
T-Share: A Large-Scale Dynamic Taxi Ridesharing

Service
Shuo Ma

#*1
, Yu Zheng

*2
, Ouri Wolfson

#*3

#
University of Illinois at Chicago, Chicago, USA

 1
sma21@uic.edu

3
wolfson@cs.uic.edu

*
Microsoft Research Asia, Beijing, China

2
yuzheng@microsoft.com

Abstract— Taxi ridesharing can be of significant social and

environmental benefit, e.g. by saving energy consumption and

satisfying people’s commute needs. Despite the great potential,

taxi ridesharing, especially with dynamic queries, is not well

studied. In this paper, we formally define the dynamic

ridesharing problem and propose a large-scale taxi ridesharing

service. It efficiently serves real-time requests sent by taxi users

and generates ridesharing schedules that reduce the total travel

distance significantly. In our method, we first propose a taxi

searching algorithm using a spatio-temporal index to quickly

retrieve candidate taxis that are likely to satisfy a user query. A

scheduling algorithm is then proposed. It checks each candidate

taxi and inserts the query’s trip into the schedule of the taxi

which satisfies the query with minimum additional incurred

travel distance. To tackle the heavy computational load, a lazy

shortest path calculation strategy is devised to speed up the

scheduling algorithm. We evaluated our service using a GPS

trajectory dataset generated by over 33,000 taxis during a period

of 3 months. By learning the spatio-temporal distributions of real

user queries from this dataset, we built an experimental platform

that simulates user real behaviours in taking a taxi. Tested on

this platform with extensive experiments, our approach

demonstrated its efficiency, effectiveness, and scalability. For

example, our proposed service serves 25% additional taxi users

while saving 13% travel distance compared with no-ridesharing

(when the ratio of the number of queries to that of taxis is 6).

I. INTRODUCTION

Ridesharing is a promising approach for saving energy

consumption and assuaging traffic congestion while satisfying

people’s needs in commute. Ridesharing based on private cars,

often known as carpooling or recurring ridesharing, has been

studied for years to deal with people’s routine commutes, e.g.,

from home to work [6][2]. Recently it became more and more

difficult for people to hail a taxi during rush hours in

increasingly crowded urban areas. Naturally, taxi ridesharing

[12] is considered as a potential approach to tackle this

emerging transportation headache.

In contrast to the recurring ridesharing, taxi ridesharing is

more challenging as both passengers’ queries and positions of

taxis are highly dynamic and difficult to predict: 1) any user

can submit a query anytime and anywhere, which is real-time

in most cases; and 2) a taxi constantly travels on roads,

picking passengers up and dropping them off. Its destination

depends on that of passengers, while passengers could go

anywhere in a city.

In this paper, we study the dynamic taxi ridesharing

problem in a practical setting and design a system called T-

Share. Consider that an organization (e.g. a company or a

transportation authority) that operates a dynamic taxi

ridesharing service. Taxi drivers can independently determine

when to join and leave the service. Passengers submit ride

queries in real time via a mobile device, e.g., a smart phone

(assume they are willing to share the ride with others). Each

query indicates the origin and destination locations of the trip,

as well as time windows constraining when the passenger

wants to be picked up and dropped off. On receiving a new

query, the operation centre will dispatch an “appropriate” taxi

which is able to satisfy both the new query and the trips of

existing passengers who are already assigned to the taxi. The

updated schedules and routes will be then given to the

corresponding taxi driver and passengers.

In this study, we pursue a two-fold goal. The primary

purpose is to investigate the potential of taxi ridesharing in

serving more taxi ride queries by comparing with the case

where no ridesharing is conducted. Additionally, we try to

reduce the total travel distance of these taxis (so as to reduce

the energy consumption) when doing the ridesharing. The

second goal is to build a dynamic ridesharing service

applicable for the practical use, i.e. serving a large number of

queries quickly. We will show how we approach this goal by

applying a fast taxi searching algorithm and the lazy shortest

path calculation strategy.

To the best of our knowledge, our work is the first to

consider dynamic ridesharing for a large number of taxis. We

place our problem in a practical setting by exploiting a real

city road network and the enormous historical taxi trajectory

data. The contribution of this paper is multiple-dimensional:

 We propose a taxi searching algorithm and a scheduling

algorithm which together can quickly serve dynamic

queries while significantly reducing the total travel

distance of taxis in ridesharing. That is, these algorithms

promise a small query processing time; and at the same

time a large amount of energy and greenhouse gas

emission is saved.

 By exploiting the taxi trajectory dataset, we build an

experimental platform which can produce taxi ride
*1 The work was done when the first author was doing an internship in

Microsoft Research Asia under the supervision of the second author.

queries conforming to the real query distribution over

space and time. We believe that the platform is of great

value in many other related urban and transportation

computation problems such as traffic prediction.

 We perform extensive experiments to validate the

effectiveness of taxi ridesharing as well as the efficiency

and scalability of our proposed taxi ridesharing service.

According to the experimental results, the fraction of

queries that get satisfied is increased by 25% via

ridesharing when taxis are in high demand. Furthermore,

120 million liter of gasoline can be saved each year in

Beijing by taxis alone if ridesharing is allowed.

The rest of this paper is organized as follows. In Section II,

we formally define the dynamic taxi ridesharing problem and

overview our proposed service. Section III introduces the

spatio-temporal index of taxis. Section IV describes two

flavours of taxi searching algorithms. Section V describes the

scheduling module and the lazy shortest path calculation. We

present the evaluation in Section VI and summarize the

related work in Section VII.

II. OVERVIEW

A. Preliminaries

Definition 1 (Query) A query is a passenger’s request for

a taxi ride that is associated with a timestamp indicating

when the query is submitted, a pickup point , a delivery

point , a time window defining the time interval

when the passenger needs to be picked up at the pickup point,

and a time window defining the time interval when the

passenger needs to be dropped off at the delivery point. The

early and late bounds of a pickup window are denoted by

 and ; Likewise, and stand

for that of a delivery window.

For the sake of description simplicity, each query here only

represents one passenger. But our approach is readily applied

to the case where a query represents multiple passengers. In

practice, a passenger only needs to explicitly indicate and

 , as most information of a query can be automatically

obtained from a passenger’s mobile phone, e.g., and .

In addition, we assume that both and equals

to , and can be easily obtained by adding a fixed

value, e.g. 5 minutes, to .

Definition 2 (Schedule) A schedule is a temporally-

ordered sequence of pickup and delivery points of queries

 , ,…… such that for every query , =1,…n, either 1)

 precedes in the sequence, or 2) only exists in

the sequence.

It is clear from the definition that the schedule dynamically

changes over time. For example, a schedule involving 2

queries and could be at

a certain time. The schedule is updated to
 once the taxi has passed pickup point .

Definition 3 (Taxi Status) A taxi status represents the

instantaneous state of a taxi and is comprised of a taxi

identifier , a timestamp , a geographical location ,
the number of on-board passengers and a schedule .

Definition 4 (Satisfaction) Given a taxi status and a query

 , we say that satisfies if and only if (i) is smaller

than the seat capacity of the taxi; (ii) can pick up the

passenger of at no later than , and drop off her

at no later than ; (iii) can pick up and drop off

existing passengers in no later than the late bound of their

corresponding pickup and delivery time windows.

TABLE I summarizes a list of essential notations used

throughout the paper. (Some notations are introduced later.)

TABLE I A LIST OF NOTATIONS

Notation Definition

 A query for a taxi ride

 The birth time of query

 The pickup point of query

 The delivery point of query

 The pickup time window of query

 The delivery time window of query

 A taxi status

 The current schedule of taxi status

 The current location of taxi status

 A grid cell

 The anchor node of grid cell

 The taxi list of grid cell

 The temporally-ordered grid list of grid cell

 The spatially-ordered grid list of grid cell

B. The Dynamic Taxi Ridesharing Problem

In this study, we consider the dynamic taxi ridesharing

problem defined as follows: given a fixed number of taxis

traveling on a road network and a stream of queries (i.e. a

sequence of queries in ascending order of their birth time), we

aim to serve each query in the stream by dispatching the

taxi which satisfies with minimum additional incurred

travel distance on the road network.

The salient character of our problem definition lies in that

we aim to minimize the increased travel distance for each

individual query . This is obviously a greedy strategy and it

does not guarantee that the total travel distance of all taxis for

all queries is minimized. However, we still opt for this

definition due to two major reasons.

First, the dynamic taxi ridesharing problem inherently

resembles a greedy problem. In reality, taxi users usually

expect that their requests can be served immediately. Given

the rigid real-time context, the ridesharing service only has

information of currently available queries and thus can hardly

make optimized schedules based on a global scope, i.e. over a

long time span.

Second, the problem of minimizing the total travel distance

of all taxis for the whole query stream is NP-complete. We

prove this statement as follows. The problem of optimizing

travel distance for all taxis for the whole query stream,

denoted by Total Distance Optimization Taxi Ridesharing

Problem (TDOTRP), can be formalized as the following

decision problem: given a stream of queries a start time

(is the smallest value among the birth time of any query in

) and a set of taxi statuses at , a road network in

which each road segment is associated with a speed limit, a

number and a number , plan a schedule for

each taxi such that the total travel distance of all taxis is no

larger than and the fraction of satisfied queries is at least

precent. The TDOTRP is NP-complete because we can prove

that it is a generalization of the Travelling Salesman Problem

with Time Window (TSPTW), which has already been proved

to be NP-complete [19]. The input of a TSPTW instance

includes a start time , vertices {1, 2,..., n} in which vertex

1 is the depot vertex, the pair-wise distances between vertices

and a number . Each vertex is also associated with a

time window , where for all

 . The question is to find out whether or not there is

a cycle route of distance no larger than such that a

salesman can leave the depot, i.e. vertex 1 at , visit each

vertex () once within their corresponding time

window and return to the depot.

An instance of the TDOTRP ITDOTRP can be constructed

from an instance of the TSPTW problem ITSPTW by: (i) create

the road network of ITDOTRP using the vertex pair-wise distance

of ITSPTW; (ii) place one vacant taxi at vertex 1 and let the start

time ; (iii) create a query for each vertex such that

 , and , for

 ; In other words, every vertex () of

ITSPTW is considered as a dummy query of which the pickup

point (time window) coincides the delivery point (time

window) and the query is known a priori; (iv) let =100,

which means ITDOTRP needs to satisfy all the queries, and

 .
The above construction completes the proof that TDOTRP

is a generalization of TSPTW. Since TDOTRP is clearly in

NP, therefore, we have proved that TDOTRP is NP-

complete.□

C. Framework of the Dynamic Taxi Ridesharing Service

The framework of our dynamic taxi ridesharing service is

shown in Fig. 1. As depicted by the broken red arrows, a taxi

uploads its status (defined in Definition 3) to the operation

centre when joining in the ridesharing service, or when a

passenger gets on or off the taxi, or at a frequency (e.g., every

20 seconds) while connected to the service. The system

maintains spatio-temporal index of the taxis for the purpose of

fast user query processing. The index will be updated once a

new status of a taxi is received or a taxi’s route is re-scheduled

by the service.

A passenger submits a query (refer to Definition 1 for

details) to the system and receives a response from the

service. As demonstrated by the solid blue arrows, all

incoming queries of the system are streamed into a queue

and are processed according to the first-come-first-serve

principle. For each at the top of the query queue, the system

invokes the Taxi Searching module to search for a set of

candidate taxis which is likely to satisfy the query

based on the latest index. Given the result set , the

system invokes the Scheduling module to insert the query into

the schedule of a taxi in the set which satisfies with

minimum increase in travel distance. If the query is satisfied

(see Definition 4), the service (i) informs the passenger with

response (which is comprised of the ID of the taxi

scheduled to pick her up and the estimated pickup time); (ii)

sends (the new schedule) to the taxi, and updates the

spatio-temporal index accordingly. Otherwise, the response

 asks the passenger to modify the query or resubmit it later.

An early response may be sent to the passenger (as

illustrated by the blue dotted arrow) if the taxi searching

module returns an empty taxi set.

In addition, a pricing scheme is also designed to charge a

ridesharing passenger properly, providing taxi drivers with

more profit, and reducing the expense of each individual

passenger compared to a single-passenger ride.

Fig. 1 Framework of the dynamic taxi ridesharing service

III. INDEX

Remember that the taxi searching module aims to quickly

select a small set of taxis which is likely to satisfy the new

query with a small increase in travel distance. It is easy to see

that a necessary condition for a taxi to satisfy a query is that

the taxi needs to be able to pick up the passenger of on time,

i.e. before timestamp . This observation naturally

suggests us to look for taxis “near” the pickup point of .

From this point of view, this problem resembles the K Nearest

Neighbour (KNN) problem for moving objects [4] as both

problems are interested in finding moving objects in the

proximity of a static point. However, unlike in the KNN

problem where the number of returned objects is explicitly

determined by the given number , the number of taxis to be

retrieved here is not bounded by any fixed value but implicitly

decided by the temporal constraints of the query. In other

words, in this problem we need to use the query’s time

windows to filter out unsatisfactory taxis.

To achieve this goal, a straightforward approach as in

[3][15] is that, for each taxi we calculate the shortest path

between the current position of the taxi and the pickup point

of the new query and see if the corresponding travel time is

smaller than the available time, i.e. the difference between

current time and . Unfortunately, given the real-time

context, this approach is too time-consuming because the

Q

Taxi Searching

Scheduling Index Updating

Q=<t, o, wp , d, wd>;

Communication Interface

Spatio-Temporal

index of taxis
Q

R {V}

Ru

Rv Rv

R=Ru || Rv;

Service providing data flow Taxi status updating flow

V V

Rv

{Taxis}

V=real time pos

shortest path computation is expensive and the number of

taxis is huge. In other words, we want a taxi searching process

that is both fast and selects taxis wisely such that the selected

taxis can satisfy the query with a reasonable small increase in

travel distance over their existing schedules. The problem of

the straightforward approach lies in that it needs to calculate a

shortest path for each taxi, which is prohibitively expensive in

time. What if we use a pre-computed distance to approximate

the distance of the shortest path? Though the distance is not

exact anymore, the time-consuming problem completely goes

away. Inspired by this idea, we propose a spatio-temporal

index of taxis. In the rest of this section, we describe how the

index is built and updated.

We partition the road network using a grid. (Other spatial

indices such as R tree can be applied as well, but we envision

that the high dynamics of taxis will cause prohibitive cost for

maintaining such an index.) As shown in Fig. 2 A), within

each grid cell, we choose the road network node which is

closest to the geographical centre of the cell as the anchor

node of the cell (represented by a blue dot in Fig. 2 A). The

anchor node of a grid cell is thereafter denoted by . We

pre-compute the distance, denoted by , and travel time,

denoted by , of the shortest path on the road network for

each anchor node pair and . Quite a few advanced travel

time prediction techniques [25] (e.g., incorporating real time

traffic conditions) can be applied to estimate the travel time.

However, since the traffic prediction is not a focus of this

paper, we just use the speed limit of road segments to

calculate travel time for the sake of simplicity. The

distance and travel time results are saved in a matrix as shown

in Fig. 2 B). The matrix is thereafter referred to as the grid

distance matrix.

Fig. 2 Grid partitioned map and the grid distance matrix

Now imagine that each grid cell collapses to its anchor

node, that is, all the points in one cell fall to its anchor node.

Then the distance between any two arbitrary points equals to

the distance between two corresponding anchor nodes. In

other words, the grid distance matrix provides an

approximated distance of the road network shortest path

between any two geographical points at the grid cell level.

Using this approximated distance, we can completely avoid

the expensive shortest path calculation at the stage of taxi

searching.

Each cell has some internal data structure for the purpose of

taxi searching. Specifically, each grid cell maintains three

lists: a temporally-ordered grid cell list (
), a spatially-

ordered grid cell list (
), and a taxi list (, as

illustrated in Fig. 3 (here we only describe how to build the

lists and leave their usage in Sec. IV when we introduce the

taxi searching algorithms).

 is a list of other grid cells sorted in ascending order of

the travel time from these grid cells to (temporal closeness).

Likewise,
 is a list of other grid cells sorted in ascending

order of the travel distance to (spatial closeness). The

spatial and temporal closeness between each pair of grid cells

are measured by the values saved in the grid distance matrix

shown in Fig. 2 B). For example, measures the temporal

closeness from to , and measures the spatial

closeness from to .

These two grid cell lists are static. That is to say, they are

only computed once. It is worth mentioning that cells that are

neighbours in the grid may not be neighbours in a grid cell list

because the distance is measured in the road network instead

of a free space.

The taxi list of grid cell records the IDs of all taxis

which are scheduled to enter in near future (typically within

a temporal scope of one or two hours). Each taxi ID is also

tagged with a timestamp indicating when the taxi will enter

the grid cell. All taxis in the taxi list are sorted in ascending

order of the associated timestamp . is updated

dynamically. Specifically, taxi is removed from the list

when leaves ; taxi is inserted into the list when is

newly scheduled to enter . If taxis are tracked (see [20]),

when new GPS records are received from taxis, taxi lists need

to be updated. Specifically, when a new GPS record from is

received, denote by the current cell in which is located,

the timestamp associated with in the taxi list of cell and

cells to be passed by after need to be updated.

Fig. 3 Spatio-temporal index of taxis

IV. TAXI SEARCHING ALGORITHMS

A. Single-side Taxi Searching

Now we are ready to describe our first taxi searching

algorithm. For the sake of the clarity of description, please

consider the example shown in Fig. 4. Suppose there is a

query and the current time is . is the grid cell in

which is located. ’s temporally-ordered grid cell list

 is shown on the right of Fig. 4. is the first grid cell

selected by the algorithm. Any other arbitrary grid cell is

selected by the searching algorithm if and only if Eq. (1) holds,

Dij



 D01

D10

M =

D0n

D1n

Di1Di0

Dnj
Dn1Dn0

ci



g0 g1 gn

g0

g1

gn

cj

gi Din

gj

D0j

D1j

gi

gj

A) Grid-partitioned map B) Grid distance matrix

Dij = (tij , dij)

gi

g2

g7

gn

t2i

t7i

tni

Taxi2 :ta

Taxi7 :ta

Taxim :ta

earliest

latest

g7

g2

gn'

d7i

d2i

dn'i

nearest

furthest
spatial temporal

where represents the travel time from grid cell to grid

cell . Eq. (1) indicates that any taxi currently within grid

cell can enter before the late bound of the pickup

window using the travel time between the two grid cells (if we

assume that each grid cell collapses to its anchor node).

 (1)

To quickly find all grid cells that hold Eq. (1), the single-side

searching algorithm simply tests all grid cells in the order-

preserved list

 and finds the first grid cell which fails

to hold Eq. (1). Then all taxis in grid cells before in list

 are selected as candidate taxis.

Fig. 4 The single-side taxi searching algorithm

In Fig. 4, grid cell , and are selected by the

searching algorithm. Then for each selected grid cell , the

algorithm selects taxis (in) whose is no later than

 . For instance, Fig. 5 shows how taxis are

selected from grid cell and .

 Fig. 5 Choose taxis from the selected grid cells

The taxi which can satisfy with the smallest increase in

travel distance must be included in one of the selected grid

cells (under the assumption that each grid cell collapses).

Unfortunately, this algorithm only considers taxis currently

“near” the pickup point of a query (thus called single-side

search). As the number of selected grid cells could be large,

this algorithm may result in many taxis retrieved for the later

scheduling module (therefore increasing the entire

computation cost), which is certainly not desirable for a rigid

real-time application like taxi ridesharing. Actually, the

spatiotemporal factor on the delivery point of queries also

provides us with opportunities to reduce the number of grid

cells to be selected. Along this idea, we propose a dual-side

searching algorithm as an effort for striking a balance between

the distance optimality and the computation cost.

B. Dual-Side Taxi Searching

At its core, the dual-side searching is a bi-directional

searching process which selects grid cells and taxis from the

origin side and the destination side of a query simultaneously.

To dive into the details of the algorithm, consider the query

illustrated in Fig. 6 where and are the grid cells in

which and are located respectively. Squares filled

with stripes indicate the possible grid cells searched by the

dual-side searching algorithm at side. They are

determined by the temporal closeness between a query and

taxis (Refer to Eq. 1 for details). The red number in each such

grid cell indicates its relative position in the spatially-ordered

grid list of . Squares filled with dots indicate the grid cells

accessed by the dual-side searching algorithm at side.

Any grid cell other than is selected by the searching

algorithm at side if and only if Eq. (2) holds, which

means that any taxi currently in can enter before the late

bound of the delivery window (assumes that grid cells

collapse).

 (2)

Fig. 6 Overview of the dual-side taxi searching algorithm

Similar to finding all grid cells in which Eq. (1) holds, all

grid cells in which Eq. (2) holds can be quickly determined by

scanning the temporally-ordered grid list
 in order. All

grid cells within the searching boundary at side are then

considered. Fig. 6 shows is the only satisfying cell in this

example.

Fig. 7 further illustrates the dual-side searching algorithm

step by step. The algorithm maintains a set and a set to

store the taxis selected from and side respectively.

Initially, both and are empty. The first step in the

searching is to add the taxis selected from taxi list to set

 as depicted in Fig. 7 A), and add the taxis selected from

taxi list to set , as depicted in Fig. 7 B). Then the

algorithm calculates the intersection of and . If the

intersection is not empty, the algorithm stops immediately and

returns the intersection set. Otherwise, it expands the

searching area by including one other grid cell at each side at

a time.

To select next cells, we use the following heuristic: for a

taxi , the closer some cell to be passed by is to and the

closer some cell to be passed by is to (measured in the

distance between the anchor nodes of the cells), the smaller

g7

O

Grid cells within the searching boundary of pickup point Q.o

g5

g3

g9

g7

g3

g5

gn

nearest

furthest

g9

1

2

3

T
em

p
o
ra

l
C

lo
se

n
es

s

g3

Taxi5

Taxi8

Taxiy

earliest

latest

Q.wp.l-t37

tcur

Selected Taxies

g7

Taxi2

Taxi7

Taxix

earliest

latest

Q.wp.l

tcur

Selected Taxies

2

All grid cells within the

searching boundary of Q.o

4

g3

g9

g6

All grid cells within the

searching boundary of Q.d

g5 2

1 2
3

Grid cell’s index in the corresponding spatially-ordered grid list

1

g7

g3

g9

nearest

furthest

S
p
at

ia
l

C
lo

se
n
es

s

g8

g8

g5

gn

O

g7

D

g2

g2

g1

g6

gm

nearest

furthest

S
p
at

ia
l

C
lo

se
n
es

s

4

g1

the ’s scheduled travel distance increases after insertion of

the query. Thus, for the purpose of minimizing the increased

travel distance, the next grid cell included at side is

chosen as the next element in the spatially-ordered grid list

 which holds Eq. (1). Similarly, the next grid cell

included at side is always chosen as the next element in

the spatially-ordered grid list
 which holds Eq. (2).

In this example, since the intersection of and

produces an empty set, the algorithm expands at side to

include (indicated by the broken red rectangle) and adds

taxis selected from as depicted in Fig. 7 C). At side,

the algorithm covers and adds taxis as indicated in Fig. 7

D).

Fig. 7 Calculation of the taxi set in the dual-side searching

Unfortunately, the intersection set of and remains

empty. Consequently, the algorithm continues to expand the

searching area at both sides. Thus, is selected at side;

but no grid cell can be further included at the side. After

adding the taxis selected from into set as shown in

Fig. 7 E), we finally find and as the

intersection between and . So the searching algorithm

terminates.

The pseudo code of the dual-side searching is presented in

Algorithm 1. The dual-side searching algorithm may not

always find the taxi with the minimum travel distance increase

for a query. However, as a compensation for the small loss in

distance optimality, the algorithm selects far fewer taxis for

the following scheduling module, therefore reducing the

computation cost. We found in the experiments that the

number of selected taxis is reduced by 50% while the increase

in travel distance is just 1% over the single-side search

algorithm.

V. SCHEDULING MODULE

Given the set of taxi statuses retrieved for a query

 by the taxi searching algorithm, the purpose of the

scheduling module is to insert into the schedule of the taxi

which satisfies with minimum additional travel distance. In

the rest of this section, Part A describes how to insert a query

 into the schedule of a taxi status , and Part B introduces

the lazy shortest path calculation strategy, which is used to

speed up the computation involved in the scheduling.

A. Insertion Feasibility Check

Given a new query and a taxi status , consider how to

determine whether or not can be inserted into and how

to perform the insertion if appropriate. As in [8][16], here we

assume that the order of points in the current schedule remains

intact when inserting a new query to the schedule. Then at a

high logical level, the insertion can be separated into two

stages: (i) insert the pickup point of the query ; (ii) insert

the delivery point of the query . For example, Fig. 8

shows one possible way to insert query into schedule

 . Among all possible ways of

insertion, the system chooses the insertion way that minimally

increases the travel distance. So the scheduling module is thus

able to choose the taxi out of the taxi status set
which incurs the minimum increase in travel distance.

Fig. 8 One possible insertion of a query into a schedule

For each insertion possibility (uniquely identified by the

position and at which and is inserted into the

schedule), the system uses Algorithm 2 to evaluate its

feasibility. We refer to each such invocation of Algorithm 2 as

an insertion feasibility check. For instance, consider the

g7

Taxi2

Taxix latest

tcur

earliest

Taxi7

Q.wp.l

g3 g9 g5

Taxi2

Taxi7

So

g6 g2

Taxi3

Taxim
latest

tcur
earliest

Taxi11

Taxi3

Taxi11

Sd

Step 1: So ∩ Sd = {}

g7 g2

Taxi10
Q.wd.l

g3

Taxi5

Taxiy latest

tcur

earliest

Taxi8

Q.wp.l-t37

g3 g9 g5

Taxi2

Taxi7 So

g6 g6

Taxi10

Taxin latest

tcur
earliest

Taxi21

Taxi3

Taxi11 Sd

Step 2: So ∩ Sd = {}

g7 g2

Taxi10

Q.wd.l-t62

Taxi5

Taxi8 Taxi17
Taxi21

Taxi17

g9

Taxi7

Taxiz
latest

tcur

earliest

Taxi10

Q.wp.l-t97

g9 g5

Taxi2

Taxi7

So

Taxi3

Taxi11 Sd

Step 3: So ∩ Sd = {Taxi10 , Taxi17}

g7 g2

Taxi10
Taxi5

Taxi8 Taxi21

Taxi17

g6g3

Taxi17 Taxi10

Taxi17

A) B)

D)C)

E) F)

Original schedule One possible way to insert a new

query Q into the original schedule
leg1 leg2

leg3 leg4

Q.o

Q.dQ2.o Q1.d

Q2.d

Points for slack time checkPoints for time window check

example shown in Fig. 8. To insert immediately after

point , the algorithm first checks whether the

corresponding taxi is able to arrive at before . If

not, then the insertion fails. Otherwise, the algorithm then

computes the travel time delay due to the insertion of

using Eq. (3), where → denotes the estimated dynamic travel

time (e.g. using the technique proposed in [25]) of the

quickest path from one location to another location, and

represents the time spent waiting for the passenger if the taxi

arrives early, i.e. ahead of .

 ((((3)

If the time delay results the late arrival at any point after

 in the original schedule, then the insertion fails. For this

purpose, we introduce the notion of slack time. Denote by

and the projected arrival time at the pickup point and

the delivery point . Then the slack time at and ,

denoted by (and (respectively, is calculated by

Eq. (4) and Eq. (5).

 ((4)

 ((5)

Thus, we can use the slack time as the shortcut to check

whether the delay due to an insertion destroys the timely

arrivals at any subsequent point in the schedule. As depicted

in Fig. 8, points with grey background should be examined for

the slack time check after the insertion of . That is, if

 ((, then the insertion fails. If

is inserted successfully, the system proceeds to insert in a

similar way. The increased travel distance is calculated when

both and are inserted successfully.

Now let us consider the computation cost of the scheduling

module. For each schedule composed of points, there

are at positions to insert the pickup point and

 positions to insert the delivery point into ,

given that is the position at which is inserted. That is to

say, there are (possible ways of insertion in total. And

for each possible way of insertion, shortest path calculation is

invoked as many as four times, as depicted in Fig. 8 where

each labelled leg represents one shortest path calculation.

Unfortunately, the cost of shortest path calculation is

expensive in a real-time application like the dynamic taxi

ridesharing studied here. Thus, accelerating the execution of

the insertion feasibility check is critical to the scalability of

the system.

Some existing work considers ignoring some insertion

possibilities. For instance, [16] suggests two alternative

insertion strategies. One strategy is only checking the

insertion ways in which the query is inserted at the beginning

of the schedule. That is, the system always requires the taxi to

reroute for the pickup point of the new query right away. If

the insertion fails, the taxi is no longer considered. Another

strategy is to apply the optimization function to both stages of

the insertion. For example, the pickup point is inserted as so to

increase the travel distance minimally. When the delivery

point is inserted, no other position for the pickup point will be

considered. Though these strategies speed up the insertion

process, it is not clear how much the quality of the chosen

insertion will deteriorate. Thus we aim to expedite the

insertion process by speeding up the calculation itself instead

of eliminating some insertion possibilities.

B. Lazy Shortest Path Calculation Strategy

In this part, we propose a lazy shortest path calculation

strategy that leverages the pre-computed grid distance matrix,

the triangle inequality and caching to speed up the feasibility

check process. The essence of the proposed strategy is to

delay the shortest path calculation until the calculation is

needed.

Recall that the road network is partitioned into grid cells.

Whenever the insertion feasibility check is invoked, the

calculation of shortest path is deferred or avoided by the

following logic: if the shortest path between the origin

location and the destination location has been previously

calculated, then the algorithm simply retrieves the path from

the cached results; otherwise, instead of directly calculating

the shortest path, the algorithm first calculates the lower

bound of the travel time between and using the pre-

computed travel time between grid cells and the triangle

inequality. For example, consider a taxi currently at point

and a new query with pickup point at . Denote by and

the grid cell in which and are located respectively. By

applying the triangle inequality, we have Eq. (6), where →

denotes the estimated dynamic travel time from one location

to another location.

 (((6)

Since is pre-computed, and (and (are

usually easy to calculate as the origin and destination pair is

confined within one grid cell, the lower bound of can be

obtained instantaneously. Given the lower bound, the

feasibility of an insertion may be determined much quicker. If

the time window constraint cannot be satisfied even for the

lower bound of the shortest path, then the insertion way must

be infeasible. Only when the lower bound does not violate

time constraints, the algorithm needs to proceed to compute

the shortest-time path between points and . Clearly, the

lower bound delays the shortest path calculation until the time

when the calculation is absolutely needed. In addition, state-

of-art shortest path algorithms, e.g. [10], can be applied to

speed up on-line shortest path calculations.

It is evident that the grid size will affect the effectiveness of

lazy shortest path calculation strategy. On one hand, if the

granularity of the grid is too coarse, i.e. each grid cell is too

large, the routing within a grid cell will be expensive, which

defeats the primary purpose of the lazy strategy; on the other

hand, if the granularity of grid is too fine, i.e. each grid cell is

too small, the cost of updating the taxi list of the grid cells, i.e.

updating the timestamps when taxis are going to enter the

cells, will be high.

C. Pricing Scheme

As our goal in this study is to propose a complete practical

taxi ridesharing service, we provide a simple yet effective

pricing scheme. We believe that it is reasonable to assume

following properties for a pricing scheme: (i) taxi fare per

mile is higher for multiple passengers than for a single

passenger; (ii) the taxi fare of shared distances is evenly split

among the riding passengers; as a result, the more people

share a ride, the lesser each individual pays for the ride.

Based on these two properties, we propose the following

pricing scheme. Denote by p the regular taxi fare per mile.

Let (be the fare inflating parameter, that is, the taxi

fare per shared mile is (. The taxi fare for shared

miles is evenly split among all passengers involved.

Consequently, the taxi fare for each passenger is likely to be

reduced if she shares a certain distance during the trip. The

taxi fare of each passenger can be then automatically

calculated by Eq. (7), where is the travel distance shared

by passengers, and is the capacity of the taxi.

 (
 (⁄ (7)

On the other hand, the total fare for all taxi drivers is

calculated by Eq. (8), where is the total travelled distance

that is not shared and is the total travelled distance that is

shared. We will examine the appropriate value for to make

ridesharing profitable for taxi drivers.

 (((8)

VI. EVALUATION

A. Setting

1) Dataset

Road networks: We perform the experiments using the real

road network of Beijing, which contains 106,579 road nodes

and 141,380 road segments.

Taxi Trajectories: The taxi trajectory dataset contains the GPS

trajectory recorded by over 33,000 taxis during a period of 87

days spanning from March to May in the year of 2011. Each

of 87 days has a single file contains all the trajectories

recorded during the day. The total distance of the dataset is

more than 400 million kilometres and the number of points

reaches 790 million. After trip segmentation, there are in total

20 million trips, among which 46% are occupied trips and 54%

are non-occupied trips. We map each occupied trip to the road

network of Beijing using the map-matching algorithm

proposed in [24]. Each trip then can be viewed as a query with

windows size equals to 0. Fig. 9 shows the distribution of

pickup and delivery points of the queries in the dataset over

road segments in a day. It is clear that queries are distributed

sparsely over the road network.

A) Pickup points B) Delivery points

Fig. 9 Distribution of queries over road segments

2) Experimental Platform

The historical trajectory dataset conceals rich information

regarding 1) the distribution of the queries on the road

network over time of day, and 2) the mobility patterns of the

taxis. In order to validate our proposed service under practical

settings, we mine the trajectory dataset to build an

experimental platform, which generates a realistic query

stream and initial taxi statuses for our experiments. We

envision that this platform can be applied to many other

relevant urban and transportation computation problems.

Query Stream: The goal is to generate dynamic queries that

are as realistic as possible. For this purpose, we first discretise

one day into small time bins, denoted by and denote all

road segments by . We assign all historical queries into time

bins based on the birth time of queries. Assume that the

arrivals of queries on each road segment approximately follow

a Poisson distribution during time frame , where each frame

has a fixed length spanning time bins. Thus, we can learn

 , i.e. the parameter of the Poisson distribution for road

segment during time frame . Specifically, for each road

segment , we count the number of queries that originated

from within time frame , denoted by , and learn the

distribution of the destination road segment of these queries,

denoted by . Then we calculate based on using Eq.

(9) and generate a query stream that follows a Poisson process

with parameter .

 (9)

For each query generated in frame with the origin road

segment being , the destination road segment is generated

according to the distribution . and equals

to , i.e. the birth time of the query. is calculated by

applying a fixed window size. equals to the sum of

5 10 15 20 25 30
0

1500

3000

4500

6000

7500

#
 o

f
ro

a
d

 s
e
g

m
e
n

ts

of queries originated on the road segment in a day
5 10 15

0

3000

6000

9000

12000

15000

18000

#
 o

f
ro

a
d
 s

e
g

m
e
n

ts

of queries destined on the road segment in a day

the late bound of the pickup time window and the average

travel time between the origin and destination pair learned

from the GPS trajectory dataset.

Note that the taxi GPS trajectory dataset only reveals the

number of queries that got served. In reality there are also

many queries unsatisfied and disappeared due to the shortage

of taxis. In order to take such queries into consideration, we

introduce a system parameter , which stands for the ratio of

the actual total number of queries to the number of queries

extracted from the historical data. The inflated number of

queries therefore equals to the number of queries extracted

from the trajectory dataset multiplying . We refer to as the

query inflation multiplier thereafter. Fig. 10 shows how the

inflated number and the extracted number of queries fluctuate

during a day (the time frame is 1 hour and =2 in the figure).

Fig. 10 Inflated and extracted number of queries during a day

Initial Taxi Statuses: To keep the characteristics of the

realistic scenario, we use the real taxi statuses by slicing the

historical trajectories at a certain timestamp. Specifically, we

select a date and choose a particular second of day as the

timestamp when the experiment starts, denote it by . We

scan all the GPS records of the selected date to determine the

initial states of taxis. A taxi status is set to be occupied if it

is recorded occupied crossing timestamp .The initial

schedule of can be initialized according to the record. A taxi

 is set to be vacant if it is recorded vacant both just before

and right after . The concept of “just before” and “right after”

is controlled by a temporal parameter, which is set to be 2

minute. All remaining taxis are then considered as not

recorded and thus not used in the simulation.

According to the setting mentioned above, we built a

prototype system whose screenshot is shown in Fig. 11. The

red polyline stands for the route that has been traversed in a

schedule, the green part for the route to be travelled, and a

person pin aligned with a “+” and “-” symbol for the pickup

and delivery point of a query, respectively.

Fig. 11 A screenshot of T-Share prototype showing the route of a taxi

3) Framework

The set of queries and initial states used in all validation

experiments are generated with parameters listed in TABLE II.

We first conduct experiments comparing the performance

of the non-ridesharing method and different dynamic

ridesharing methods (described soon) by varying the value of

 . We also evaluate and analyse the efficiency and scalability

of the ridesharing service by comparing competing

ridesharing methods. Then we verify the benefit of the lazy

shortest path calculation strategy in reducing computation cost,

given different grid sizes. Finally, we investigate how the

profit of taxi drivers affected under the proposed pricing

scheme.

TABLE II PARAMETER SETTING FOR QUERY GENERATION

Notation Definition Value

 The start time of simulation 9 am

 The end time of simulation 9:30 am

 The number of taxis 2,980

 The pickup window size 5 minute

 (The length of a time bin 5 minute

 The # of time bins in a frame 12

4) Measurements

The performance of the ridesharing service is evaluated by

following measures.

Relative Distance Rate (RDR): Define the distance of a query

 as the distance between its pickup point and its

delivery point . Denote by the sum of distances of

queries that get satisfied and by the total distance travelled

by all taxis in the ridesharing. RDR is calculated by Eq. (10).

 (10)

RDR evaluates the effectiveness of ridesharing by measuring

how much distance is saved compared to the case where no

ridesharing is practiced.

Satisfaction Rate (SR): is the fraction of queries get satisfied

in the ridesharing (exclude queries that are already served by

taxis at the initial state in the query counting). SR is a crucial

criterion measuring the effectiveness of the ridesharing system.

Number of Road Nodes Accessed Per Query (#RNAPQ): is the

number of accessed road network nodes per query.

Number of Grid Cells Accessed Per Query (#GCAPQ): is the

number of accessed grid cells per query.

Number of Taxis Accessed Per Query (#TAPQ): This

measurement records how many taxis per query are accessed

for insertion feasibility checks by the scheduling module.

RNAPQ, GCAPQ, TAPQ are indicators for computation cost

of the system since the majority on-line computation is done

in the scheduling.

5) Competing Methods

We compare the performance of one non-ridesharing

method and four flavours of our proposed ridesharing method.

0 5 10 15 20
0K

10K

20K

30K

40K

50K

60K

Q

ue
ry

hour of day

 extracted

 2-inflated

The Non-Ridesharing method (NR) forbids ridesharing and

assumes that when a taxi becomes vacant, it moves towards

the passenger that it can pick up at the earliest time among all

queries it can satisfy. Since the scheduling is done by the

central server, there is no need to worry about the competition

between taxis.

We create four flavours of ridesharing method based on

two choices, i.e. one choice made in the taxi searching step

and the other choice made in the scheduling step. Specifically,

a ridesharing method is said to be dual-side if the dual-side

algorithm is used in the taxi searching step; otherwise, it is

said to be single-side if the single-side algorithm is used. A

ridesharing method is said to be best-fit if the scheduling

module tries all taxis in result set returned by the taxi

searching algorithm; otherwise, it is said to be first-fit if the

scheduling module terminates immediately once it finds a taxi

satisfying the query. Because the two choices can be made

independently, we get the following 4 ridesharing methods:

Single-side and First Fit Ridesharing (SF), Single-side and

Best-fit Ridesharing (SB), Dual-side and First Fit Ridesharing

(DF), Dual-side and Best-fit Ridesharing (DB).

B. Experiment Results

1) Effectiveness of the Ridesharing Service: We compare the

satisfaction rate and the relative distance rate for ridesharing

methods by varying the value of query inflation multiplier .

Meanwhile the road network is divided into 30*30 cells.

Fig. 12 Satisfaction rate vs. query inflation multiplier

As Fig. 12 shows, all ridesharing methods have a

considerably higher satisfaction rate (about 25% higher on

average) than the NR method for all delta values. The

difference between ridesharing methods on the satisfaction

rate is insignificant as no particular technique is proposed for

optimizing the satisfaction rate.

Fig. 13 Relative Distance Rate vs. query inflation multiplier

Fig. 13 shows how RDR changes over Δ for different

ridesharing methods. RDR steadily drops as the delta value

increases. This is likely because the taxi ridesharing

opportunities surge as the number of queries increases. The SB

ridesharing method outperforms other methods, since SB

reduces the travel distance increment the most. The DB

method slightly trails the SB method as its taxi searching step

explores fewer grid cells and taxis. In comparison, the two

first-fit methods show a higher relative distance rate,

especially when delta is small.

From the picture, we can see that ridesharing methods save

up to 13% in travel distance, depending on delta. Given the

fact that there are 67,000 taxis in Beijing and each taxi runs

480 km per day (learned from the dataset), the saving

achieved by ridesharing here means over 1.6 billion

kilometres in distance per year, which equals to 120 million

liter of gas per year (supposing a taxi consumes 8 liter

gasoline per 100km) and 2.3 million of carbon dioxide

emission per year (supposing each liter of gas consumption

generates 2.3 kg carbon dioxide).

2) Scalability and Efficiency of the Ridesharing Service: We

evaluate the scalability of the proposed ridesharing service by

examining how the computation cost changes as the number

of queries increases. The computation cost is measured by the

average number of nodes (grid cells or road nodes) the

system accesses for each query.

The three sub-graphs of Fig. 14 show the number of grid

cells accessed per query, the number of road nodes accessed

per query, and the number of taxis accessed per query for

different ridesharing methods under various delta values. It is

clear from the pictures that all ridesharing methods do not

show sharp increase in computation cost as increases.

It is also obvious that the computation cost of the DB

ridesharing method is significantly smaller than that of the SB

method, actually even smaller than that of the SF method

sometimes. The result of Fig. 13 and Fig. 14 together validate

our motivation for the dual-side taxi searching algorithm. That

is, the dual-side searching indeed incurs a small increase in

travel distance, in exchange for the significant decrease in

computation cost.

3) Effectiveness of the Lazy Shortest Path Calculation

Strategy: In this experiment, we validate effectiveness of the

lazy shortest path calculation strategy in reducing the

computation cost of the system as the grid size varies for Δ =

2. Fig. 15 shows how the number of road nodes accessed per

query is changed for the DB ridesharing method with and

without applying the lazy strategy. In both cases, previous

calculated shortest path results are cached to avoid

unnecessary repeated computation. Not surprisingly, the

computation cost of the DB method is decreased by 83% on

average when the lazy strategy is applied.

4) Pricing scheme: By applying Eq. (8), we compare the total

profit of all taxi drivers with and without ridesharing.

Fig. 16, A) and B) show the ratio of the profit with ridesharing

compared to the profit without ridesharing, when the fare

inflating ratio equals 0.5 and 0.8 respectively. It is clear

from the figures that all ridesharing methods make more profit

than where no ridesharing is allowed. This result suggests that

ridesharing can provide monetary incentives to drivers.

1 2 3 4 5 6

10%

20%

30%

40%

50%

60%

S
at

is
fa

ct
io

n
R

at
e

delta

 SF

 SB

 DF

 DB

 NR

1 2 3 4 5 6

88%

90%

92%

94%

96%

98%

100%

102%

104%

R
el

at
iv

e
D

is
ta

n
ce

 R
at

e

delta

 SF

 SB

 DF

 DB

 NR

 A) #GCAPQ vs. delta B) #RNAPQ vs. delta C) #TAPQ vs. delta

 Fig. 14 Computation cost vs. query inflation multiplier

 Fig. 15 Effectiveness of the lazy shortest A) α=0.5 B) α=0.8

 path calculation strategy Fig. 16 Profit ratio for ridesharing methods

VII. RELATED WORK

We study three categories of related works, positioning

our work in the research community.

A. Taxi Recommender and Dispatching Systems

Quite a few recommender systems have been proposed for

improving an individual taxi driver’s income and reducing

unnecessary cruising. Based on historical taxi trajectories,

Yuan and Zheng et al. [23][24] proposed a system that

suggests some parking places for an individual taxi driver

towards which they can find passengers quickly and maximize

the profit of the next trip. Similarly, Ge et. al [14] suggests a

sequence of pickup points for a taxi driver. While these

systems are only designed from the perspective of taxi drivers,

our service considers the needs of both taxi drivers and users.

Taxi dispatching services [22][18] usually send a taxi close

to a passenger as per the passenger’s call without considering

ridesharing. Consequently, only vacant taxis need to be

examined for each dispatch, which can be easily retrieved by

answering a range query. In our case, each taxi that is

occupied under full capacity needs to be considered. This

complication introduces new challenges. Our work is also an

example of urban computing [25], where a series of research

work has been done with taxi trajectories.

B. Recurring Ridesharing

Recurring ridesharing deals with routine commutes. There

are already existing websites and mobile applications for this

purpose, such as Avego. Given the usual small size of the

problem, researchers are able to solve it optimally by using

linear programming techniques [6][2]. Compared to recurring

ridesharing where queries are static, i.e., routes and time

schedules are known in advance, the dynamic taxi ridesharing

problem we studied here is more challenging, as queries are

generated in real time and the routes of taxis change

continuously.

C. Dial-A-Ride Problem

The taxi ridesharing problem can be viewed as a special

member of the general class of the Dial-a-Ride Problem

(DARP) [1], a.k.a. Vehicle Routing Problem with Time

Windows [11]. DARP is essentially a constraint satisfaction

problem, i.e., planning schedules for vehicles, subject to the

time constraints on pickup and delivery events. The DARP is

originated from and has been studied in various transport

scenarios, notably goods transport [13], paratransit for

handicapped and elderly personnel [3], etc. To the best of our

knowledge, this work is the first to consider the DARP in the

taxi ridesharing setting with dynamic queries.

Existing works on the DARP have primarily focused on the

the static DARP, where all customer queries are known a

priori. Since the general DARP is NP-hard [15], only small

instances (involving only a few cars and dozens of queries)

can be solved optimally (often by resorting to integer

programming techniques, see [9][17]). Large static DARP

instances are usually solved by using the two-phase

scheduling strategy [5][8] with heuristics. Specifically, in

phase I, queries are clustered and each cluster is assigned to a

vehicle, i.e. forms an initial schedule. In phase II, queries are

swapped among initial schedules of vehicles using heuristics.

Considerably less research has been carried out on the

dynamic DARP, where customer queries are generated on the

fly. Previous few works on the dynamic DARP problem

[7][1][16] continue to adapt the two-phase scheduling strategy.

As a result of dynamic queries, the two phase strategy now

needs to be applied to each single query instead of the whole

query pool as done in the static DARP. Particularly, phase I

needs to select a taxi for a given query instead of clustering

queries. In this sense, our approach resembles the phase I.

Existing approaches to phase I in literature have been

1 2 3 4 5 6

30

45

60

75

90

#
 G

ri
d

 C
el

ls
 A

cc
es

se
d

 P
er

 Q
u
er

y

delta

 SF

 SB

 DF

 DB

1 2 3 4 5 6

10K

20K

30K

40K

50K

60K

#
 R

o
ad

 N
o
d
es

 A
cc

es
se

d
 P

er
 Q

u
er

y

delta

 SF

 SB

 DF

 DB

1 2 3 4 5 6

5

10

15

20

#
T

ax
i

A
cc

es
se

d
 P

er
 Q

u
er

y

delta

 SF

 SB

 DF

 DB

15*15 20*20 25*25 30*30
0K

50K

100K

150K

200K

#
 R

o
ad

 N
o
d
es

 A
cc

es
se

d
 P

er
 Q

u
er

y

Grid Size

 w/o lazy strategy

 with lazy strategy

1 2 3 4 5 6
1.04

1.06

1.08

1.10

P
ro

fi
t

R
at

io

delta

 SF

 SB

 DF

 DB

1 2 3 4 5 6
1.05

1.10

1.15

1.20

P
ro

fi
t
R

a
ti
o

delta

 SF

 SB

 DF

 DB

discussed and compared with our approach at the beginning of

Section IV. In addition, we believe that phase II is no longer

suitable for a practical real-time taxi ridesharing service. The

reason is that once a query is scheduled, the information of the

dispatched taxi will be provided to the passenger. Swapping

already scheduled, but not yet executed queries (i.e.

passengers of the query not picked up yet) among taxis is

likely to perplex passengers and severely damage the user

experience of the ridesharing service.

VIII. CONCLUSIONS

This paper proposes a practical large-scale taxi ridesharing

service. We evaluated our service based on a GPS trajectory

dataset generated by 33,000 taxis over 3 months, in which

over 10 million queries were extracted. Based on this data, we

implemented a T-Share prototype system. The experimental

results demonstrated the effectiveness and efficiency of our

system in serving dynamic queries. Firstly, our service can

enhance the delivery capability of taxis in a city so as to

satisfy the commute of more people. For instance, when the

ratio between the number of taxi queries and the number of

taxis is 6, our service served additional 25% taxi users than no

ridesharing. Secondly, compared with the taxi system sending

passengers individually, our ridesharing service saves the total

travel distance of taxis when delivering passengers, e.g., our

approach saved 13% travel distance with the same ratio

mentioned above. Supposing a taxi consumes 8 liters of

gasoline per 100km, and given the fact learned from the real

trajectory dataset that the average travel distance of a taxi in a

day (in Beijing) is about 480km, our service can save over 120

million liter of gasoline per year (worth about 160 million

dollar). Thirdly, our service can also save the expense of a taxi

user, while increasing the profit of a taxi driver. Using the

pricing scheme designed (when =0.8), taxi drivers can

increase their profit by 19% on average over no ridesharing.

In addition, the experimental results justified the importance

of the dual-side searching algorithm and the lazy shortest path

calculation strategy. Compared to the single-side taxi

searching algorithm, the dual-side taxi searching algorithm

reduced the computation cost by over 50%, while the increase

in travel distance was only about 1% on average. The

computation cost was reduced by 83% if the lazy strategy is

applied. On average, our service can answer a user query in

5ms even on a single machine, i.e., it can serve 720k queries

per hour.

In the future, we will incorporate advanced travel time

estimation techniques to improve the prediction of taxi travel

time. We will also schedule queries that arrive within a small

time interval in batch mode, to further optimize the total travel

distance in ridesharing.

REFERENCES

[1] A Attanasio, J. F. Cordeau, G Ghiani, and G Laporte, “Parallel tabu

search heuristics for the dynamic multi-vehicle dial-a-ride problem,”
Parallel Computing, vol. 30, pp. 377-387, March 2004.

[2] R. Baldacci, V. Maniezzo, and A. Mingozzi, “An Exact Method for the

Car Pooling Problem Based on Lagrangean Column Generation,”
Operation Research, INFORMS, vol. 52, pp. 422-439, 2004.

[3] A. Beaudry, G. Laporte, T. Melo, and S. Nickel, “Dynamic

transportation of patients in hospitals,” OR Spectrum, 2010.
[4] Rimantas Benetis, S. Jensen, Gytis Karciauskas, and Simonas Saltenis,

“Nearest and reverse nearest neighbor queries for moving objects”, The

VLDB Journal 15, 3, pp. 229-249, 2006.
[5] R. W. Calvo, and A. Colorni, “An effective and fast heuristic for the

dial-a-ride problem,” 4OR: A Quarterly Journal of Operations

Research, vol. 5, pp. 61–73, 2007.
[6] R. W. Calvo, F. de Luigi, P. Haastrup, and V. Maniezzo, “A distributed

geographic information system for the daily carpooling problem,”

Computer Operation Research, Elsevier Science Ltd., 2004.
[7] A. Colorni, and G. Righini, “Modeling and optimizing dynamic dial-a-

ride problems,” International Transactions in Operational Research,

vol. 8, pp. 155–166, 2001.
[8] J. F. Cordeau, and Gilbert Laporte, “A tabu search heuristic for the

static multi-vehicle dial-a-ride problem,” Transportation Research

Part B: Methodological, vol. 37, pp. 579-594, July 2003.
[9] J. F. Cordeau, “A branch-and-cut algorithm for the dial-a-ride problem,”

Operation Research, vol. 54, pp. 573–586, 2006.

[10] D. Delling, A. V. Goldberg, R. F. Werneck. Faster Batched Shortest
Paths in Road Networks. ATMOS, vol.20, page 52-63, Germany, 2011.

[11] M. Desrochers, J. Lenstra, M. Savelsbergh, and F. Soumis, “Vehicle

routing with time windows: optimization and approximation,” Vehicle
Routing: Methods and Studies, Amsterdam, pp. 65–84, 1988.

[12] P. d’Orey, R. Fernandes, M. F. Empirical evaluation of a dynamic and

distributed taxi-sharing system. In IEEE Conf. on Intelligent
Transportation Systems, vol. 1, September, 2010.

[13] Y. Dumas, J Desrosiers, and F Soumis, “The pickup and delivery
problem with time windows,” European Journal of Operational

Research, Elsevier, vol. 54, pp.7-22, September, 1991.

[14] Y. Ge, H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. Pazzani,
“An energy-efficient mobile recommender system,” In KDD 2010.

[15] P. Healy, and R Moll, “A new extension of local search applied to the

Dial-A-Ride Problem,” European Journal of Operational Research,
vol. 83, pp. 83-104, May 1995.

[16] M. Horn, “Fleet scheduling and dispatching for demand-responsive

passenger services,” Transportation Research Part C: Emerging
Technologies, vol. 10, pp. 35-63, February 2002.

[17] L. M. Hvattum, A Løkketangen, and G Laporte, “A branch-and-regret

heuristic for stochastic and dynamic vehicle routing problems”,
Networks, vol. 49, pp. 330–340, 2007.

[18] J. L. Lu, M.Y. Yeh, Y. C. Hsu, S. N. Yang, C. H. Gan, M. S. Chen,

"Operating Electric Taxi Fleets: A New Dispatching Strategy with
Charging Plans," In Proc. of IEVC-2012.

[19] M. W. P. Savelsbergh. Local search in routing problems with time

Windows. Annals of Operations Research, vol. 4, pages 285–305, 1985.
[20] O. Wolfson, P. Sistla, B. Xu, J. Zhou, S. Chamberlain, Y. Yesha, N.

Rishe, “Tracking moving objects using database technology in

DOMINO”, Proc. of NGITS, 1999.
[21] Z. Xiang, C. Chu, and H. Chen, “A fast heuristic for solving a large-

scale static dial-a-ride problem under complex constraints,” European

Journal of Operational Research, vol. 174, pp. 1117–1139, 2006.
[22] K. Yamamoto, K. Uesugi, and T. Watanabe, “Adaptive routing of

cruising taxis by mutual exchange of pathways,” In Knowledge-Based

Intelligent Information and Engineering Systems, Springer, 2010.
[23] J. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun, “Where to find my

next passenger,” In Proc. of UbiComp 2011, ACM, 109-118.

[24] J. Yuan, Y. Zheng, C. Zhang，X. Xie and G. Sun, “An Interactive-

Voting based Map Matching Algorithm,” In Proc. of MDM 2010.

[25] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with Knowledge from
the Physical World,” In Proc. of KDD 2011.

[26] N. J. Yuan, Y. Zheng, L. Zhang, X. Xie, “T-Finder: A Recommender

System for Finding Passengers and Vacant Taxis”. IEEE TKDE, 2013
[27] Y. Zheng and X. Zhou, Computing with Spatial Trajectories, Springer

2011.

[28] Y. Zheng, Y. Liu, J. Yuan, X. Xie, “Urban Computing with Taxicabs”,
In Proc. of UbiComp 2011, ACM.

http://research.microsoft.com/apps/pubs/?id=121065
http://research.microsoft.com/apps/pubs/?id=121065

