 

algorithm is used in the taxi searching step; otherwise, it is 

said to be single-side if the single-side algorithm is used. A 

ridesharing method is said to be best-fit if the scheduling 

module tries all taxis in result set returned by the taxi 

searching algorithm; otherwise, it is said to be first-fit if the 

scheduling module terminates immediately once it finds a taxi 

satisfying the query. Because the two choices can be made 

independently, we get the following 4 ridesharing methods: 

Single-side and First Fit Ridesharing (SF), Single-side and 

Best-fit Ridesharing (SB), Dual-side and First Fit Ridesharing 

(DF), Dual-side and Best-fit Ridesharing (DB). 

B. Experiment Results 

1)  Effectiveness of the Ridesharing Service: We compare the 

satisfaction rate and the relative distance rate for ridesharing 

methods by varying the value of query inflation multiplier  . 

Meanwhile the road network is divided into 30*30 cells. 

 
Fig. 12 Satisfaction rate vs. query inflation multiplier 

As Fig. 12 shows, all ridesharing methods have a 

considerably higher satisfaction rate (about 25% higher on 

average) than the NR method for all delta values. The 

difference between ridesharing methods on the satisfaction 

rate is insignificant as no particular technique is proposed for 

optimizing the satisfaction rate.  

 
Fig. 13 Relative Distance Rate vs. query inflation multiplier 

Fig. 13 shows how RDR changes over Δ for different 

ridesharing methods. RDR steadily drops as the delta value 

increases. This is likely because the taxi ridesharing 

opportunities surge as the number of queries increases. The SB 

ridesharing method outperforms other methods, since SB 

reduces the travel distance increment the most. The DB 

method slightly trails the SB method as its taxi searching step 

explores fewer grid cells and taxis. In comparison, the two 

first-fit methods show a higher relative distance rate, 

especially when delta is small. 

From the picture, we can see that ridesharing methods save 

up to 13% in travel distance, depending on delta. Given the 

fact that there are 67,000 taxis in Beijing and each taxi runs 

480 km per day (learned from the dataset), the saving 

achieved by ridesharing here means over 1.6 billion 

kilometres in distance per year, which equals to 120 million 

liter of gas  per year (supposing a taxi consumes 8 liter 

gasoline per 100km) and 2.3 million of carbon dioxide 

emission per year (supposing each liter of gas consumption 

generates 2.3 kg carbon dioxide).    

2)  Scalability and Efficiency of the Ridesharing Service: We 

evaluate the scalability of the proposed ridesharing service by 

examining how the computation cost changes as the number 

of queries increases. The computation cost is measured by the 

average number of nodes (grid cells or  road nodes) the 

system accesses for each query.  

The three sub-graphs of Fig. 14 show the number of grid 

cells accessed per query, the number of road nodes accessed 

per query, and the number of taxis accessed per query for 

different ridesharing methods under various delta values. It is 

clear from the pictures that all ridesharing methods do not 

show sharp increase in computation cost as   increases.  

It is also obvious that the computation cost of the DB 

ridesharing method is significantly smaller than that of the SB 

method, actually even smaller than that of the SF method 

sometimes. The result of Fig. 13 and Fig. 14 together validate 

our motivation for the dual-side taxi searching algorithm. That 

is, the dual-side searching indeed incurs a small increase in 

travel distance, in exchange for the significant decrease in 

computation cost. 

3)  Effectiveness of the Lazy Shortest Path Calculation 

Strategy: In this experiment, we validate effectiveness of the 

lazy shortest path calculation strategy in reducing the 

computation cost of the system as the grid size varies for Δ = 

2. Fig. 15 shows how the number of road nodes accessed per 

query is changed for the DB ridesharing method with and 

without applying the lazy strategy. In both cases, previous 

calculated shortest path results are cached to avoid 

unnecessary repeated computation. Not surprisingly, the 

computation cost of the DB method is decreased by 83% on 

average when the lazy strategy is applied. 

4)  Pricing scheme: By applying Eq. (8), we compare the total 

profit of all taxi drivers with and without ridesharing.          

Fig. 16, A) and B) show the ratio of the profit with ridesharing 

compared to the profit without ridesharing, when the fare 

inflating ratio   equals 0.5 and 0.8 respectively. It is clear 

from the figures that all ridesharing methods make more profit 

than where no ridesharing is allowed. This result suggests that 

ridesharing can provide monetary incentives to drivers.  
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             A)  #GCAPQ vs. delta                                                  B) #RNAPQ vs. delta                                                  C) #TAPQ vs.  delta 

 Fig. 14 Computation cost vs. query inflation multiplier 

                                   
                       Fig. 15  Effectiveness of the lazy shortest                                        A)  α=0.5                                                                     B)  α=0.8 

                                    path calculation strategy                                                                        Fig. 16 Profit ratio for ridesharing methods

VII. RELATED WORK 

We study three categories of related works, positioning 

our work in the research community.  

A. Taxi Recommender and Dispatching Systems 

Quite a few recommender systems have been proposed for 

improving an individual taxi driver’s income and reducing 

unnecessary cruising. Based on historical taxi trajectories, 

Yuan and Zheng et al. [23][24] proposed a system that 

suggests some parking places for an individual taxi driver 

towards which they can find passengers quickly and maximize 

the profit of the next trip. Similarly, Ge et. al [14] suggests a 

sequence of pickup points for a taxi driver. While these 

systems are only designed from the perspective of taxi drivers, 

our service considers the needs of both taxi drivers and users. 

Taxi dispatching services [22][18] usually send a taxi close 

to a passenger as per the passenger’s call without considering 

ridesharing. Consequently, only vacant taxis need to be 

examined for each dispatch, which can be easily retrieved by 

answering a range query. In our case, each taxi that is 

occupied under full capacity needs to be considered. This 

complication introduces new challenges.  Our work is also an 

example of urban computing [25], where a series of research 

work has been done with taxi trajectories. 

B. Recurring Ridesharing 

Recurring ridesharing deals with routine commutes. There  

are already existing websites and mobile applications for this 

purpose, such as Avego.  Given the usual small size of the 

problem, researchers are able to solve it optimally by using 

linear programming techniques [6][2]. Compared to recurring 

ridesharing where queries are static, i.e., routes and time 

schedules are known in advance, the dynamic taxi ridesharing 

problem we studied here is more challenging, as queries are 

generated in real time and the routes of taxis change 

continuously.   

C. Dial-A-Ride Problem 

The taxi ridesharing problem can be viewed as a special 

member of the general class of the Dial-a-Ride Problem 

(DARP) [1], a.k.a. Vehicle Routing Problem with Time 

Windows [11]. DARP is essentially a constraint satisfaction 

problem, i.e., planning schedules for vehicles, subject to the 

time constraints on pickup and delivery events. The DARP is 

originated from and has been studied in various transport 

scenarios, notably goods transport [13], paratransit for 

handicapped and elderly personnel [3], etc.  To the best of our 

knowledge, this work is the first to consider the DARP in the 

taxi ridesharing setting with dynamic queries.      

Existing works on the DARP have primarily focused on the 

the static DARP, where all customer queries are known a 

priori. Since the general DARP is NP-hard [15], only small 

instances (involving only a few cars and dozens of queries) 

can be solved optimally (often by resorting to integer 

programming techniques, see [9][17]). Large static DARP 

instances are usually solved by using the two-phase 

scheduling strategy [5][8] with heuristics. Specifically, in 

phase I, queries are clustered and each cluster is assigned to a 

vehicle, i.e. forms an initial schedule. In phase II, queries are 

swapped among initial schedules of vehicles using heuristics.  

Considerably less research has been carried out on the 

dynamic DARP, where customer queries are generated on the 

fly. Previous few works on the dynamic DARP problem 

[7][1][16] continue to adapt the two-phase scheduling strategy. 

As a result of dynamic queries, the two phase strategy now 

needs to be applied to each single query instead of the whole 

query pool as done in the static DARP. Particularly, phase I 

needs to select a taxi for a given query instead of clustering 

queries. In this sense, our approach resembles the phase I. 

Existing approaches to phase I in literature have been 
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discussed and compared with our approach at the beginning of 

Section IV. In addition, we believe that phase II is no longer 

suitable for a practical real-time taxi ridesharing service. The 

reason is that once a query is scheduled, the information of the 

dispatched taxi will be provided to the passenger. Swapping 

already scheduled, but not yet executed queries (i.e. 

passengers of the query not picked up yet) among taxis is 

likely to perplex passengers and severely damage the user 

experience of the ridesharing service. 

VIII. CONCLUSIONS  

This paper proposes a practical large-scale taxi ridesharing 

service. We evaluated our service based on a GPS trajectory 

dataset generated by 33,000 taxis over 3 months, in which 

over 10 million queries were extracted. Based on this data, we 

implemented a T-Share prototype system. The experimental 

results demonstrated the effectiveness and efficiency of our 

system in serving dynamic queries. Firstly, our service can 

enhance the delivery capability of taxis in a city so as to 

satisfy the commute of more people. For instance, when the 

ratio between the number of taxi queries and the number of 

taxis is 6, our service served additional 25% taxi users than no 

ridesharing. Secondly, compared with the taxi system sending 

passengers individually, our ridesharing service saves the total 

travel distance of taxis when delivering passengers, e.g., our 

approach saved 13% travel distance with the same ratio 

mentioned above. Supposing a taxi consumes 8 liters of 

gasoline per 100km, and given the fact learned from the real 

trajectory dataset that the average travel distance of a taxi in a 

day (in Beijing) is about 480km, our service can save over 120 

million liter of gasoline per year (worth about 160 million 

dollar). Thirdly, our service can also save the expense of a taxi 

user, while increasing the profit of a taxi driver. Using the 

pricing scheme designed (when  =0.8), taxi drivers can 

increase their profit by 19% on average over no ridesharing. 

In addition, the experimental results justified the importance 

of the dual-side searching algorithm and the lazy shortest path 

calculation strategy. Compared to the single-side taxi 

searching algorithm, the dual-side taxi searching algorithm 

reduced the computation cost by over 50%, while the increase 

in travel distance was only about 1% on average. The 

computation cost was reduced by 83% if the lazy strategy is 

applied. On average, our service can answer a user query in 

5ms even on a single machine, i.e., it can serve 720k queries 

per hour.  

In the future, we will incorporate advanced travel time 

estimation techniques to improve the prediction of taxi travel 

time. We will also schedule queries that arrive within a small 

time interval in batch mode, to further optimize the total travel 

distance in ridesharing. 
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