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Abstract—Errors in estimating page counts can lead to poor 
choice of access methods and in turn to poor quality plans. 
Although there is past work in using execution feedback for 
accurate cardinality estimation, the problem of inaccurate 
estimation of page counts has not been addressed. In this paper, 
we present novel mechanisms for diagnosing errors in page count 
by monitoring query execution at low overhead. Detection of 
inaccuracy in the optimizer estimates of page count can be 
leveraged by database administrators to improve plan quality. 
We have prototyped our techniques in the Microsoft SQL Server 
engine, and our experiments demonstrate the ability to estimate 
page counts accurately using execution feedback with low 
overhead. For queries on several real world databases, we 
observe significant improvement in plan quality when page 
counts obtained from execution feedback are used instead of the 
traditional optimizer estimations. 
 

I. INTRODUCTION 
Cost estimation is central to query optimization. Errors in 

cost estimation can lead to the choice of a poor execution plan 
for the query. A key parameter of the cost model is the distinct 
page count, i.e., the number of distinct pages that need to be 
fetched from a table. This parameter affects the I/O cost 
estimation of the query and plays a significant role in the 
choice of access methods (e.g., Index Seek vs. Table Scan) 
and join methods (e.g., Index Nested Loops (INL) Join vs. 
Hash Join). Surprisingly, unlike cardinality estimation, there 
has been relatively little work focused on it. The following 
example illustrates the importance of the distinct page count 
parameter.  

Example 1: Consider a table Sales (Id, Shipdate, State, 
VendorId). Assume that the Sales table has a clustered index 
on the Id attribute and there are a total of 10 million rows in 
the table occupying a total of 200K pages i.e., an average of 
50rows/page. Consider a query on a table Sales with the 
predicate: (Shipdate = ’06-01-07’). Suppose there is a non-
clustered index on (Shipdate) and assume that 50K rows 
satisfy the given predicate. In order to estimate the I/O cost of 
the index seek plan that uses the above index, it is necessary 
for the query optimizer to estimate the number of pages in the 
Sales table that contain at least one tuple satisfying both 
predicates. However, this number depends on how the tuples 
are clustered on disk. For example, if the Sales data is loaded 

daily basis, then the qualifying tuples could be clustered into 
very few distinct pages, since the Shipdate is correlated with 
the Id column generated during data load. In this case, the 
number of pages could be as small as 1K (=50K/50).  On the 
other hand, if the data is loaded on a per vendor basis, then the 
Shipdate will not be correlated with the Id column. In this case, 
the number of distinct pages could be as large as 50K (if each 
qualifying tuple occurs in a distinct page). Since each page 
fetch from the table is a random access I/O, the cost of the 
index seek plan could be dramatically different depending on 
the clustering effects on disk. Finally, note that the clustering 
effects on disk can also impact the choice of join method for a 
query. For example, the orders and lineitem tables in a sales 
database may both be clustered by a date attribute. This can 
affect the cost estimate of the Index Nested Loops join of the 
two tables. 

Today’s query optimizers use analytical models based on 
cardinality (e.g. [10]) to estimate distinct page count. These 
analytical models typically do not model the on-disk 
clustering effects and thus the estimates could be highly 
inaccurate leading to incorrect plan choice. Observe in 
Example 1 that the error in distinct page count estimation can 
occur even when cardinality estimation is accurate.  

In this paper, we adopt the approach of leveraging query 
execution feedback to compute accurate distinct page count 
estimates at low overhead. The distinct page counts obtained 
by monitoring query execution can be used in different ways. 
For example, the DBA can examine the distinct page count 
obtained that is relevant for a particular index and compare it 
with the optimizer estimated value. If the values are 
significantly different, the DBA can correct the problem using 
hinting mechanisms to force a better plan (e.g., force an Index 
Seek plan instead of a Table Scan plan).  

The distinct page counts can also be used as part of a 
feedback based infrastructure (e.g., [17]) that keeps track of 
estimation errors in the optimizer and leverages it to improve 
optimization of future queries. While histograms for distinct 
page counts are typically not supported in today’s DBMSs, we 
note that our mechanisms can potentially be leveraged for the 
purpose of maintaining such histograms similar to prior work 
in the area of “self-tuning” histograms [1][16]. We note that 
using histograms to estimate distinct page counts can require 



non-trivial modifications to traditional histograms (see Section 
VI for more details). 

Unlike previous work on using execution feedback for 
estimating cardinality (e.g., [17]) obtaining distinct page 
counts poses new challenges. First, we are interested in 
distinct page counts, which is more expensive to compute than 
counting cardinality since it involves duplicate elimination. 
Second, the page id needed for distinct page counting is only 
available in the storage engine component of the DBMS. 
Given the performance sensitive nature of the storage engine 
and the separation between storage engine and the relational 
engine component that exists in today’s commercial DBMS 
architectures, judicious choice of techniques and data 
structures is crucial. Finally, since we leverage execution 
feedback, our techniques have to work in the context of the 
current execution plan. Note that we may however need to 
obtain the distinct page counts relevant for costing a plan that 
uses a different access method or join algorithm. For example, 
there may be an index on a column that is not picked by the 
optimizer for a query and the current plan is Table Scan. Thus 
we need to obtain the distinct page count relevant for costing 
of the Index Seek by monitoring the execution of the Table 
Scan plan. This introduces additional challenges as described 
in Section II. A similar problem can arise in join queries as 
well (Section IV). Thus, obtaining distinct page counts at low 
overhead from the current plan is a non-trivial problem.  

We have built a prototype for computing distinct page 
counts for access methods and join methods inside the 
Microsoft SQL Server 2005 engine. Our experiments (Section 
V) reveal that the overheads imposed on normal query 
execution are small (typically < 2%). We have also extended 
the Microsoft SQL Server query optimizer to accept as input 
the distinct page count for an expression. We evaluate the 
impact of the page counts obtained on plan quality by 
injecting the page counts and re-optimizing the query. For 
several queries on real world as well as synthetic databases, 
we observe significant improvement in plan quality when the 
more accurate page counts from execution feedback are used 
instead of the traditional optimizer estimations.  

The rest of the paper is organized as follows. In Section II, 
we describe the problem of obtaining distinct page counts 
from query execution. Sections III and IV describe the 
mechanisms for page counting during query execution for 
access methods and join methods respectively. We describe 
our implementation and present an experimental evaluation of 
our implementation in Section V. We discuss related work in 
Section VI and conclude in Section VII. 
 

II. DISTINCT PAGE COUNT ESTIMATION USING 
EXECUTION FEEDBACK 

A. Distinct Page Count Parameter 
The distinct page count parameter represents the number of 

distinct pages of a table (physically stored as a heap or a 
clustered index) that need to be fetched by an operator. For the 
Table Scan operator, this is equal to the number of pages in 
the table and can be obtained from the catalog. Accurate 

estimation of this parameter is therefore relevant for costing 
access methods such as Index Seek and Index Intersection 
plans as well as the Index Nested Loops join method. Each 
distinct page involves a new logical I/O and if the page is not 
already present in the buffer pool, it can result in a physical 
I/O (a random access to disk), thereby significantly impacting 
the I/O cost.  

Note that even though buffering effects could have a 
significant impact [14] on query cost, most query optimizers 
today do not model buffering effects. They either consider the 
buffer to be cold or compute the fraction cached as a function 
of the number of distinct pages fetched. In either case, our 
techniques for obtaining accurate distinct page counts can be 
used to obtain more accurate I/O cost estimates. 

The distinct page count parameter is defined with respect to 
a predicate expression (e.g. Shipdate=’06-01-07’).  

 
Definition: Satisfies (T, PID, p): Consider a predicate 

expression p defined on a set of tables including T. For a page 
PID in the table T, Satisfies (T, PID, p) is true if and only if 
there exists a tuple in T belonging to page PID that satisfies p. 
Note that the predicate p can include selection predicates as 
well as join predicates on the table T. 

 
Definition: DPC (T, p). The distinct page count for a given 

table T and predicate expression p is the count of PIDs in T 
for which Satisfies (T, PID, p) is true. 

 
Note that the distinct page count is relevant in the cost 

model only if there is exists an index that can be used to 
evaluate the predicate expression p.  i.e., for costing the Fetch 
operator following Index Seek, Index Intersection or Index 
Nested Loops join operators (in this case p is the join 
predicate).   

B. Obtaining Distinct Page Counts from Query Execution 
As mentioned earlier, obtaining accurate distinct page 

counts is relevant for costing access methods such as Index 
Seek and Index Intersection as well as Index Nested Loops 
Join method. We need to leverage the current execution plan 
which may be a different plan such as Table Scan or a Hash 
Join in order to obtain the distinct page count. We discuss the 
issues involved in obtaining distinct page counts from query 
execution; we first consider access methods and then join 
methods.  

 
Access methods: Consider the Sales table discussed in 

Example 1. Consider a query whose predicates are (Shipdate 
= ’06-01-07’ and State = ‘CA’). Suppose there are two non-
clustered indexes on (Shipdate, State) and (State) respectively. 
Thus, the distinct page counts that are relevant are DPC(State, 
State=’CA’) and DPC(Sales, Shipdate = ’06-01-07’ and State 
= ‘CA’). If the current plan involves a Table Scan of the Sales 
table, then DPC (Sales, State=’CA’) can be obtained from 
query execution. Intuitively, this is because in a Table Scan 
operator all pages of the table are scanned, which provides the 
opportunity to evaluate Satisfies (Sales, PID, State=’CA’) for 
every page.  In fact, it is possible to compute DPC (Sales, p) 



where p is any predicate expression, (see Section III-B for 
details). Thus, given a Table Scan plan, it is possible to detect 
the accurate distinct page count that is relevant for costing any 
Index Seek plan.  

Suppose the current plan is an Index Seek plan using the 
non-clustered index (Shipdate, State). Note that we do not 
have access to all the pages for which Satisfies (Sales, PID, 
State=’CA’) is true. This is because the predicate State=’CA’ 
is only evaluated for rows that satisfy (Shipdate=’06-01-07’). 
Thus we are unable to determine DPC(State, State=’CA’) in 
this case. Of course, note that DPC (T, (Shipdate = ’06-01-07’ 
and State = ‘CA’)) can be computed from the above Index 
Seek plan. Thus it is possible to detect the accurate distinct 
page count of the current Index Seek plan itself. This can be 
useful to determine if the Table Scan plan has lower cost than 
the current Index Seek plan. 

 
   Join methods:  For join methods, the distinct page count is 
only relevant if an index exists on the join attribute, in which 
case it is useful for costing the Index Nested Loops join 
method as explained in the following example. 

 

 
Fig. 1: Choice of Join Algorithm (Hash vs. Index Nested Loops) 

Example 2. Consider a join query between two tables R1 
and R2. Suppose there is a non-clustered index on the join 
column of R2. Figure 1 shows two execution plans for 
evaluating the query. The dotted lines show the operators that 
execute inside the storage engine. This is a common 
performance optimization technique used by today’s 
commercial database engines. Note that the PID values are 
available only for operators that execute inside the storage 
engine. For example in the Hash Join plan, the filters on R1 
and R2 are executed inside the respective scan operators for 
R1 and R2 and the Hash Join operator is executed in the 
relational engine. In order to accurately estimate the cost of 
the Index Nested Loops (INL) plan, it is necessary to know 
the number of distinct pages of R2 that will be fetched by the 
INL join method. A significant error in the optimizer estimate 
for this parameter can result in choosing a sub-optimal plan, 
for example choosing the Hash Join plan when the INL join 
plan is better.   

We therefore need to estimate the number of pages of R2 
for which Satisfies (R2, PID, Join-Pred) is true, where Join-
Pred is the join predicate between the relations R1 and R2. 
Note that the current execution can either be Hash Join or INL 
join. As with the case of access methods, the distinct page 

count that can be obtained from a plan is a function of the join 
algorithm used.  Consider the case when the plan is Hash Join. 
The key challenge is the following. Although the predicate 
Join-Pred is evaluated in the Hash Join operator, the PID 
values of R2 are not available in the relational engine layer. In 
the scan of R2, even though PID values are available, the 
predicate Join-Pred has not yet been evaluated. We discuss 
how page counts relevant to join methods can be obtained in 
Section IV. 

C. Exploiting Distinct Page Counts obtained  from Query 
Execution 

 
Today’s DBMSs already expose modes that output 

information monitored during query execution. For example, 
in Microsoft SQL Server, such monitored information can be 
exposed by Dynamic Management Views (DMVs) or via the 
statistics xml mode [21]. In the statistics xml mode the server 
also returns for each operator in the plan the actual and 
estimated cardinalities. In our implementation (see Section V 
for details), we extend the statistics xml mode to also output 
the relevant distinct page counts for access methods and join 
methods. In this paper, we focus on efficient mechanisms for 
obtaining distinct page counts. The page counts, once obtained 
can be leveraged in different ways. 

These distinct page counts can first serve as a useful 
performance debugging tool for DBAs. For example, the DBA 
can examine the distinct page count that is relevant for a 
particular index and compare it with the optimizer estimated 
value. If the values are significantly different, the DBA can 
correct the problem using hinting mechanisms to force a better 
plan (e.g., force an Index Seek plan instead of a Table Scan 
plan).  Furthermore, if the optimizer exposes an interface to 
feedback the accurate page count values to the cost model, the 
DBA or a client diagnostic/tuning tool can estimate the cost of 
alternative plans and recommend an appropriate plan hint. 

We observe that page counts obtained from query 
execution can also be integrated into a comprehensive 
feedback-based infrastructure e.g., [17] that can enable the 
query optimizer to “learn” about errors in its cost estimates 
and can correct execution plans. In [17], the feedback 
information gathered is in the form of (expression, cardinality) 
pairs from the output of each operator in a query execution 
plan. The framework can be augmented to capture feedback 
information of the form (expression, cardinality, distinct page 
counts) for appropriate expressions in the query execution 
plan. Using such a framework would enable reusing the 
accurate distinct page count for similar queries. Such feedback 
gathered can also be potentially used to refine histograms for 
page counts similar to prior work on self-tuning histograms 
[1][16].  

In the following section, we introduce a set of low overhead 
mechanisms for obtaining distinct page counts that are 
relevant for costing Index Seek and Index Intersection plans 
for a particular table in the query.  In Section IV we extend 
these mechanisms for obtaining distinct page count relevant 
for costing an INL join.  



III. OBTAINING DISTINCT PAGE COUNTS FOR SINGLE 
TABLE ACCESS METHODS 

In this section, we present mechanisms for obtaining 
distinct page counts from query execution. We are given a 
table T in the query, and a predicate expression p on that table, 
and we want to compute the distinct page count: DPC (T, p) 
(see Section II-A). As discussed earlier, this distinct page 
count is relevant for the query optimizer to accurately cost the 
I/O of fetching pages from the table that contain one or more 
rows satisfying the predicate p.  For simplicity of exposition, 
we assume that the predicate p is a conjunction of atomic 
predicates.  

The current plan could either be an index plan or a scan 
plan. Index plans include: (a) Index Seek: Lookup a non-
clustered index followed by a Fetch from the table (b) Index 
Intersection: Lookup two or more non-clustered indexes, 
intersect the RIDs obtained from each index, followed by a 
Fetch from the table of the qualifying rows.  Scan plans 
include: (a) Heap Scan (b) Clustered Index Scan (c) Scan of a 
Covering Index (i.e. an index that includes all the columns in 
the table that are required by a query).  

A scan plan has one additional important property not 
present in index plans. In a scan plan, all rows in a data page 
are accessed together, i.e., once all rows in a particular page 
have been processed, that page is never accessed again. We 
refer to this as the grouped page access property. Note that the 
grouped page access property does not hold for index plans. 
This is illustrated in Figure 2. 

In Section III-A, we describe a mechanism for obtaining 
distinct page count for a seek plan. For scan plans, we are able 
exploit the grouped page access property to provide even 
more efficient mechanisms for distinct page counting (Section 
III-B).  

 

 
Fig. 2: Order in which pages are accessed. 

A. Index Plans 
Each time a row is requested by the Fetch operator, the 

storage engine looks up the page in which that row is located. 
Since potentially multiple tuples that satisfy the predicate may 
occur on the same page (i.e., have same PID value), we need 
to essentially evaluate a COUNT (DISTINCT PID) query over 
the full sequence of Fetch requests for the seek plan. The 
exact computation can therefore be expensive and furthermore 
can consume significant memory. Hence, we use a low 
overhead alternative as described below. 

Probabilistic Counting Approach: We adopt an approach 
based on probabilistic counting techniques [8][20]. We 
maintain a bitmap (hashed on the PID value) of the pages that 

satisfy the predicate. For each row that is fetched from the 
table, we compute the hash of the PID value for that row and 
set the corresponding bit in the bitmap. An estimate for the 
number of distinct PIDs is derived from examining the 
number of bits set in the bitmap. The algorithm is outlined in 
Figure 3 and is executed as part of the Fetch operator. We 
maintain the bitmap in step 3 and scale the estimate based on 
the number of bits that have not been set (step 6).  We assume 
an end-of-stream message is sent when all the input tuples 
have been consumed. More details of the algorithm are 
available in [20]. 

The probabilistic counting approach has desirable accuracy 
and performance properties. First, it has been shown to be the 
maximum likelihood estimator [20]. Second, the memory 
required to ensure high accuracy is very small (typically much 
less than one bit per page). Thus the main overhead is 
computing the hash value of the PID and our experiments 
(Section V) show that this overhead is small relative to normal 
query execution.  

 
Algorithm DerivePageCount(p)  
/* p is the predicate */ 
1. Initialize bitmap of size numbits 
2. repeat 
3. If  Satisfies (T, PID, p) is true, compute the hash value  
    using the PID value and set the corresponding bit 
    in the bitmap 
4. until (End of Stream) 
5. Compute the number of bits that have not been set  
    in the bitmap (numzero) 
6. return numbits ×  -1.0 ×  ln ( numzero / numbits) 

Fig. 3: Probabilistic Counting Algorithm. 

We note that another alternative is to use sampling 
techniques for estimating distinct values e.g., [4]. We can 
generate a random sample of the rows that are fetched from 
the table using reservoir sampling (e.g., [19]) and apply 
distinct value estimators for the PID value of the sampled 
rows. An example of such an estimator is the AE algorithm 
presented in [4], which computes a set of fi values (the number 
of values in the sample that occur exactly i times). Unlike 
probabilistic counting techniques which examine every row, 
distinct value estimators based on sampling cannot guarantee 
high accuracy [4]. We picked probabilistic counting due to its 
guaranteed accuracy properties as well as the engineering 
simplicity of incorporation into the storage engine. A 
thorough empirical evaluation of probabilistic counting vs. 
distinct value estimation using sampling for the purposes of 
distinct page counting is part of future work.  

B. Scan Plans 
For scan plans, i.e., Heap Scan or Clustered Index/Covering 

Index Scan the grouped page property described earlier holds 
(see Figure 2). Thus it is guaranteed that if two successive 
tuples have PID values of PID1 and PID2 respectively (PID1 



≠ PID2), then no further tuples in the scan will have the value 
PID1.  As a result there is no need for duplicate elimination of 
the PIDs. Thus, for scan plans the problem of distinct page 
counting DPC (T, p) reduces to a simpler problem of counting 
the number of pages satisfying a certain property: in particular, 
the Satisfies (T, PID, p) property. This can be implemented as 
follows. We maintain a counter for DPC (T, p) that is 
initialized to 0. For each page PID, as we process the tuples on 
that page, we check if at least one row belonging to that page 
satisfies the predicate p. If so we increment the counter. At the 
end of the scan, the value of the counter is the exact value of 
DPC (T, p).  

If the predicate p is indeed evaluated on every row as part 
of query execution, then the above method is very efficient 
both in terms of memory required and CPU overhead. It only 
stores one additional counter and performs a single 
comparison for each row (to check if the row passed the 
predicate). However, the current plan may not evaluate the 
predicate p on every row. This is due to the use of the well 
known performance optimization technique of predicate 
short-circuiting. The following example illustrates the 
problem.  

 
Example 3: Consider the Sales table discussed in Example 1. 
Consider a query whose predicates are (Shipdate = ’06-01-07’ 
and State = ‘CA’). Suppose the current execution plan is 
Table Scan and the above predicates are evaluated in the left 
to right order. Consider the case when a non-clustered index 
on (State) is present. In order to accurately estimate the cost of 
a plan that uses the index (State), we need to estimate the 
number of distinct pages for which Satisfies (Sales, PID, State 
= ‘CA’) is true, i.e., DPC (Sales, State = ‘CA’). However, the 
predicate evaluator typically resorts to predicate short-
circuiting for efficiency. In this example, if the predicate 
(Shipdate = ’06-01-07’) evaluates to FALSE for a row, the 
remaining predicates are not evaluated. Thus, the predicate 
State = ‘CA’ may not be evaluated for each row of the table.  

Note that in the above example, if the predicate for which 
the page counts are required was either (Shipdate = ‘06-01-07) 
or (Shipdate = ‘06-01-07’ and State = ‘CA’), turning off 
predicate short-circuiting is not required. For a sequence of 
conjunctive predicates, there is no need to turn off predicate 
short-circuiting to obtain the distinct page count 
corresponding to any prefix of the predicates. However, if the 
page counts are required for a predicate that is not a prefix of 
the predicates evaluated, it is necessary to turn off the 
predicate short-circuiting optimization.  

Turning off predicate short-circuiting can result in non-
trivial overheads. In order to mitigate the overheads incurred 
by turning off predicate short-circuiting we present an 
algorithm for distinct page counting based on page sampling. 
We need to estimate the number of distinct pages for which 
Satisfies (T, PID, p) is true. Recall that when the grouped page 
property holds, the problem of distinct page counting reduces 
to a simpler problem of counting. Since uniform random 
sampling is known to be an efficient technique for counting, 
we can estimate DPC (T, p) accurately by using a random 

sample of the pages. This technique can help reduce the 
overheads while still ensuring accurate estimation. The 
algorithm is outlined in Figure 4 and executes as part of the 
Scan operator.  

Observe that the above approach uses Bernoulli sampling 
to choose a page with probability f (step 3). In particular, this 
implies no additional memory is required. As before a single 
counter for DPC (T, p) needs to be maintained. If evaluating 
the predicate p requires turning off predicate short-circuiting, 
the algorithm does so only for the tuples occurring on the 
pages in the sample. This ensures that the overhead of turning 
off predicate short-circuiting is bounded. In the above 
algorithm f is the desired sampling fraction. As we show in 
our experiments (Section V), the overheads of computing 
distinct page counts using this approach are also small 
(typically < 2%). 

The above algorithm has several desirable properties: (a) It 
produces an unbiased estimator of DPC (T, p) (unlike the 
more general purpose method of probabilistic counting [8][20]) 
(b) It provides tight error guarantees based on Chernoff 
bounds. (c) It is lower overhead when compared to the 
estimators discussed in Section III-A (probabilistic counting 
and distinct value estimators based on sampling e.g., [4]).  

 
Algorithm DPSample(f, p) 

/* f is the sampling fraction, p is the predicate */  

 1. PageCount = 0 
 2. repeat 
 3. If it is the start of a new PID in the Scan, select the page 
     PID with probability f 
 4. If page PID is chosen as part of the sample, turn off 
     predicate short-circuiting if necessary, and evaluate   
     predicate p for all rows in that page.  
 5. Increment PageCount if at for least one row in PID, 
     Satisfies (T, PID, p) is true 
 6. until (End of Scan) 
 7. return (PageCount / f ) 

Fig. 4: DPSample Algorithm. 

IV. OBTAINING DISTINCT PAGE COUNTS FOR JOIN 
METHODS 

In this section, we describe how to monitor the distinct 
page count that is relevant for the costing of the Index Nested 
Loops (INL) join method. Consider the query discussed in 
Example 2. For the join between the relations R1 and R2 (see 
Figure 1), the distinct page count for R2 is relevant for choice 
of the INL join method, when R2 is the inner relation. In 
particular we need to know DPC (R2, p) where p is the join 
predicate between R1 and R2. Note that p does not include 
any selection predicates that may be present on R2 since in an 
INL join method the selection predicate on R2 is evaluated 
after the join.  

Of course, the current plan chosen by the optimizer could 
be any one of: INL Join, Hash Join or Merge Join. Below we 



discuss in turn how the above distinct page count can be 
obtained for each of possible join methods. Similar to the 
single table case, we note that obtaining distinct page count 
for a join is relevant only if there exists an index on the join 
column(s). Note that in a join plan, we can also obtain the 
page counts relevant for the access methods of the 
corresponding tables by using the techniques discussed in 
Section III. 

Index Nested Loops Join: Consider the case when the 
current plan is the INL join plan (see Figure 1). Observe that 
after looking up the index on the join column of R2, the order 
in which the rows to be fetched from the R2 table appear is 
similar to the case of an Index Seek plan (Section III-A). 
Therefore to obtain the desired distinct page count, the 
probabilistic counting technique described in Section III-A 
can be directly applied in this case.  

Hash Join: Referring to Example 2, recall that we need to 
compute DPC (R2, p) where p is the join predicate. This can 
be non-trivial for the following reason. Although the predicate 
p is evaluated in the Hash Join operator, the PID values of R2 
are not available there. In the scan of R2, even though PID 
values are available, the predicate p has not yet been evaluated. 
We handle this problem by exploiting the idea of bit vector 
filtering.  

Bit vector filters have been used in the context of parallel 
database systems e.g. [7] to improve the efficiency of Hash 
Join. The key idea is to compute a bit vector during the build 
phase of the join (see Figure 5). For each row in the outer, the 
value of the join column is hashed and the corresponding bit is 
set. During the probe phase, for each row of the inner, the 
value of the join column is hashed, and the bit vector is 
examined. If the corresponding bit is set, then we know that 
the page to which that row belongs would be accessed during 
an INL join. In effect, the bit vector filter can be used as a 
“derived” semi-join predicate during the probe phase. We can 
thus invoke the DPSample algorithm (Figure 4) during the 
Table Scan of the probe table. The modifications required for 
the Hash Join plan (used in Example 2) are illustrated in 
Figure 5. Further details of our implementation are described 
in Section V-A.  

If the number of bits used for the bit vector is at least as 
many as the number of distinct values of the join column of 
the outer relation, then the above method guarantees the exact 
page count, since there are no false positives due to collisions. 
If fewer bits are used, then due to collisions, the page count 
can be overestimated. In our experiments (Section V), we find 
small overestimation of distinct page count even when using a 
relatively small number of bits.  

Merge Join: The idea of bit vector filtering for computing 
page counts described above is also applicable to a Merge Join 
[9] whenever the bit vector for the outer relation can be 
computed before the inner relation is scanned. For Merge 
Joins where the outer child is a Sort operator, notice that this 
property holds. This is because the first GetNext() call to the 
Sort operator is blocking and returns only after its child is full 
consumed enabling the construction of the bit vector. Bit 
vector filtering is also applicable to the case when both inputs 

are clustered on the respective join columns, i.e., no Sorts on 
either input. Note that for this case, the partial bit vector filter 
corresponding to the outer rows consumed thus far can be 
used during the scan of the inner relation to compute the page 
count. This is because the Merge Join only advances the 
pointer of the inner relation if the values of the join column 
match the outer. Note that partial bit vector filters can also be 
applied for the case when the outer is not sorted and the inner 
child is sorted.  
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Fig. 5: Distinct Page Counting using Bitvector Filters. 

 

V. IMPLEMENTATION AND EXPERIMENTS 

A. Implementation 
Functionality: We have prototyped the page counting 

mechanisms described in Sections III and IV in the engine of 
Microsoft SQL Server 2005. For a given query, we take as 
input a set of expressions (e.g., (Shipdate = ‘06-01-07’) is an 
expression) for which distinct page counts are needed. Our 
functionality is currently enabled in the statistics xml mode 
[21]. In this mode, after the query execution is complete, the 
server outputs the execution plan in xml format along with 
additional counters gathered during the query’s execution, e.g., 
cardinality of each operator in the plan. We augment this 
output with the estimated and the actual distinct page count 
for each requested expression. We have also implemented a 
method by which the distinct page count for a given 
expression can be input to the query optimizer. This allows 
the user (e.g., a DBA) or a diagnostic/tuning tool to inject a 
distinct page count value for an expression and obtain the 
execution plan by optimizing with the injected page count(s). 
We use this functionality in our experiments to determine the 
impact of the page counts obtained from query execution on 
the quality of the plan. Finally, for the case of joins, we have 
built the mechanisms for INL join and Hash Join.   

Handling the RE/SE separation: In Microsoft SQL Server, 
the PID value for a row is only available in the storage engine 
(SE). While it is possible to modify the server to expose PID 
values outside the SE in the relational engine (RE) operators, 
the engineering complexity as well as performance overheads 
of such a change can be significant. Since predicate evaluation 



of most predicates (except expensive UDFs) is typically done 
inside the SE, we implemented the necessary changes to 
turning off predicate short-circuiting in the SE. Information 
that needs to be passed from SE to RE is accomplished via 
callbacks to the RE layer, for instance for utilizing the 
bitvector filter for Hash Joins (Section IV).   

Impact on cached plans: Our implementation allows the 
functionality of obtaining distinct page count to be turned 
on/off without impacting the cached plan for a query. This is 
because none of our mechanisms requires changes to the plan 
itself. It allows DBAs to selectively turn on the mechanism 
when desired without incurring the overhead of recompilation.   

B. Experiments 
The goals of the experiments are: (a) To demonstrate that 

distinct page counts can improve the quality of plans 
significantly, even when the cardinality estimates available are 
already accurate. (b) To examine the overheads imposed by 
our mechanisms (Sections III, IV) to obtain distinct page 
counts. (c) To measure the importance of obtaining accurate 
distinct page counts in real world databases. Table I lists the 
set of databases used in our experiments. 

TABLE I 
DATABASES USED IN EXPERIMENTS 

Database  Num  
Rows 
(millions) 

Num 
Pages 
(1000s) 

Avg. Num 
Rows Per 
Page 

Book Retailer 10.8  403 27 
Yellow Pages  1   25 39 

   TPC-H(10GB) 
Skew factor (Z=1) 

60     1121 54 

Voter data  4  89 46 
Products 0.56  65 9 
Synthetic     100 1450 80 
 
Evaluation Methodology: Consider a query Q. Let the 

current execution plan be P. For our experiments, we run the 
plan P and obtain the distinct page counts using the 
appropriate monitoring mechanisms for the plan. We optimize 
the query by injecting the distinct page count values obtained 
from execution feedback. Let the new plan obtained be P’. Let 
the time taken to execute plans P and P’ be T and T’. We 
report the SpeedUp achieved as:  (T – T’)/T. In order to 
isolate the effects of the distinct page counts, we ensured that 
the plan P was generated after injecting accurate cardinality 
values to the optimizer. All execution times were measured 
with a cold cache which ensures that effects due to buffering 
are eliminated. 

1)  Experiments Using Synthetic Data 
We generated a table (see Synthetic database in Table 1) 

with 100 million tuples having the following schema T 
(C1,C2,C3,C4,C5, padding). The padding column is added to 
make the size of each tuple 100 bytes. C1 is an identity 
column with values from 1 to 100000000. Columns C2 to C5 
represent different permutations of the values in column C1 
and are intended to capture different on disk correlations with 

C1. For instance, the column C2 is equal to column C1 
(representing the fully correlated case), while column C5 is a 
random ordering of the column C1 (and thus is uncorrelated). 
The intermediate columns represent other data points in 
between the two extremes. We built a clustered index on 
column C1 and non-clustered indexes on columns C2 to C5.  
 

 
Fig. 6: SpeedUp for single table queries. 

 

 
Fig. 7: Overheads for single table queries. 

Single Table Queries: We generated queries of the form 
select count(padding) from T where Ci < val. The selectivity 
values were chosen randomly from 1% to 10%. We observed 
for selectivity values greater than 10%, the Table scan plan 
was optimal irrespective of errors in the optimizer estimate of 
distinct page counts. We used a query workload of 100 
queries (25 queries each for the columns C2,C3,C4,C5).  We 
ensured that the cardinality estimates were accurate by 
injecting the accurate cardinalities (which were obtained 
offline). Using distinct page counts obtained from query 
execution changes the plan in many cases, thereby 
significantly improving the performance of queries. Figure 6 
illustrates the speed up for the query workload, while Figure 7 
illustrates the monitoring overheads for the queries. We note 
that the performance overheads are small (less than 2% for 
most queries). We observed for most queries that the plan 
changes from Table Scan to Index Seek. This is because the 
Microsoft SQL Server optimizer assumes independence 
between the clustering column and the index column. As a 
result, the best improvements in Figure 6 are for queries 
involving columns C2, C3 and C4. For queries with predicates 



on column C5 (queries 75 to 100) which is uncorrelated with 
C1, the distinct page counts do not lead to improvements since 
the optimizer’s estimates of the distinct page count are already 
quite accurate. 

 

 
Fig. 8: SpeedUp for join queries. 

Join Queries: We created a copy of table T called T1 and 
created a clustered index on the table column T1.C1. We then 
generate join queries of the form: 

select count(T.padding) from T, T1  
where T1.C1 < val and T1.Ci = T.Ci 
The optimizer can choose a Hash join for evaluating this 

query or choose an Index Nested Loops plan using table T as 
the inner and using the index on Ci column. By varying the Ci 
column, we can vary the number of pages fetched for a given 
selectivity value. We used a workload of 40 queries and 
picked selectivity values for the outer such that the distinct 
page value could influence the plan choice. For selectivities 
beyond a threshold value (around 7%), we found that the Hash 
Join is optimal. Figure 8 illustrates that distinct page counts 
can provide significant benefits for the case of join queries. In 
our experiments, the maximum performance overhead due to 
bitvector filtering that we observed was 2%. Using a bitvector 
filter of a modest size (less than 1% of the table size) was 
sufficient to yield high accuracy.   

 
Effectiveness of page sampling: In the previous set of 

experiments, since the queries have only one predicate there 
was no need to turn off predicate short-circuiting (Section III-
B). In order to understand the performance implications of 
turning off predicate short-circuiting, we performed the 
following experiment. We used a set of queries with 
increasing number of predicates. Figure 9 illustrates how the 
monitoring overheads for obtaining all the relevant distinct 
page counts increase with the number of predicates. For this 
experiment, we used page samples of 1%, 10% and 100% (i.e., 
full scan). While obtaining the exact distinct page counts is 
feasible for the Table Scan operator, the overheads of turning 
off predicate short-circuiting for all tuples is clearly 
impractical. Thus, in order to ensure that the monitoring 
mechanisms scale to a larger number of predicates, it is 
essential to use the DPSample algorithm. Note that at 1% 
sampling, the DPSample algorithm incurs an overhead of 

around 2% and provides an estimate of the distinct page count 
whose maximum error is 0.5%. 

 

 
Fig. 9: Effectiveness of Page Sampling. 

2)  Experiments Using Real World Databases and TPC-H 
 

 
 Fig. 10: Page Clustering for Real Datasets. 

In this section we measure the importance of obtaining 
accurate distinct page counts in real world databases.  We use 
the TPC-H database as well as 4 real world databases. The set 
of databases used and their properties are listed in Table I. 
Consider a query of the form: SELECT … FROM T WHERE 
C = Value. Suppose the predicate in the WHERE clause is 
satisfied by n rows. Also, let the number of rows per page be k, 
and the total number of pages in the table be P.  Then, the 
lower bound (LB) on the number of pages in the table that 
must be accessed to fetch the n rows is n/k. The upper bound 
(UB) on the number of pages that must be accessed to fetch n 
rows is min (n, P), since in the worst case, each of the n rows 
may occur in a different page (but not exceeding P in total). 
The actual number of pages (N) must therefore satisfy: LB ≤ 
N ≤ UB. Consider the following measure:  

 
Clustering Ratio (CR) = (N-LB) / (UB-LB) 
 
Note that 0 ≤ CR ≤ 1. CR = 0 implies that N = LB (fewest 

number of pages need to be fetched), which occurs when the 
values of column C on disk are fully correlated with the table 
clustering. On the other hand, (CR = 1) => (N = UB), and 



therefore the largest number of pages possible for the 
predicate need to be fetched. Figure 10 shows the Clustering 
Ratio for several queries on 5 real world databases (see Table 
1 for details). Note that since the Clustering Ratio is 
normalized, we can show all the results in the same plot. We 
show queries whose selectivity is less than 10%. For different 
predicates the Clustering Ratio varies widely. The mean 
Clustering Ratio for the above data points is 0.56 whereas the 
standard deviation is 0.4! This experiment suggests that 
simple analytical formulas may be insufficient to capture the 
clustering effects in real world database. 

 
Impact on plan quality for real-world databases: For 

this experiment, we generated queries as described above. 
Figure 11 shows the speed up obtained when we use the 
distinct page counts obtained from execution feedback for 80 
queries for different columns across the real world databases 
from Table 1. For example, in TPC-H we use the three date 
columns on the lineitem table. The results suggest that our 
techniques can have significant benefits for real world data 
sets. 
 

 
Fig. 11: SpeedUp for Real World Databases. 

VI. RELATED WORK 
Early work [6][18] showed how on-disk clustering effects can 
result in inaccurate distinct page count estimation. We can 
consider using histograms for distinct page count estimation 
(similar to cardinality estimation). However, this may require 
non-trivial extensions. For example, unlike traditional 
histograms the distinct page counts are not additive across 
buckets since tuples belonging to two different buckets can 
belong to the same page. We also note that modeling 
clustering effects for a join method requires the ability to 
create the histogram of distinct page counts over a join 
expression (similar to [3]), which is non-trivial. A more 
detailed examination of how the techniques presented in this 
paper compare with a histogram-based approach is part of 
future work. It is also interesting to examine whether synopsis 
structures such as those presented in [2] can be leveraged for 
distinct page count estimation.   
There has been previous work that focused on correcting 
errors in cardinality estimates utilizing execution feedback to 
obtain the cardinalities of query expressions [17]. This paper 
uses execution feedback to obtain accurate estimates of a 

different parameter of the cost model, namely distinct page 
count. A characterization of the sensitivity of query 
optimization to storage parameters such as disk rates is 
presented in [15]. Qin et al. [13] present an adaptive approach 
for calibrating the cost model dynamically based on execution 
feedback. Our focus in this paper is complementary to this 
work since we present mechanisms to obtain actual distinct 
page counts for a query, which could be used in the above 
framework for calibrating the cost model.  
The problem of accurately estimating page fetches is also 
considered in [14]. Their approach is to use pre-computed 
samples and execute suitable predicates on these samples to 
estimate what fraction of the required pages is cached in the 
buffer pool. In this paper, we do not address the buffering 
effects and instead focus on distinct page counts. While the 
buffer pool contents can change (even during the execution of 
a single query), distinct page counts can potentially be reused 
to correct estimation errors in future queries having similar 
predicates. Moreover, for obtaining distinct page counts of 
join predicates, the pre-computed samples need to be extended 
to include join synopses, which is non-trivial.  Our focus is on 
a lightweight framework that can be used to detect errors in 
estimates of the page counts and correct them. 
There has been prior work on using sampling for estimating 
the number of distinct values of a relation [4]. As discussed in 
Section III-A, these techniques are applicable to our problem. 
However, when the grouped page access property holds, we 
are able to engineer a more efficient and accurate method that 
is specific to our problem. 
Bit vector filtering has been used to optimize the performance 
of hash based query operators. Some of its applications 
include reducing the overhead of communication in parallel 
database systems [7] and in efficiently processing the 
recursive partitioning case for hash joins [9]. In this paper, we 
present a novel application of this technique to help in distinct 
page counting. We note that unlike the traditional usage, 
where bitmaps are only maintained for partitions that are 
spilled to disk, we need to maintain the bitmaps for the entire 
relation. However, as we demonstrate in our experiments 
(Section V-B), the overheads of our bit vector filtering 
implementation are small.  

VII. CONCLUSIONS 
DBAs today have limited support to diagnose whether a 

poor plan choice by the optimizer for a given query was due to 
inaccurate estimation of distinct page counts. In particular, 
DBMSs do not provide the ability for obtaining accurate 
distinct page counts. We present low overhead mechanisms 
that can be used to obtain accurate distinct page counts by 
leveraging query execution feedback. The distinct page counts 
thus obtained can be utilized in multiple ways. DBAs and 
client tools can potentially correct a poor plan choice using 
plan hinting mechanisms. Distinct page counts obtained can 
also be used by the optimizer itself to improve the cost 
estimation for future queries or to update histograms on page 
counts. A careful study of such feedback driven optimization 
for page counts is an interesting direction of future work.  
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