
Diagnosing Estimation Errors in Page Counts Using
Execution Feedback

Surajit Chaudhuri, Vivek Narasayya, Ravishankar Ramamurthy
Microsoft Research

One Microsoft Way, Redmond WA USA.
 surajitc@microsoft.com

 viveknar@microsoft.com

 ravirama@microsoft.com

Abstract—Errors in estimating page counts can lead to poor
choice of access methods and in turn to poor quality plans.
Although there is past work in using execution feedback for
accurate cardinality estimation, the problem of inaccurate
estimation of page counts has not been addressed. In this paper,
we present novel mechanisms for diagnosing errors in page count
by monitoring query execution at low overhead. Detection of
inaccuracy in the optimizer estimates of page count can be
leveraged by database administrators to improve plan quality.
We have prototyped our techniques in the Microsoft SQL Server
engine, and our experiments demonstrate the ability to estimate
page counts accurately using execution feedback with low
overhead. For queries on several real world databases, we
observe significant improvement in plan quality when page
counts obtained from execution feedback are used instead of the
traditional optimizer estimations.

I. INTRODUCTION
Cost estimation is central to query optimization. Errors in

cost estimation can lead to the choice of a poor execution plan
for the query. A key parameter of the cost model is the distinct
page count, i.e., the number of distinct pages that need to be
fetched from a table. This parameter affects the I/O cost
estimation of the query and plays a significant role in the
choice of access methods (e.g., Index Seek vs. Table Scan)
and join methods (e.g., Index Nested Loops (INL) Join vs.
Hash Join). Surprisingly, unlike cardinality estimation, there
has been relatively little work focused on it. The following
example illustrates the importance of the distinct page count
parameter.

Example 1: Consider a table Sales (Id, Shipdate, State,
VendorId). Assume that the Sales table has a clustered index
on the Id attribute and there are a total of 10 million rows in
the table occupying a total of 200K pages i.e., an average of
50rows/page. Consider a query on a table Sales with the
predicate: (Shipdate = ’06-01-07’). Suppose there is a non-
clustered index on (Shipdate) and assume that 50K rows
satisfy the given predicate. In order to estimate the I/O cost of
the index seek plan that uses the above index, it is necessary
for the query optimizer to estimate the number of pages in the
Sales table that contain at least one tuple satisfying both
predicates. However, this number depends on how the tuples
are clustered on disk. For example, if the Sales data is loaded

daily basis, then the qualifying tuples could be clustered into
very few distinct pages, since the Shipdate is correlated with
the Id column generated during data load. In this case, the
number of pages could be as small as 1K (=50K/50). On the
other hand, if the data is loaded on a per vendor basis, then the
Shipdate will not be correlated with the Id column. In this case,
the number of distinct pages could be as large as 50K (if each
qualifying tuple occurs in a distinct page). Since each page
fetch from the table is a random access I/O, the cost of the
index seek plan could be dramatically different depending on
the clustering effects on disk. Finally, note that the clustering
effects on disk can also impact the choice of join method for a
query. For example, the orders and lineitem tables in a sales
database may both be clustered by a date attribute. This can
affect the cost estimate of the Index Nested Loops join of the
two tables.

Today’s query optimizers use analytical models based on
cardinality (e.g. [10]) to estimate distinct page count. These
analytical models typically do not model the on-disk
clustering effects and thus the estimates could be highly
inaccurate leading to incorrect plan choice. Observe in
Example 1 that the error in distinct page count estimation can
occur even when cardinality estimation is accurate.

In this paper, we adopt the approach of leveraging query
execution feedback to compute accurate distinct page count
estimates at low overhead. The distinct page counts obtained
by monitoring query execution can be used in different ways.
For example, the DBA can examine the distinct page count
obtained that is relevant for a particular index and compare it
with the optimizer estimated value. If the values are
significantly different, the DBA can correct the problem using
hinting mechanisms to force a better plan (e.g., force an Index
Seek plan instead of a Table Scan plan).

The distinct page counts can also be used as part of a
feedback based infrastructure (e.g., [17]) that keeps track of
estimation errors in the optimizer and leverages it to improve
optimization of future queries. While histograms for distinct
page counts are typically not supported in today’s DBMSs, we
note that our mechanisms can potentially be leveraged for the
purpose of maintaining such histograms similar to prior work
in the area of “self-tuning” histograms [1][16]. We note that
using histograms to estimate distinct page counts can require

non-trivial modifications to traditional histograms (see Section
VI for more details).

Unlike previous work on using execution feedback for
estimating cardinality (e.g., [17]) obtaining distinct page
counts poses new challenges. First, we are interested in
distinct page counts, which is more expensive to compute than
counting cardinality since it involves duplicate elimination.
Second, the page id needed for distinct page counting is only
available in the storage engine component of the DBMS.
Given the performance sensitive nature of the storage engine
and the separation between storage engine and the relational
engine component that exists in today’s commercial DBMS
architectures, judicious choice of techniques and data
structures is crucial. Finally, since we leverage execution
feedback, our techniques have to work in the context of the
current execution plan. Note that we may however need to
obtain the distinct page counts relevant for costing a plan that
uses a different access method or join algorithm. For example,
there may be an index on a column that is not picked by the
optimizer for a query and the current plan is Table Scan. Thus
we need to obtain the distinct page count relevant for costing
of the Index Seek by monitoring the execution of the Table
Scan plan. This introduces additional challenges as described
in Section II. A similar problem can arise in join queries as
well (Section IV). Thus, obtaining distinct page counts at low
overhead from the current plan is a non-trivial problem.

We have built a prototype for computing distinct page
counts for access methods and join methods inside the
Microsoft SQL Server 2005 engine. Our experiments (Section
V) reveal that the overheads imposed on normal query
execution are small (typically < 2%). We have also extended
the Microsoft SQL Server query optimizer to accept as input
the distinct page count for an expression. We evaluate the
impact of the page counts obtained on plan quality by
injecting the page counts and re-optimizing the query. For
several queries on real world as well as synthetic databases,
we observe significant improvement in plan quality when the
more accurate page counts from execution feedback are used
instead of the traditional optimizer estimations.

The rest of the paper is organized as follows. In Section II,
we describe the problem of obtaining distinct page counts
from query execution. Sections III and IV describe the
mechanisms for page counting during query execution for
access methods and join methods respectively. We describe
our implementation and present an experimental evaluation of
our implementation in Section V. We discuss related work in
Section VI and conclude in Section VII.

II. DISTINCT PAGE COUNT ESTIMATION USING
EXECUTION FEEDBACK

A. Distinct Page Count Parameter
The distinct page count parameter represents the number of

distinct pages of a table (physically stored as a heap or a
clustered index) that need to be fetched by an operator. For the
Table Scan operator, this is equal to the number of pages in
the table and can be obtained from the catalog. Accurate

estimation of this parameter is therefore relevant for costing
access methods such as Index Seek and Index Intersection
plans as well as the Index Nested Loops join method. Each
distinct page involves a new logical I/O and if the page is not
already present in the buffer pool, it can result in a physical
I/O (a random access to disk), thereby significantly impacting
the I/O cost.

Note that even though buffering effects could have a
significant impact [14] on query cost, most query optimizers
today do not model buffering effects. They either consider the
buffer to be cold or compute the fraction cached as a function
of the number of distinct pages fetched. In either case, our
techniques for obtaining accurate distinct page counts can be
used to obtain more accurate I/O cost estimates.

The distinct page count parameter is defined with respect to
a predicate expression (e.g. Shipdate=’06-01-07’).

Definition: Satisfies (T, PID, p): Consider a predicate

expression p defined on a set of tables including T. For a page
PID in the table T, Satisfies (T, PID, p) is true if and only if
there exists a tuple in T belonging to page PID that satisfies p.
Note that the predicate p can include selection predicates as
well as join predicates on the table T.

Definition: DPC (T, p). The distinct page count for a given

table T and predicate expression p is the count of PIDs in T
for which Satisfies (T, PID, p) is true.

Note that the distinct page count is relevant in the cost

model only if there is exists an index that can be used to
evaluate the predicate expression p. i.e., for costing the Fetch
operator following Index Seek, Index Intersection or Index
Nested Loops join operators (in this case p is the join
predicate).

B. Obtaining Distinct Page Counts from Query Execution
As mentioned earlier, obtaining accurate distinct page

counts is relevant for costing access methods such as Index
Seek and Index Intersection as well as Index Nested Loops
Join method. We need to leverage the current execution plan
which may be a different plan such as Table Scan or a Hash
Join in order to obtain the distinct page count. We discuss the
issues involved in obtaining distinct page counts from query
execution; we first consider access methods and then join
methods.

Access methods: Consider the Sales table discussed in

Example 1. Consider a query whose predicates are (Shipdate
= ’06-01-07’ and State = ‘CA’). Suppose there are two non-
clustered indexes on (Shipdate, State) and (State) respectively.
Thus, the distinct page counts that are relevant are DPC(State,
State=’CA’) and DPC(Sales, Shipdate = ’06-01-07’ and State
= ‘CA’). If the current plan involves a Table Scan of the Sales
table, then DPC (Sales, State=’CA’) can be obtained from
query execution. Intuitively, this is because in a Table Scan
operator all pages of the table are scanned, which provides the
opportunity to evaluate Satisfies (Sales, PID, State=’CA’) for
every page. In fact, it is possible to compute DPC (Sales, p)

where p is any predicate expression, (see Section III-B for
details). Thus, given a Table Scan plan, it is possible to detect
the accurate distinct page count that is relevant for costing any
Index Seek plan.

Suppose the current plan is an Index Seek plan using the
non-clustered index (Shipdate, State). Note that we do not
have access to all the pages for which Satisfies (Sales, PID,
State=’CA’) is true. This is because the predicate State=’CA’
is only evaluated for rows that satisfy (Shipdate=’06-01-07’).
Thus we are unable to determine DPC(State, State=’CA’) in
this case. Of course, note that DPC (T, (Shipdate = ’06-01-07’
and State = ‘CA’)) can be computed from the above Index
Seek plan. Thus it is possible to detect the accurate distinct
page count of the current Index Seek plan itself. This can be
useful to determine if the Table Scan plan has lower cost than
the current Index Seek plan.

 Join methods: For join methods, the distinct page count is
only relevant if an index exists on the join attribute, in which
case it is useful for costing the Index Nested Loops join
method as explained in the following example.

Fig. 1: Choice of Join Algorithm (Hash vs. Index Nested Loops)

Example 2. Consider a join query between two tables R1
and R2. Suppose there is a non-clustered index on the join
column of R2. Figure 1 shows two execution plans for
evaluating the query. The dotted lines show the operators that
execute inside the storage engine. This is a common
performance optimization technique used by today’s
commercial database engines. Note that the PID values are
available only for operators that execute inside the storage
engine. For example in the Hash Join plan, the filters on R1
and R2 are executed inside the respective scan operators for
R1 and R2 and the Hash Join operator is executed in the
relational engine. In order to accurately estimate the cost of
the Index Nested Loops (INL) plan, it is necessary to know
the number of distinct pages of R2 that will be fetched by the
INL join method. A significant error in the optimizer estimate
for this parameter can result in choosing a sub-optimal plan,
for example choosing the Hash Join plan when the INL join
plan is better.

We therefore need to estimate the number of pages of R2
for which Satisfies (R2, PID, Join-Pred) is true, where Join-
Pred is the join predicate between the relations R1 and R2.
Note that the current execution can either be Hash Join or INL
join. As with the case of access methods, the distinct page

count that can be obtained from a plan is a function of the join
algorithm used. Consider the case when the plan is Hash Join.
The key challenge is the following. Although the predicate
Join-Pred is evaluated in the Hash Join operator, the PID
values of R2 are not available in the relational engine layer. In
the scan of R2, even though PID values are available, the
predicate Join-Pred has not yet been evaluated. We discuss
how page counts relevant to join methods can be obtained in
Section IV.

C. Exploiting Distinct Page Counts obtained from Query
Execution

Today’s DBMSs already expose modes that output

information monitored during query execution. For example,
in Microsoft SQL Server, such monitored information can be
exposed by Dynamic Management Views (DMVs) or via the
statistics xml mode [21]. In the statistics xml mode the server
also returns for each operator in the plan the actual and
estimated cardinalities. In our implementation (see Section V
for details), we extend the statistics xml mode to also output
the relevant distinct page counts for access methods and join
methods. In this paper, we focus on efficient mechanisms for
obtaining distinct page counts. The page counts, once obtained
can be leveraged in different ways.

These distinct page counts can first serve as a useful
performance debugging tool for DBAs. For example, the DBA
can examine the distinct page count that is relevant for a
particular index and compare it with the optimizer estimated
value. If the values are significantly different, the DBA can
correct the problem using hinting mechanisms to force a better
plan (e.g., force an Index Seek plan instead of a Table Scan
plan). Furthermore, if the optimizer exposes an interface to
feedback the accurate page count values to the cost model, the
DBA or a client diagnostic/tuning tool can estimate the cost of
alternative plans and recommend an appropriate plan hint.

We observe that page counts obtained from query
execution can also be integrated into a comprehensive
feedback-based infrastructure e.g., [17] that can enable the
query optimizer to “learn” about errors in its cost estimates
and can correct execution plans. In [17], the feedback
information gathered is in the form of (expression, cardinality)
pairs from the output of each operator in a query execution
plan. The framework can be augmented to capture feedback
information of the form (expression, cardinality, distinct page
counts) for appropriate expressions in the query execution
plan. Using such a framework would enable reusing the
accurate distinct page count for similar queries. Such feedback
gathered can also be potentially used to refine histograms for
page counts similar to prior work on self-tuning histograms
[1][16].

In the following section, we introduce a set of low overhead
mechanisms for obtaining distinct page counts that are
relevant for costing Index Seek and Index Intersection plans
for a particular table in the query. In Section IV we extend
these mechanisms for obtaining distinct page count relevant
for costing an INL join.

III. OBTAINING DISTINCT PAGE COUNTS FOR SINGLE
TABLE ACCESS METHODS

In this section, we present mechanisms for obtaining
distinct page counts from query execution. We are given a
table T in the query, and a predicate expression p on that table,
and we want to compute the distinct page count: DPC (T, p)
(see Section II-A). As discussed earlier, this distinct page
count is relevant for the query optimizer to accurately cost the
I/O of fetching pages from the table that contain one or more
rows satisfying the predicate p. For simplicity of exposition,
we assume that the predicate p is a conjunction of atomic
predicates.

The current plan could either be an index plan or a scan
plan. Index plans include: (a) Index Seek: Lookup a non-
clustered index followed by a Fetch from the table (b) Index
Intersection: Lookup two or more non-clustered indexes,
intersect the RIDs obtained from each index, followed by a
Fetch from the table of the qualifying rows. Scan plans
include: (a) Heap Scan (b) Clustered Index Scan (c) Scan of a
Covering Index (i.e. an index that includes all the columns in
the table that are required by a query).

A scan plan has one additional important property not
present in index plans. In a scan plan, all rows in a data page
are accessed together, i.e., once all rows in a particular page
have been processed, that page is never accessed again. We
refer to this as the grouped page access property. Note that the
grouped page access property does not hold for index plans.
This is illustrated in Figure 2.

In Section III-A, we describe a mechanism for obtaining
distinct page count for a seek plan. For scan plans, we are able
exploit the grouped page access property to provide even
more efficient mechanisms for distinct page counting (Section
III-B).

Fig. 2: Order in which pages are accessed.

A. Index Plans
Each time a row is requested by the Fetch operator, the

storage engine looks up the page in which that row is located.
Since potentially multiple tuples that satisfy the predicate may
occur on the same page (i.e., have same PID value), we need
to essentially evaluate a COUNT (DISTINCT PID) query over
the full sequence of Fetch requests for the seek plan. The
exact computation can therefore be expensive and furthermore
can consume significant memory. Hence, we use a low
overhead alternative as described below.

Probabilistic Counting Approach: We adopt an approach
based on probabilistic counting techniques [8][20]. We
maintain a bitmap (hashed on the PID value) of the pages that

satisfy the predicate. For each row that is fetched from the
table, we compute the hash of the PID value for that row and
set the corresponding bit in the bitmap. An estimate for the
number of distinct PIDs is derived from examining the
number of bits set in the bitmap. The algorithm is outlined in
Figure 3 and is executed as part of the Fetch operator. We
maintain the bitmap in step 3 and scale the estimate based on
the number of bits that have not been set (step 6). We assume
an end-of-stream message is sent when all the input tuples
have been consumed. More details of the algorithm are
available in [20].

The probabilistic counting approach has desirable accuracy
and performance properties. First, it has been shown to be the
maximum likelihood estimator [20]. Second, the memory
required to ensure high accuracy is very small (typically much
less than one bit per page). Thus the main overhead is
computing the hash value of the PID and our experiments
(Section V) show that this overhead is small relative to normal
query execution.

Algorithm DerivePageCount(p)
/* p is the predicate */
1. Initialize bitmap of size numbits
2. repeat
3. If Satisfies (T, PID, p) is true, compute the hash value
 using the PID value and set the corresponding bit
 in the bitmap
4. until (End of Stream)
5. Compute the number of bits that have not been set
 in the bitmap (numzero)
6. return numbits × -1.0 × ln (numzero / numbits)

Fig. 3: Probabilistic Counting Algorithm.

We note that another alternative is to use sampling
techniques for estimating distinct values e.g., [4]. We can
generate a random sample of the rows that are fetched from
the table using reservoir sampling (e.g., [19]) and apply
distinct value estimators for the PID value of the sampled
rows. An example of such an estimator is the AE algorithm
presented in [4], which computes a set of fi values (the number
of values in the sample that occur exactly i times). Unlike
probabilistic counting techniques which examine every row,
distinct value estimators based on sampling cannot guarantee
high accuracy [4]. We picked probabilistic counting due to its
guaranteed accuracy properties as well as the engineering
simplicity of incorporation into the storage engine. A
thorough empirical evaluation of probabilistic counting vs.
distinct value estimation using sampling for the purposes of
distinct page counting is part of future work.

B. Scan Plans
For scan plans, i.e., Heap Scan or Clustered Index/Covering

Index Scan the grouped page property described earlier holds
(see Figure 2). Thus it is guaranteed that if two successive
tuples have PID values of PID1 and PID2 respectively (PID1

≠ PID2), then no further tuples in the scan will have the value
PID1. As a result there is no need for duplicate elimination of
the PIDs. Thus, for scan plans the problem of distinct page
counting DPC (T, p) reduces to a simpler problem of counting
the number of pages satisfying a certain property: in particular,
the Satisfies (T, PID, p) property. This can be implemented as
follows. We maintain a counter for DPC (T, p) that is
initialized to 0. For each page PID, as we process the tuples on
that page, we check if at least one row belonging to that page
satisfies the predicate p. If so we increment the counter. At the
end of the scan, the value of the counter is the exact value of
DPC (T, p).

If the predicate p is indeed evaluated on every row as part
of query execution, then the above method is very efficient
both in terms of memory required and CPU overhead. It only
stores one additional counter and performs a single
comparison for each row (to check if the row passed the
predicate). However, the current plan may not evaluate the
predicate p on every row. This is due to the use of the well
known performance optimization technique of predicate
short-circuiting. The following example illustrates the
problem.

Example 3: Consider the Sales table discussed in Example 1.
Consider a query whose predicates are (Shipdate = ’06-01-07’
and State = ‘CA’). Suppose the current execution plan is
Table Scan and the above predicates are evaluated in the left
to right order. Consider the case when a non-clustered index
on (State) is present. In order to accurately estimate the cost of
a plan that uses the index (State), we need to estimate the
number of distinct pages for which Satisfies (Sales, PID, State
= ‘CA’) is true, i.e., DPC (Sales, State = ‘CA’). However, the
predicate evaluator typically resorts to predicate short-
circuiting for efficiency. In this example, if the predicate
(Shipdate = ’06-01-07’) evaluates to FALSE for a row, the
remaining predicates are not evaluated. Thus, the predicate
State = ‘CA’ may not be evaluated for each row of the table.

Note that in the above example, if the predicate for which
the page counts are required was either (Shipdate = ‘06-01-07)
or (Shipdate = ‘06-01-07’ and State = ‘CA’), turning off
predicate short-circuiting is not required. For a sequence of
conjunctive predicates, there is no need to turn off predicate
short-circuiting to obtain the distinct page count
corresponding to any prefix of the predicates. However, if the
page counts are required for a predicate that is not a prefix of
the predicates evaluated, it is necessary to turn off the
predicate short-circuiting optimization.

Turning off predicate short-circuiting can result in non-
trivial overheads. In order to mitigate the overheads incurred
by turning off predicate short-circuiting we present an
algorithm for distinct page counting based on page sampling.
We need to estimate the number of distinct pages for which
Satisfies (T, PID, p) is true. Recall that when the grouped page
property holds, the problem of distinct page counting reduces
to a simpler problem of counting. Since uniform random
sampling is known to be an efficient technique for counting,
we can estimate DPC (T, p) accurately by using a random

sample of the pages. This technique can help reduce the
overheads while still ensuring accurate estimation. The
algorithm is outlined in Figure 4 and executes as part of the
Scan operator.

Observe that the above approach uses Bernoulli sampling
to choose a page with probability f (step 3). In particular, this
implies no additional memory is required. As before a single
counter for DPC (T, p) needs to be maintained. If evaluating
the predicate p requires turning off predicate short-circuiting,
the algorithm does so only for the tuples occurring on the
pages in the sample. This ensures that the overhead of turning
off predicate short-circuiting is bounded. In the above
algorithm f is the desired sampling fraction. As we show in
our experiments (Section V), the overheads of computing
distinct page counts using this approach are also small
(typically < 2%).

The above algorithm has several desirable properties: (a) It
produces an unbiased estimator of DPC (T, p) (unlike the
more general purpose method of probabilistic counting [8][20])
(b) It provides tight error guarantees based on Chernoff
bounds. (c) It is lower overhead when compared to the
estimators discussed in Section III-A (probabilistic counting
and distinct value estimators based on sampling e.g., [4]).

Algorithm DPSample(f, p)

/* f is the sampling fraction, p is the predicate */

 1. PageCount = 0
 2. repeat
 3. If it is the start of a new PID in the Scan, select the page
 PID with probability f
 4. If page PID is chosen as part of the sample, turn off
 predicate short-circuiting if necessary, and evaluate
 predicate p for all rows in that page.
 5. Increment PageCount if at for least one row in PID,
 Satisfies (T, PID, p) is true
 6. until (End of Scan)
 7. return (PageCount / f)

Fig. 4: DPSample Algorithm.

IV. OBTAINING DISTINCT PAGE COUNTS FOR JOIN
METHODS

In this section, we describe how to monitor the distinct
page count that is relevant for the costing of the Index Nested
Loops (INL) join method. Consider the query discussed in
Example 2. For the join between the relations R1 and R2 (see
Figure 1), the distinct page count for R2 is relevant for choice
of the INL join method, when R2 is the inner relation. In
particular we need to know DPC (R2, p) where p is the join
predicate between R1 and R2. Note that p does not include
any selection predicates that may be present on R2 since in an
INL join method the selection predicate on R2 is evaluated
after the join.

Of course, the current plan chosen by the optimizer could
be any one of: INL Join, Hash Join or Merge Join. Below we

discuss in turn how the above distinct page count can be
obtained for each of possible join methods. Similar to the
single table case, we note that obtaining distinct page count
for a join is relevant only if there exists an index on the join
column(s). Note that in a join plan, we can also obtain the
page counts relevant for the access methods of the
corresponding tables by using the techniques discussed in
Section III.

Index Nested Loops Join: Consider the case when the
current plan is the INL join plan (see Figure 1). Observe that
after looking up the index on the join column of R2, the order
in which the rows to be fetched from the R2 table appear is
similar to the case of an Index Seek plan (Section III-A).
Therefore to obtain the desired distinct page count, the
probabilistic counting technique described in Section III-A
can be directly applied in this case.

Hash Join: Referring to Example 2, recall that we need to
compute DPC (R2, p) where p is the join predicate. This can
be non-trivial for the following reason. Although the predicate
p is evaluated in the Hash Join operator, the PID values of R2
are not available there. In the scan of R2, even though PID
values are available, the predicate p has not yet been evaluated.
We handle this problem by exploiting the idea of bit vector
filtering.

Bit vector filters have been used in the context of parallel
database systems e.g. [7] to improve the efficiency of Hash
Join. The key idea is to compute a bit vector during the build
phase of the join (see Figure 5). For each row in the outer, the
value of the join column is hashed and the corresponding bit is
set. During the probe phase, for each row of the inner, the
value of the join column is hashed, and the bit vector is
examined. If the corresponding bit is set, then we know that
the page to which that row belongs would be accessed during
an INL join. In effect, the bit vector filter can be used as a
“derived” semi-join predicate during the probe phase. We can
thus invoke the DPSample algorithm (Figure 4) during the
Table Scan of the probe table. The modifications required for
the Hash Join plan (used in Example 2) are illustrated in
Figure 5. Further details of our implementation are described
in Section V-A.

If the number of bits used for the bit vector is at least as
many as the number of distinct values of the join column of
the outer relation, then the above method guarantees the exact
page count, since there are no false positives due to collisions.
If fewer bits are used, then due to collisions, the page count
can be overestimated. In our experiments (Section V), we find
small overestimation of distinct page count even when using a
relatively small number of bits.

Merge Join: The idea of bit vector filtering for computing
page counts described above is also applicable to a Merge Join
[9] whenever the bit vector for the outer relation can be
computed before the inner relation is scanned. For Merge
Joins where the outer child is a Sort operator, notice that this
property holds. This is because the first GetNext() call to the
Sort operator is blocking and returns only after its child is full
consumed enabling the construction of the bit vector. Bit
vector filtering is also applicable to the case when both inputs

are clustered on the respective join columns, i.e., no Sorts on
either input. Note that for this case, the partial bit vector filter
corresponding to the outer rows consumed thus far can be
used during the scan of the inner relation to compute the page
count. This is because the Merge Join only advances the
pointer of the inner relation if the values of the join column
match the outer. Note that partial bit vector filters can also be
applied for the case when the outer is not sorted and the inner
child is sorted.

Hash Join

1. Compute BitVectorFilter

2. Count PIDs that satisfy
the bitvector filter

R2

Filter

R1

Filter

 BUILD PROBE

Fig. 5: Distinct Page Counting using Bitvector Filters.

V. IMPLEMENTATION AND EXPERIMENTS

A. Implementation
Functionality: We have prototyped the page counting

mechanisms described in Sections III and IV in the engine of
Microsoft SQL Server 2005. For a given query, we take as
input a set of expressions (e.g., (Shipdate = ‘06-01-07’) is an
expression) for which distinct page counts are needed. Our
functionality is currently enabled in the statistics xml mode
[21]. In this mode, after the query execution is complete, the
server outputs the execution plan in xml format along with
additional counters gathered during the query’s execution, e.g.,
cardinality of each operator in the plan. We augment this
output with the estimated and the actual distinct page count
for each requested expression. We have also implemented a
method by which the distinct page count for a given
expression can be input to the query optimizer. This allows
the user (e.g., a DBA) or a diagnostic/tuning tool to inject a
distinct page count value for an expression and obtain the
execution plan by optimizing with the injected page count(s).
We use this functionality in our experiments to determine the
impact of the page counts obtained from query execution on
the quality of the plan. Finally, for the case of joins, we have
built the mechanisms for INL join and Hash Join.

Handling the RE/SE separation: In Microsoft SQL Server,
the PID value for a row is only available in the storage engine
(SE). While it is possible to modify the server to expose PID
values outside the SE in the relational engine (RE) operators,
the engineering complexity as well as performance overheads
of such a change can be significant. Since predicate evaluation

of most predicates (except expensive UDFs) is typically done
inside the SE, we implemented the necessary changes to
turning off predicate short-circuiting in the SE. Information
that needs to be passed from SE to RE is accomplished via
callbacks to the RE layer, for instance for utilizing the
bitvector filter for Hash Joins (Section IV).

Impact on cached plans: Our implementation allows the
functionality of obtaining distinct page count to be turned
on/off without impacting the cached plan for a query. This is
because none of our mechanisms requires changes to the plan
itself. It allows DBAs to selectively turn on the mechanism
when desired without incurring the overhead of recompilation.

B. Experiments
The goals of the experiments are: (a) To demonstrate that

distinct page counts can improve the quality of plans
significantly, even when the cardinality estimates available are
already accurate. (b) To examine the overheads imposed by
our mechanisms (Sections III, IV) to obtain distinct page
counts. (c) To measure the importance of obtaining accurate
distinct page counts in real world databases. Table I lists the
set of databases used in our experiments.

TABLE I
DATABASES USED IN EXPERIMENTS

Database Num
Rows
(millions)

Num
Pages
(1000s)

Avg. Num
Rows Per
Page

Book Retailer 10.8 403 27
Yellow Pages 1 25 39

 TPC-H(10GB)
Skew factor (Z=1)

60 1121 54

Voter data 4 89 46
Products 0.56 65 9
Synthetic 100 1450 80

Evaluation Methodology: Consider a query Q. Let the

current execution plan be P. For our experiments, we run the
plan P and obtain the distinct page counts using the
appropriate monitoring mechanisms for the plan. We optimize
the query by injecting the distinct page count values obtained
from execution feedback. Let the new plan obtained be P’. Let
the time taken to execute plans P and P’ be T and T’. We
report the SpeedUp achieved as: (T – T’)/T. In order to
isolate the effects of the distinct page counts, we ensured that
the plan P was generated after injecting accurate cardinality
values to the optimizer. All execution times were measured
with a cold cache which ensures that effects due to buffering
are eliminated.

1) Experiments Using Synthetic Data
We generated a table (see Synthetic database in Table 1)

with 100 million tuples having the following schema T
(C1,C2,C3,C4,C5, padding). The padding column is added to
make the size of each tuple 100 bytes. C1 is an identity
column with values from 1 to 100000000. Columns C2 to C5
represent different permutations of the values in column C1
and are intended to capture different on disk correlations with

C1. For instance, the column C2 is equal to column C1
(representing the fully correlated case), while column C5 is a
random ordering of the column C1 (and thus is uncorrelated).
The intermediate columns represent other data points in
between the two extremes. We built a clustered index on
column C1 and non-clustered indexes on columns C2 to C5.

Fig. 6: SpeedUp for single table queries.

Fig. 7: Overheads for single table queries.

Single Table Queries: We generated queries of the form
select count(padding) from T where Ci < val. The selectivity
values were chosen randomly from 1% to 10%. We observed
for selectivity values greater than 10%, the Table scan plan
was optimal irrespective of errors in the optimizer estimate of
distinct page counts. We used a query workload of 100
queries (25 queries each for the columns C2,C3,C4,C5). We
ensured that the cardinality estimates were accurate by
injecting the accurate cardinalities (which were obtained
offline). Using distinct page counts obtained from query
execution changes the plan in many cases, thereby
significantly improving the performance of queries. Figure 6
illustrates the speed up for the query workload, while Figure 7
illustrates the monitoring overheads for the queries. We note
that the performance overheads are small (less than 2% for
most queries). We observed for most queries that the plan
changes from Table Scan to Index Seek. This is because the
Microsoft SQL Server optimizer assumes independence
between the clustering column and the index column. As a
result, the best improvements in Figure 6 are for queries
involving columns C2, C3 and C4. For queries with predicates

on column C5 (queries 75 to 100) which is uncorrelated with
C1, the distinct page counts do not lead to improvements since
the optimizer’s estimates of the distinct page count are already
quite accurate.

Fig. 8: SpeedUp for join queries.

Join Queries: We created a copy of table T called T1 and
created a clustered index on the table column T1.C1. We then
generate join queries of the form:

select count(T.padding) from T, T1
where T1.C1 < val and T1.Ci = T.Ci
The optimizer can choose a Hash join for evaluating this

query or choose an Index Nested Loops plan using table T as
the inner and using the index on Ci column. By varying the Ci
column, we can vary the number of pages fetched for a given
selectivity value. We used a workload of 40 queries and
picked selectivity values for the outer such that the distinct
page value could influence the plan choice. For selectivities
beyond a threshold value (around 7%), we found that the Hash
Join is optimal. Figure 8 illustrates that distinct page counts
can provide significant benefits for the case of join queries. In
our experiments, the maximum performance overhead due to
bitvector filtering that we observed was 2%. Using a bitvector
filter of a modest size (less than 1% of the table size) was
sufficient to yield high accuracy.

Effectiveness of page sampling: In the previous set of

experiments, since the queries have only one predicate there
was no need to turn off predicate short-circuiting (Section III-
B). In order to understand the performance implications of
turning off predicate short-circuiting, we performed the
following experiment. We used a set of queries with
increasing number of predicates. Figure 9 illustrates how the
monitoring overheads for obtaining all the relevant distinct
page counts increase with the number of predicates. For this
experiment, we used page samples of 1%, 10% and 100% (i.e.,
full scan). While obtaining the exact distinct page counts is
feasible for the Table Scan operator, the overheads of turning
off predicate short-circuiting for all tuples is clearly
impractical. Thus, in order to ensure that the monitoring
mechanisms scale to a larger number of predicates, it is
essential to use the DPSample algorithm. Note that at 1%
sampling, the DPSample algorithm incurs an overhead of

around 2% and provides an estimate of the distinct page count
whose maximum error is 0.5%.

Fig. 9: Effectiveness of Page Sampling.

2) Experiments Using Real World Databases and TPC-H

 Fig. 10: Page Clustering for Real Datasets.

In this section we measure the importance of obtaining
accurate distinct page counts in real world databases. We use
the TPC-H database as well as 4 real world databases. The set
of databases used and their properties are listed in Table I.
Consider a query of the form: SELECT … FROM T WHERE
C = Value. Suppose the predicate in the WHERE clause is
satisfied by n rows. Also, let the number of rows per page be k,
and the total number of pages in the table be P. Then, the
lower bound (LB) on the number of pages in the table that
must be accessed to fetch the n rows is n/k. The upper bound
(UB) on the number of pages that must be accessed to fetch n
rows is min (n, P), since in the worst case, each of the n rows
may occur in a different page (but not exceeding P in total).
The actual number of pages (N) must therefore satisfy: LB ≤
N ≤ UB. Consider the following measure:

Clustering Ratio (CR) = (N-LB) / (UB-LB)

Note that 0 ≤ CR ≤ 1. CR = 0 implies that N = LB (fewest

number of pages need to be fetched), which occurs when the
values of column C on disk are fully correlated with the table
clustering. On the other hand, (CR = 1) => (N = UB), and

therefore the largest number of pages possible for the
predicate need to be fetched. Figure 10 shows the Clustering
Ratio for several queries on 5 real world databases (see Table
1 for details). Note that since the Clustering Ratio is
normalized, we can show all the results in the same plot. We
show queries whose selectivity is less than 10%. For different
predicates the Clustering Ratio varies widely. The mean
Clustering Ratio for the above data points is 0.56 whereas the
standard deviation is 0.4! This experiment suggests that
simple analytical formulas may be insufficient to capture the
clustering effects in real world database.

Impact on plan quality for real-world databases: For

this experiment, we generated queries as described above.
Figure 11 shows the speed up obtained when we use the
distinct page counts obtained from execution feedback for 80
queries for different columns across the real world databases
from Table 1. For example, in TPC-H we use the three date
columns on the lineitem table. The results suggest that our
techniques can have significant benefits for real world data
sets.

Fig. 11: SpeedUp for Real World Databases.

VI. RELATED WORK
Early work [6][18] showed how on-disk clustering effects can
result in inaccurate distinct page count estimation. We can
consider using histograms for distinct page count estimation
(similar to cardinality estimation). However, this may require
non-trivial extensions. For example, unlike traditional
histograms the distinct page counts are not additive across
buckets since tuples belonging to two different buckets can
belong to the same page. We also note that modeling
clustering effects for a join method requires the ability to
create the histogram of distinct page counts over a join
expression (similar to [3]), which is non-trivial. A more
detailed examination of how the techniques presented in this
paper compare with a histogram-based approach is part of
future work. It is also interesting to examine whether synopsis
structures such as those presented in [2] can be leveraged for
distinct page count estimation.
There has been previous work that focused on correcting
errors in cardinality estimates utilizing execution feedback to
obtain the cardinalities of query expressions [17]. This paper
uses execution feedback to obtain accurate estimates of a

different parameter of the cost model, namely distinct page
count. A characterization of the sensitivity of query
optimization to storage parameters such as disk rates is
presented in [15]. Qin et al. [13] present an adaptive approach
for calibrating the cost model dynamically based on execution
feedback. Our focus in this paper is complementary to this
work since we present mechanisms to obtain actual distinct
page counts for a query, which could be used in the above
framework for calibrating the cost model.
The problem of accurately estimating page fetches is also
considered in [14]. Their approach is to use pre-computed
samples and execute suitable predicates on these samples to
estimate what fraction of the required pages is cached in the
buffer pool. In this paper, we do not address the buffering
effects and instead focus on distinct page counts. While the
buffer pool contents can change (even during the execution of
a single query), distinct page counts can potentially be reused
to correct estimation errors in future queries having similar
predicates. Moreover, for obtaining distinct page counts of
join predicates, the pre-computed samples need to be extended
to include join synopses, which is non-trivial. Our focus is on
a lightweight framework that can be used to detect errors in
estimates of the page counts and correct them.
There has been prior work on using sampling for estimating
the number of distinct values of a relation [4]. As discussed in
Section III-A, these techniques are applicable to our problem.
However, when the grouped page access property holds, we
are able to engineer a more efficient and accurate method that
is specific to our problem.
Bit vector filtering has been used to optimize the performance
of hash based query operators. Some of its applications
include reducing the overhead of communication in parallel
database systems [7] and in efficiently processing the
recursive partitioning case for hash joins [9]. In this paper, we
present a novel application of this technique to help in distinct
page counting. We note that unlike the traditional usage,
where bitmaps are only maintained for partitions that are
spilled to disk, we need to maintain the bitmaps for the entire
relation. However, as we demonstrate in our experiments
(Section V-B), the overheads of our bit vector filtering
implementation are small.

VII. CONCLUSIONS
DBAs today have limited support to diagnose whether a

poor plan choice by the optimizer for a given query was due to
inaccurate estimation of distinct page counts. In particular,
DBMSs do not provide the ability for obtaining accurate
distinct page counts. We present low overhead mechanisms
that can be used to obtain accurate distinct page counts by
leveraging query execution feedback. The distinct page counts
thus obtained can be utilized in multiple ways. DBAs and
client tools can potentially correct a poor plan choice using
plan hinting mechanisms. Distinct page counts obtained can
also be used by the optimizer itself to improve the cost
estimation for future queries or to update histograms on page
counts. A careful study of such feedback driven optimization
for page counts is an interesting direction of future work.

ACKNOWLEDGMENT
We would like to thank Raghav Kaushik and the

anonymous referees for their feedback on the paper.

REFERENCES
[1] A.Aboulnaga, S.Chaudhuri. Self-Tuning Histograms. Building

Histograms without Looking at Data. In Proceedings of ACM
SIGMOD 1999.

[2] K.Beyer et al. On Synopses for Distinct-Value Estimation Under
Multiset Operations. In Proceedings of ACM SIGMOD 2007.

[3] N.Bruno, S.Chaudhuri. Efficient Creation of Statistics over Query
Expressions. In Proceedings of ICDE 2003.

[4] M.Charikar, S.Chaudhuri, R.Motwani, V.Narasayya. Towards
Estimation Error Guarantees for Distinct Values. In Proceedings of
PODS 2000.

[5] C.M. Chen, N.Roussopoulous. Adaptive Selectivity Estimation using
Query Feedback. In Proceedings of ACM SIGMOD 1994.

[6] S.Christodoulakis. Implications of Certain Assumptions in Database
Performance Evaluation. ACM TODS, Vol 9, No 2, 1984.

[7] D.DeWitt, R.Gerber. Multiprocessor Hash-based Join Algorithms. In
Proceedings of VLDB 1985.

[8] P. Flajolet, G.Nigel Martin. Probabilistic Counting Algorithms for
Database Applications. J. Comput Syst Sci 31(2): 1985.

[9] G.Graefe. Query Evaluation Techniques for Large Databases.
[10] L.F Mackert, G.M.Lohman. Index Scans using a finite lru buffer: A

validated I/O model. ACM Transactions on Database Systems,
14(3):401-424, Sept. 1989.

[11] F.Olken, D.Rotem. Random Sampling from Databases. A Survey.
Statistics and Computing. March 1995.Vol 5.

[12] V.Poosala, Y.Ioannidis, P.Haas, E.Shekita. Improved Histograms for
Selectivity Estimation of Range Predicates. In Proceedings of
SIGMOD 1996.

[13] Y.Qin, K.Salem, A.Geol. Towards Adaptive Costing of Database
Access Methods.

[14] R.Ramamurthy, D.DeWitt. Buffer-Pool Aware Query Optimization. In
Proceedings of CIDR 2005.

[15] F.Reiss, T. Kanungo. A Characterization of the Sensitivity of Query
Optimization to Storage Access Parameters. In Proceedings of ACM
SIGMOD 2003.

[16] U.Srivastava et al. ISOMER Consistent Histogram Construction using
Query Feedback. In Proceedings of ICDE 2006.

[17] M.Stiller, G.Lohman, V.Markl, M.Kandil. LEO-DB2’s Learning
Optimizer. In Proceedings of VLDB 2001.

[18] B.T. Vander-Zanden, H.M.Taylor, D.Bitton. Estimating Block
Accesses When Attributes are Correlated. In Proceedings of VLDB
1986.

[19] J.S. Vitter. Random Sampling with a Reservoir. ACM Transactions on
Math. Software. 11(1): 37-57 (1985)

[20] K. Whang, B.T. Vander-Zanden, H.M. Taylor. Linear Time
Probabilistic Counting Algorithms for Database Applications. ACM
Transactions on Database Systems (TODS) Volume 15 , Issue 2 (June
1990).

[21] Microsoft SQL Server 2005 Product Documentation.
http://msdn.microsoft.com.

