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Research Tutorial Outline

 Part | (by Li Deng): Background of deep learning, common
and natural Language Processing (NLP) centric architectures

* Deep learning Background
— Industry impact & Basic definitions
— Achievements in speech, vision, and NLP

 Common deep learning architectures and their speech/vision applications
— Fully connected deep neural nets (DNN), DNN-HMM, CD-DNN-HMM, Tensor DNN
— Deep convolutional neural nets (CNN)
— Deep stacking networks (DSN), kernel DSN, tensor DSN, recurrent DSN
— Recurrent neural nets (RNN), bi-directional RNN, deep RNN, LSTM-RNN

* Deep learning architectures for modeling NL structure
— Neural network & RNN for language modeling
— Models for word embeddings
— Recursive neural networks with local and global contexts

— DSSM (Deep Structured Semantic Model; Deep Semantic Similarity Model) and its
variants
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* Part Il (by Xiaodong He): Deep learning in spoken language
understanding (SLU)
e Overview of SLU
* Domain & intent detection using DNN
 Slot filling/sequential tagging using RNN

e Part lll (by Xiaodong He): Learning semantic embedding
* Word embedding and sub-word embedding
e Semantic embedding: from word to phrase & document
* Learning semantic embedding using DSSM

* Part IV (by Jianfeng Gao): Deep learning in machine translation
e Qverview of statistical machine translation
« DNN-based semantic translation models

 PartV (by Jianfeng Gao): Deep semantic similarity models

* Overview of semantic similarity models
* Deep structured semantic models (DSSM) for Web Search
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Background/Impact of Deep Learning
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Introduction The 1C

ologies Past Years

DeepLearning

With massive
amounts of
comﬁutational power,
machines can now
recognize objects and
translate speech in
real time. Artificial
intelligence is finally
getting smart.

Temporary Social
Media_

Messages that quickly
self-destruct could
enhance the privacy
of online
communications and
make people freer to
be spontaneocus.

Prenatal DNA
Sequencing

Reading the DMNA of
fetuses will be the
next frontier of the
genomic revolution.
But do you really want
to know about the
genetic problems or
musical aptitude of
your unborn child?

Additive
Manufacturing

Skeptical about 3-D
printing? GE, the
world's largest
manufacturer, is on
the verge of using the
technology to make
jet parts.

Baxter: The Blue-
Collar Robot

Rodney Brooks's
newest creation is

easy to interact with,
but the complex
innovations behind the
robot show just how
hard it is to get along
with people. N

Memeoryimplants

A maverick
neuroscientist
believes he has
deciphered the code
by which the brain
forms long-term
memories. Next:
testing a prosthetic
|mPIan_t for people
suffering from long-
term memory loss.

X

Smart Watches

The designers of the
Pebble watch realized
that a mobile phone is
more useful if you
don't have to take it
out of your pocket.

X

Ulira-Efficient Solar
Power

Doubling the
efficiency of a solar
cell would completely
change the
economics of
renewable energy.
MNanotechnology just
might make it
possible.

BigData from Cheap
Phones

Collecting and
analyzing information
from simple cell
phones can provide
surprising insights into
how people move
about and behave -
and even help us
understand the
spread of diseases.

Supergrids

A new high-power
circuit breaker could
finally make highly
efficient DC power
grids practical. N
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Ehe New Pork Eimes

Scientists See Promise in Deep-Learning Programs
John Markoff
November 23, 2012

Rich Rashid in Tianjin, October, 25, 2012

Geoff Hinton
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XBOX! BRING
ME A PIE!
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MIT racepook LLaunches Advanced
1=l [3 (o1 [eTe)TA Al Effort to Find Meaning in

Review Your Posts

A technique called deep learning could help Facebook understand
September 20, 2013 its users and their data better.

By Tom Simonite on September 20, 2013

...... Facebook’s foray into deep learning sees it following

its competitors Google and Microsoft, which have used A BR'EF GU'DE
the approach to impressive effect in the past year. 'm FACEB“UK
Google has hired and acquired leading talent in the field

(see “10 Breakthrough Technologies 2013: Deep |NS|GHTS ":3":2225}2”
Learning”), and last year created software that taught i e o e L o
itself to recognize cats and other objects by reviewing
stills from YouTube videos. The underlying deep learning s
technology was later used to slash the error rate of o
Google’s voice recognition services (see “Google’s Virtual ;':."f:'.'."'i“!,f;".:.";‘;',"ff".ﬂ'ff'f{'ff‘
Brain Goes to Work”)....Researchers at Microsoft have i B

used deep learning to build a system that translates

speech from English to Mandarin Chinese in real time R Ll
(see “Microsoft Brings Star Trek’s Voice Translator to ——
Life”). Chinese Web giant Baidu also recently established

a Silicon Valley research lab to work on deep learning. TALKING ABOT ThIS :

pregie D othar matyics ww & tractae of
awee-Jgss than Th.

IMPRESSIONS
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http://www.technologyreview.com/news/507181/microsoft-brings-star-treks-voice-translator-to-life/

DEEP LEARNING

“» Computers leaming and
growing on their own

% Able to understand
~ ~ complex, massive
amounts of data

N
P e

DATA ECANBMY p—

BROUGHT TO PR
SN DEEP LEARNING et /‘

SCNBC

Is Deep Learning. the 'holy grail' of big data? - CNBC - Video

...m]_t - video.cnbc.com/gallery/?video=3000192292 ~

S o Aug 22, 2013
é 'y { Derrick Harris, GigaOM, explains how "Deep Learning"
e eyl computers are able to process and understand ...
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BUSINESS NEWS B 8 COMMENTS

Is Google Cornering the
Market on Deep Learning?

A cutting-edge corner of science is being wooed by Silicon Valley, to
the dismay of some academics.

By Antonio Regalado on January 29, 2014

How much are a dozen deep-learning researchers
worth? Apparently, more than $400 million.

This week, Google reportedly paid that much to
acquire DeepMind Technologies, a startup based in

This is Freescal

malke it
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The Race to Buy the Human Brains Behind
Deep Learning Machines

By Ashlee Vance W | January 27, 2014

intelligence projects. “DeepMind is bona fide in terms of its research capabilities
and depth,” says Peter Lee, who heads Microsoft Research.

According to Lee, Microsoft, Facebook (FB), and Google find themselves in a battle
for deep learning talent. Microsoft has gone from four full-time deep learning
experts to 70 in the past three years. “We would have more if the talent was there to
be had,” he says. “Last year, the cost of a top, world-class deep learning expert was
about the same as a top NFL quarterback prospect. The cost of that talent is pretty

remarkable.”
11
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CASSP 2013 <@IEEE

Vancouver Convention & Exhibition Centre
ial Processing Soclely
May 26 -31, 2013 « Vancouver, Canada b v v

Plenary Speakers

Plenary Speakers

Geoffrey E. Hinton

University of Toronto and Google Inc.

View Video

! Daphne Koller

Stanford University

Special Sessions

ICASSP 2013 will offer the following special sessions:

Acoustic Event Detection and Scene Analysis
Organized by Mark Plumbley, Dimitris Giannoulis and Mathieu Lagrange

New types of deep neural network learning for speech

recognition and related applications
Organized by Li Deng, Geoff Hinton and Brian Kingsbury

Special Sessions



http://research.microsoft.com/c/1040
http://research.microsoft.com/c/1040

N b2d 1 | Neural Information
Processing Systems
Foundation

NIPS : Conferences : 2009 : Program

MIFS Home
Cverview
Conference Videos
Workshop Videos
Program Highlights
Tutonals
Conference Sessions
Workshops
Publication Models
Demonstrations
Mini Symposia
Accepted Papers
Dates

Committees
Sponsors

Awards

Board

Li Deng, Dong Yu, Geoffrey Hinton

Microsoft Research; Microsoft Research; University of Toronto

Deep Learning for Speech Recognition and Related Applications
7:30am - 6:30pm Saturday, December 12, 2009
Location: Hilton: Cheakamus

Abstract: Over the past 25 years or so, speech recognition technology has been
dominated by a “shallow” architecture — hidden Markov models (HMMs). Significant
technological success has been achieved using complex and carefully engineered variants
of HMMs. The next generation of the technology requires solutions to remaining technical
challenges under diversified deployment environments. These challenges, not adequately
addressed in the past, anse from the many types of variability present in the speech
generation process. Overcoming these challenges is likely to require “deep” architectures
with efficient learning algorithms. For speech recognition and related sequential pattern
recognition applications, some attempts have been made in the past to develop
computational architectures that are “deeper” than conventional HMMs, such as
hierarchical HMMs, hierarchical point-process models, hidden dynamic models, and multi-
level detection-based architectures, etc. While positive recognition results have been
reported, there has been a conspicuous lack of systematic learning techniques and
theoretical guidance to facilitate the development of these deep architectures. Further,
there has been wvitually no effective communication between machine learning researchers
and speech recognition researchers who are both advocating the use of deep architecture
and learning. One goal of the proposed workshop is to bring together these two groups of
researchers to review the progress in both fields and to identify promising and synergistic
research directions for potential future cross-fertilization and collabaration.

http://research.microsoft.comfen-us/um/people/dongyu/MNIPS2009/
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Useful Sites on Deep Learning

* http://www.cs.toronto.edu/~hinton/

* http://ufldl.stanford.edu/wiki/index.php/UFLDL Recommended R
eadings

* http://ufldl.stanford.edu/wiki/index.php/UFLDL Tutorial (Andrew
Ng’s group)

 http://deeplearning.net/reading-list/ (Bengio’s group)

 http://deeplearning.net/tutorial/

* http://deeplearning.net/deep-learning-research-groups-and-

labs/

14
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Common
architectures
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DNN: (Fully-Connected) Deep Neural Networks oenom

Hinton, Deng, Yu, etc. IEEE SPM, 2012

REM DBN
REM I W I W
Copy
——>
GRBM 1 W J, We
Copy
>

First train a stack of N models each
of which has one hidden layer. Each
model in the stack treats the
hidden variables of the previous
model as data.

W,

Then compose
them into a
single Deep
Belief Network.

Then add
outputs and
train the DNN
with
backprop.
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Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed, Navdeep Jaitly,
Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N. Sainath, and Brian Kingsbury
IEEE Signal
Processing

egeane, Deep Neural Networks

o1 for Acoustic Modeling
in Speech Recognition

The shared views of four research groups

O15 TOCK PHOTO.COM S UCHOW LE RTADIPAT

FUNDAMENTAL TECHNOLOGIES

VIO LU ath 1 LGN I\
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Context-Dependent DNN-HMM
(2010 at MSR for speech recognition)

— Transition Probabilities Determined
writh Triphone Strcture

o |l @]
[

Observation
lProhabilitv
= == =  Estimated

ﬁ"‘”JI hi> I with DBN
! ﬁi"— F] I_*ga'l
[ =
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Research  pNN-HMM vs. GMM-HMM

(Deng, Yu, Acero, 2006; Mohamed, Yu, Deng, 2010; Yu, Deng, Dahl, 2010-2012; Seide, Li, Yu 2011; Chen,Li,Seide,Yu,2012)

= Table: TIMIT Phone recognition (3 hours of training)

GMM w. deep hid.dynamics 24.8%
DNN 5 layers x 2048 22.8%

* Table: Voice Search SER (24-48 hours of trainin

GMM MPE (760 24-mix) 36.2%

DNN 5 layers x 2048 30.1%
e Table: Switch Board WER (309 hours training)

GMM BMMI (9K 40-mix) 23.6%
DNN 7 layers x 2048 15.8%

e Table: Switch Board WER (2000 hours trainin

GMM BMMI (18K 72-mix) 21.7%
DNN 7 layers x 2048 14.6%
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Research  Deep Convolutional NN for Images

CNN: local connections with weight sharing; 2 01 2 — 2 01 3

pooling for translation invariance

Fully connected

)

Fully connected

)

Fully connected

e a r‘ I e r Convolution/pooling

Convolution/pooling

)

)

0

Convolution/pooling

0

Convolution/pooling

0

Image Convolution/pooling

)

Raw Image pixels



http://research.microsoft.com/c/1040
http://research.microsoft.com/c/1040

Microsoft

Research

A Basic Module of the CNN

Pooling

L

Convolution

L

Image
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Deep CNN

C3:f. maps 16@10x10
CA: feature maps 54 1. maps 16@5x5
INPUT
5@ 28x28 .
S2: 1. maps

G@14x14

| Fullconrllec:tion | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Image LeCun et al., 1998

~ Output

13 \ 13
224 I v ENRR 3| |t N
. 13 T ’ dense’| [dense
' 27 ] 3|\ AP 1
3| N 1000
192 192 128 L L
2048 2048
128 N P
A4

o 90% parameters
SuperVision, 2012
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(Fall 2012)
40
35
30
25
S 20
v
15
10
5
0
»w‘* o ws"e‘da w&° “'\\“\\ o &0‘6 oue® N\S\o
v Deep CNN !!!

Univ. Toronto team
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Deconvolutional Neural Nets

5 1
=! =

Layer Above
Reconstruction

Switches

Max Unpooling

Pooled Maps

AN

z W Max Pooling

Unpooled Maps

Rectified Feature Maps

Rectified Linear
Function

AN

Rectified Linear
Function

Rectified Unpooled Maps

Feature Maps

Convolutional
Filtering {FT}

ZAN

Convolutional
Filtering {F}

Reconstruction

Layer Below Pooled Maps

Layer Above
Reconstruction =5

Max Locations

“Switches”
Unpooled Rectified
Maps Feature Maps

The top portion shows how a deconvolutional network’s layer (left) is attached to a corresponding CNN's layer (right). The deconvolutional
network reconstructs an approximate version of the CNN features from the layer below. The bottom portion is an illustration of the unpooling

operation in the deconvolutional network, where “Switches” are used to record the location of the local max in each pooling region duiiig
pooling in the CNN. [after (Zeiler and Fergus, 2013), @arXiv].
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Research Same ImageNet 1K Competition
One year later i 2013)

0
Q.
O

X
-
O
—
-
Q
et
LN
Q
|_

Summary results of ImageNet Large Scale Visual Recognition Challenge 2013
(ILSVRC2013), representing the state-of-the-art performance of object recognition
systems.
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CNN also good for speech

output targets

1 L1

Convolutional
Neural Network

normalization

log-mel features T

non-linearity (i.e., log)

mel-filterbank 4
feaMv T T \

filter 1 filter 2 A filter 39 filter 40

power spectrum

Joint learning of filter parameters and the rest of the deep network. [after (Sainath et al., 2013b), @IEEE].
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rclBeep Stacking Network (DSN)

* |nterleave linear/nonlinear layers
* Exploit closed-form constraints

among network’s weights

e Much easier to learn than DNN

* Naturally amenable to parallel

training

e (Largely) convex optimization

Deng, Yu, Platt: Scalable stacking and learning for building deep
architectures, IEEE ICASSP , March 2012

27
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Learning DSN Weights --- Main ldeas

* Learn weight matrices U and W in
individual modules separately.

* Given W and linear output layer, U
can be expressed as explicit nonlinear
function of W.

* This nonlinear function is used as the
constraint in solving nonlinear least
square for learning W.

* |nitializing W with RBM (bottom layer)

* For higher layers, part of W is
initialized with the optimized W from
the immediately lower layer and part
of it with random numbers

28
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h
"R neat way of learning DSN weights

E=l |V, — t,||? wherey, =UTh, =UTe(W'x,)) = G, (U W
2 yn n ) yn n o xn - Tl( ) )
n

ZTE; =2HWTH-T)" > U= (HHT) HT" = F(W). where h, = c(Wx,,)

E =%, |1Ga(U, W) — t,][2, subject to U= F(W),

. U
Use of Lagrange multiplier method:

1
E=_YnllGa(U,W) —ty]|* + 2| |U —F(W)|] W

to learn W and then U = no longer backpropagation

e Advantages found:
--- less noise in gradient than using chain rule ignoring explicit constraint U= F(W)
--- batch learning is effective, aiding parallel training 29
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esear(I:

erne Eed DSN: equivalent of inf-sized hidden layers

Getting infinite-sized hidden layers without
Predicti
infinite-sized parameters

. . 3
 Kernel trick is used c®

* Problem of kernel machine: Scaling to data size K® = (X®)GT(x®)

* Lots of work done on approximation e

l Preds Y( Preds Y(® Input Data X I X®

c@

K® = 6(X@HGT (X))

5@

[ Prediction Y(¥) Input Data X ] xX®

Input Data X

An example architecture of the K-DSN with three modules each of which uses a Gaussian kernel
with different kernel parameters. [after (Deng, Tur, He, 2012), @IEEE] 30
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(Hutchinson, Deng, & Yu, ICASSP-2012, IEEE T-PAMI, 2013)

Imnput Data


http://research.microsoft.com/c/1040
http://research.microsoft.com/c/1040

Microsoft

Regeamsbr-DSN is powerful: Correlation modeling of
internal representations

L, Lg
DSN TDSN TDSN Y — Z Zl’/ﬁjkh(mh{g}j = fl;{h

i=1 j=1
B oo cwen

Implicit Hidden Layer

Predictions Predictions

h = h(;) ® hgy € RIE2
Hidden Layer

m Hidden 2

Input Data

Comparisons of a single module of a DSN (left) and that of a tensor DSN (TDSN).
Two equivalent forms of a TDSN module are shown to the right. [after
(Hutchinson et. al., 2012, 2013), @IEEE]

32
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(Yu, Deng, Seide, IEEE T-ASLP, 2013)

Label w Label v Label v
uji-:l.:hl VI+1=hI Ul-rl:hl
WI
W' u'

vj=h II-IIE hzl_l

v=h"1 hll-l hzl—l hll-:l. > é{j . h1|-:|_

- o~ -
wl—:l. wll-l Wzl_l Wll-j wll-l
"U"I_1=h|-2 Ul'lz hl-z "ufj- 1=hl—2
1..I":'=In|:1|u‘lz ™ 1o..rﬂ'=lr'||p|l_.|t ™ vc':lnput »
(a) (b) (c)

Figure 1: Archirectural illustrations of DINN and DTNN. (a)
DNN. (b) DITNN: hidden laver h'™! consists of two parts: hi—1
and hY™ Y. Hidden laver h! is a tensor laver to which the
connection weights u'l form a three-wav tensor. (c) An
alternative representation of (b): rensor u' is replaced with

5/14/2014 . ] 7. 1—1 1—1
matrix w' when vt is defined as the cross product hyj "~ & hi .
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Microsoft h
Fg%ﬁng with (double-small) Hidden Layers

* Smaller-sized hidden stacking layer

* Closer to “Recurrent” neural nets

* A new moduleis a new “time” step Predictions

* This leads to the “recurrent” DSN

* Then, the same learning trick for DSN
applies directly to learning RNN

t+1

Input Data

Stacking of TDSN modules by concatenating two
hidden-layers’vectors with the input vector.

34
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== Recurrent Neural Networks (RNN)

* Recurrent Neural Network unfolding over time:

35
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Bi-directional RNN

Outputs Yt4+1 - - -

Backward Layer

Forward Layer ‘<

Inputs Tigp1 - - -
ﬁ n X ﬁt—l + bﬁ)

%
(W cry + Wesh g +b<ﬁ)
— —

>

Information flow in the bi-directional RNN, with both diagrammatic and
mathematical descriptions. W are weight matrices, not shown but can be easily
inferred in the diagram. [after (Graves et al., 2013), @IEEE].


http://research.microsoft.com/c/1040
http://research.microsoft.com/c/1040

Microsoft:

Research
A Long-Short-Term-Memory Unit in LSTM-RNN

bht

it = 0 (Wayize + Whihi—1 + Weic—1 + bi)
fr =0 Wypay + Whphi—1 + Weper1 + by)

/ T \ ¢t = frci—1 + i tanh (Wyexy + Wiyehe—q + be)
O =0 (onxt + Whoht—l + Wcoct + bo)

hs = o; tanh(c;)

Information flow in an LSTM unit of the RNN, with both diagrammatic and mathematical
descriptions. W's are weight matrices, not shown but can easily be inferred in the diagram.

[after (Graves et al., 2013), @IEEE].
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NLP-Centric
architectures
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Neural-Network Language Models

-
| mput
winil [o
Cisco |
I L
-
I
u-’j—n+2| |:
issued |
I p—
‘U_Jj_]_ I |.
earnings |
| N

~
output
lfwer |

shared
projections

Bengio et al., 2003;
Schwenk et al., 2006

projection
+ layer

hidden
layer

I P1 =

P(wji=1lh;)
N :
+ pi = guidance
: I P(wj=ilh;
| high
] probability
I
3
N -
_:.__P‘N Boston

| P(wj=Nlh;)

T . . . . . . . . - —— O -
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Recurrent Neural Network for Language Modeling

earnings — * s(t) R

— > guidance

g N —>
I
~__."7 > Boston

—

(delayed)

{
N\

RNN::FFNN <----> [IR-Filter::FIR-Filter

Mikolov et al., 2011
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Learn RNN-LM by BackProp-Through-Time with gradient thresholding

During the training of RNN-LMs, the RNN unfolds into a deep feed-forward network
(Ph.D. thesis of Mikolov, 2012).

42
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Deriving Word Embeddings
INPUT  PROJECTION  OUTPUT INPUT ~ PROJECTION OUTPUT
w(t-2) :\ ,41‘— w(t-2)
w(t-1) ] \ . // w(t-1)
SN e oL
B / | | LR
wit+1) / \ w(t+1)

__/ {_‘,
w(t+2) wit+2)

CBOW Skip-gram

Continuous Bag-of-Words

The CBOW architecture (a) on the left, and the Skip-gram architecture (b) on the right.
[after (Mikolov et al., 2013a), @ICLR]. a3
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Word-embedding model using recursive neural
nets with local/global contexts

Local Context Global Context
score
sum
SCOre, score,
Document
\ Q @888 | river
@889 | play
’ |@®a® | shore
(I1T) 1 weighted average | -
he waks to the bank .. global semantic vector @V | water

The extended word-embedding model using a recursive neural network that takes into account
not only local context but also global context. The global context is extracted from the document
and put in the form of a global semantic vector, as part of the input into the original word-
embedding model with local context. Taken from Figure 1 of (Huang et al., 2012). [after (Huang
etal., 2012), @ACL].
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Deep Visual Semantic Embedding Model

Traditional Deep Visual Semantic Skip-gram
Visual Model Embedding Model Language Model
label similarity metric nearby word
1 / |
. Softmax layer ) transformation
I | ( softmax layer :J
I
Fﬂfﬂ' core embedding embedding
visual _} visual vector vector
model parameter model lookup table parameter lookup table
, imitialization | . | initialization I
image image label source word

Illustration of the multi-modal DeVISE architecture. The left portion is an image recognition neural network with a
softmax output layer. The right portion is a skip-gram text model providing word embedding vectors; see Chapter 8.2 and
Figure 8.3 for details. The center is the joint deep image-text model of DeViSE, with the two Siamese branches initialized
by the image and word embedding models below the softmax layers. The layer labeled “transformation” is responsible
for mapping the outputs of the image (left) and text (right) branches into the same semantic space. [after (Frome,ét al.,

2013), @NIPS].
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Multi-Modal Language Model

b

=ik

aardvark
abacus

zebra

A multi-modal language model (of the type of log-bilinear) which predicts a word
conditioned not only on the previous words in the sentence but also on images. The model
operates on word embedding vectors. [after (Kiros et al., 2013), @NIPS].
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Multi-Modal Audio-Visual Deep Autoencoder

Audio Reconstruction Video Reconstruction
(00 ¢+« 00 (0O ¢+ OO

| |

00 :-- 00| (00 :-- 00

\/:hared

[O Q- 00 ] Representation

R

(@@ :-- 00 (00 :-- 00

t 1
(00 ¢+ 0O0] (00 ++- OO

Audio Input Video Input

(l)) Billl()(l;ll Dee]) :\lltuell('(,)(lel‘

The architecture of a deep denoising autoencoder for multi-modal audio/speech and
visual features. [after (Ngiam et al., 2011), @ICML].
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A DNN for Multi-Task Learning

Task & Task B Task C

O LTp LIt

zha red
csubsets of

factors

inpLt

A DNN architecture for multitask learning that is aimed to discover hidden explanatory
factors shared among three tasks A, B, and C. [after (Bengio, 2013), @IEEE].
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From Common Deep Models to DSSM

e Common deep models reviewed so far:
— Mainly for classification

— Target: one-hot vector % Dist=Xentropy one-hot target
— Example of DNN: O 0 00000

w; o

Text string s

49


http://research.microsoft.com/c/1040
http://research.microsoft.com/c/1040

Microsoft

Research

From DNN to DSSM
e DSSM

— Deep-Structured Semantic Model, or
— Deep Semantic Similarity Model

),

: s : “vector”-valued “target
— For ranking (not classification with DNN)

— Step 1: target from “one-hot” Dist#Xentropy %
to continuous-valued vectors ) 00 © 00

w; o

Text string s

50
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From DNN to DSSM
* To construct a DSSM

— Step 1: target from “one-hot”

to continuous-valued vectors Y ., y )
vector”-valued “target

— Step 2: derive the “target” vector

using a deep net ? *
& P Distance(s,t)

Semantic representation—>

w, £ w, f
Text string s Text string t
51
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From DNN to DSSM
* To construct a DSSM

— Step 1: target from “one-hot”
to a continuous-valued vector

— Step 2: derive the “target” vector Distance(s,t1)
using a deep net @

— Step 3: normalize two “semantic”
vectors & computer their similarity

Use semantic similarity to rank
documents/entities

cos(s,t1)
COS(S’tZ) [ N N ) [ N ]
cos(s,t3)
...... w, t w, t
Text string s Text string t
[Huang, He, Gao, Deng, Acero, Heck, “Learning Deep Structured Semantic Models 52

for Web Search using Clickthrough Data,” in CIKM, Oct. 2013]
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Interim Summary

e Common deep learning architectures
— DNN (Deep Neural Nets), Tensor-DNN
— CNN (Convolutional Neural Nets)
— DSN (Deep Stacking Nets); Kernel-DSN, Tensor-DSN
— RNNs (Recurrent and recursive Neural Nets)

* From DNN to DSSM (basic form)

* From DSSM to Conv-DSSM, Tensor-DSSM,
Recurrent-DSSM, Kernel-DSSM, Stacking-DSSM

* The next 4 Parts will elaborate on the learning
and applications of many of the above deep
models
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Part 1l

Deep learning in spoken
language understanding
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Background of SLU

* The three problems in spoken language
understanding (SLU)

— Domain classification “Show me flights from Boston to New York today”

— Intent detection ‘

— Semantic slot filling Domain: travel
omain: trave

Intent: find_flight

“Show me flights from Boston to New York today”

[T

Semantic slots:  City- CitY' Date
Google now departure  arrival

3
v
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Why SLU is difficult?

* Huge variability in the spoken language

— e.g., both the following two utterances are in the Travel
domain, Find_Flight intent, and same semantic slots, but are
uttered very differently

(1) “lI want to fly from San Francisco to New York in a weekend”
(2) “Show me weekend flights from SFO to JFK”

57
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Domain & Intent Classification

* A semantic utterance classification (SUC)
problem

—C = argmaxgcy P(C|X)

— Where

« C €{(Cy4,...,Cy} belong to one of the M semantic
categories (e.g., domain or intent)

X is the input utterance
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SUC: Common methods

e Common raw features usually include
— Word n-grams (n=1, 2, 3), e.g., bi-gram,

1’ it c = CT‘ N Wy Wy c Ilvr
0, otherwise.

BGQ .
f C,Wx Wy (C?’: IT’ '?") - {

* Common classifiers
— Logistic regression

P(CIW) = wifi(C, W)

— Boosting, SVM, etc.
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SUC: Deep Convex Net

Deep convex net for semantic utterance
classification:

1) A stack of a series of 3-layer perceptron

modules | Hidden Layer
2) At each module i v
1) Hidden layer is non-linear, other two ' i

are linear B
2) W is fixed (could be random valued or
initialized by RBM)

3) Uissolved in closed-form — convex 1 v |
' optimamtion
4) No back-propagation - []

3) Output layer is concatenated with raw input

to form input layer of the next module B :

Input Data

[Tur, Deng, Hakkani-Tur, He, ICASSP2012]
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SUC: Results

No. Utt. | Avg. No. Words Model Dev Test
Training 16,000 7.60 Baseline (Boosting) | 10.70% | 10.40%
Development | 2,000 7.66 DCN 11.50% | 10.09%
Test 1,902 7.38

Table 1. Data sets used in the experiments.

Table 3. Semantic utterance classification error rates using optimal
number of features for the Boosting baseline system.

Layer Dev Test

Chance (Majority) | 77.45% | 76.71% 24 , : . ) . . .
Baseline (BODSIng) 13.15% 13.35% —0—_ — gg?\lsti:;ﬁw RBM using only manually annotated data

1 15.30% 15.29% 22 t-;\ —+— DCN with RBM using all available data

2 14.05% | 13.14% ﬁt f ; ; : : -

3 13.45% | 12.67% %

4 14.25% | 13.77%

5 15.10% | 14.45%

Table 2. Semantic classification error rates using deep convex nets
with varying number of stacked DCN modules, compared to the
Boosting baseline. RBM is used to initialize lowest-level network
weights using the discriminative features selected by Boosting.

Semantic classification error rate

i 1 1 i I i |
0 2000 4000  BOOO 8000 10000 12000 14000 16000
Amount of manually annotated data

Fig. 2. Learning curves comparing Boosting with DCN with bottom
layer initialized with RBM using only the annotated vs. all data.
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SUC: Kernel Deep Convex Net

Predictions

Kernel Deep Convex Net :

1) Kernel version of DCN
2) No hidden layer, using kernel instead
1) Gaussian kernel used
2) Efficient learning — two hyper-
parameters to train

(Deng, Tur, He, Hakkani-Tur, SLT2012)

Input Data X
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Results

Table 2. Comparisons of the domain classification error rates
among the boosting-based baseline system, DCN system, and K-
DCN system for a domain classification task. Three types of raw
features (lexical, query clicks, and name entities) and four ways
of their combinations are used for the evaluation as shown in

four rows of the table.

Feature Sets Baseline DCN K-DCN
lexical features 10.40% 10.09% 9.52%
lexical features 9.40% 9.32% 8.88%
+ Named Entities

lexical features 8.50% 7.43% ( 5.94% ;
+ Query clicks A L7

lexical features 10/10% 7.26% 5.89%

+ Query clicks

+ Named Entities

L~

30% error reduction over a
boosting-based baseline

Table 3. More detailed results of K-DCN in Table 2 with
Lexical+QueryClick features. Domain classification error rates

(percent) on Train set, Dev set, and Test set as a function of the
depth of the K-DCN.

Depth | Train Err% Dev Error% | Test Err%
1 9.54 12.90 12.20
2 6.36 10.50 9.99
3 4.12 9.25 8.25
4 1.39 7.00 7.20
5 0.28 6.50 5.94
6 | 0.26 | 6.45 | 594 |
7 0.26 6.55 6.26
8 0.27 6.60 6.20

Error keeps decreasing when up to six
layers are added up
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Semantic Slot Filling

A example in the Airline Travel Information System (ATIS) corpus

Slots B-dept B-arr l-arr  B-date

Slot filling can be viewed as a sequential tagging problem
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Slot Filling: Common methods

Conditional random field (CRF)

T K K

((8) = m( Ly xg) — Zlogz RNED w2

1=1 t=1 k= k=1

._..-_::

* N: number of training samples

* T: number of words in the sentence i

K: “observation” functions (feature functions)
X: input words in the sentence

y: output tags

Other variants of CRF exist, e.g., semi-CRF.
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Recurrent Neural Networks for Slot Filling

* Using the (EIman-type) RNN for slot filling:

vy = SoftMax(U - hy),where hy = a(W - hy_1 +V - x¢)
where x;: the input feature , y;: the output tag

h; is the hidden layer that carries the information from time 0~t

(Mesnil, He, Deng, Bengio, 1S2013) (Yao, Zweig, Hwang, Shi, Yu, 1S2013) s
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Training the RNN

* Back-propagation through time (BPTT):

attimet =3

1. Forward propagation

2. Generate output

3. Calculate error

4. Back propagation

5. Back prop. through time

67
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Variants of RNNs & & & o

Bi-directional Jordan RNN ——>

hllo h)ll hII2 hII
Yo Y1 Y, Yn
RNN with look-ahead context

W, W, W, w

=)

n

(Yao, Zweig, Hwang, Shi, Yu, 1S2013) °% (Mesnil, He, Deng, Bengio, 1S2013)
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Results

e Evaluated on the ATIS corpus
— 4978 utterances for training
— 893 utterances for testing
— Using word feature only

— Baseline CRF: 92.94% in F1-measure

SGD vs. minibatch training
With local context window

Model Elman Jordan
94 .55 94.66
Stochastic GD +0.51 +0.23

94.54 94.33
Sentence-minibatch +0.23 +0.19

Left-to-right vs. bi-directional RNN
With local context window

Model Elman Jordan
Left-to-right 94.54 94.33
bi-direction 94.73 94.03

94.75
+0.31
94.25
+0.28

Without local context window

Model Elman
Left-to-right 93.15
bi-direction 93.46

~25% error reduction

Jordan
65.23
90.31
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Interim Summary

* Introduction to SLU
* DNN/DCN/K-DCN for Domain/intent detection
* RNN and its variants for slot filling

* Deep learning models demonstrate superior
performances on these tasks
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Part 1li

Learning Semantic Embedding
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Word Embedding

 Word embedding
— A low-dimensional continuous vector representation for each word
— Captures the word meaning in a semantic space

word embedding

f(cat) — one-hot f(cat) =
vector

word vector

The index of “cat” in
the vocabulary

e Common neural network based word embedding approaches

— SENNA embedding
— NN/RNN language model based embedding
— CBOW & Skip-gram

72
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SENNA embedding

Scoring:

Score(wy, wp, w3, Wy, ws) = UTa(W(f1, f2, f, far f5] + )
Training:

J =max(0,1—S*+S~) Update the modeluntilS* > 1+ S~

Where

St = Score(wy, w,, W3, Wy, Ws)

S~ = Score(wy,w,, W', w,, ws)
And
< W1, Wy, W3, Wy, Ws > is a valid 5-gram T U
< Wy, Wy, W, Wy, Wws > is a “negative sample” constructed
by replacing the word w3 with a random word w' 0000 0000

T w

e.g., a negative example: “cat chills X a mat” @[..Q. 00000000

P T

Word embedding cat chills on a mat

(Collobert et al., JMLR 2011)
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NN-LM based word embedding

Word embedding

re_—-—l—--—-—-—_———— = - ~
: output
| mput probability estimation layer |
w1 | I: et _Lm -
Clsco I - er hidden P(JU- _1|hj)
' layer .
- 3
. uidanc
| b guidane
| I_ projections -| .
issued Z :
| M |
wi-1 1 @ N PN = g / probablllty
. —l-—
eammimgs v N ' P(uj. &Iﬁhj
| N N I

T . . . . . . . . - —— O -

From Schwenk et al., 2006
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RNN-LM base word embedding
Word Embedding
w(t) y(t)
cat — > S(t) e

I v — > chases
\nh_/”J — > s
(delayed)

RNN::FFNN <----> [IR-Filter::FIR-Filter

Mikolov et al., 2011


http://research.microsoft.com/c/1040
http://research.microsoft.com/c/1040

Microsoft:

Research

CBOW/Skip-gram Word Embeddings

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

J
w(t-2) A ,4] w(t-2)

\ / L
wit-1) w(t-1)
L SUM //
|
’—> wit) w(t) — \
wit+1) / \ w(t+1)

wit+2) ——/ { wit+2)

CBOW Skip-gram
Continuous Bag-of-Words

The CBOW architecture (a) on the left, and the Skip-gram architecture (b) on the right.
[after (Mikolov et al., 2013a), @ICLR]. 76
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Training of Word Embedding

 These word embedding models are trained in an
unsupervised, but discriminative, way

— They are trained solely on text data

— They are trained trying to make the score of a valid word n-
gram higher than that of negative samples
* Raw features come from the context of the word

* SENNA tries to make the prediction score of the “true” 5-gram
higher than others with a random word in the middle

* NN/RNN LMs try to make the prediction score of the “true” next
word higher than other words

 CBOW tries to make the prediction score of the “true” central
word higher than others
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Word Embedding: Revisit

 Word embedding is a neat and effective representation:

# words \

N

word embedding

matrix

= A decomposable, robust representation is preferable for large scale NL tasks

= Vocabulary of real-world big data tasks could be huge (scalability)

>100M unique words in a modern commercial search engine log, and keeps growing

= New words, misspellings, and word fragments frequently occur (generalizability)
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From Word Embedding to Sub-word Embedding

* Learning sub-word embedding

— Learn embedding on sub-word units, such as letter-trigram (LTG)
 E.g., cat = #cat# - #-c-a, c-a-t, a-t-#
— Reduce the problem of modeling from an almost unbounded

variability (word) to a bounded variability (sub-word)
 E.g., there are only ~50K letter-trigrams (373)

embedding vector W-UXxV embedding vector

m . - m LTG embedding
word embedding e :
j matrix: 500 x 100M US> matrix: 500 x 50K
Cw

m:vﬁ LTG encoding
Q matrix

dim = 100M dim = 100M
1-hot word vector 1-hot word vect\;r\

Could even go up to infinity

. [Huang, He, Gao, Deng, Acero, Heck, 2013]
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Letter-trigram as the Sub-word Unit

e Learn one vector per letter-trigram (LTG), the encoding matrix is a fixed matrix
— Use the count of each LTG in the word for encoding

ﬁxample: cat = #cat# - #-c-a, c-a-t, a-t-# \
(w/ word boundary mark #)
Uy

K
Letter-trigrarn _
embedding matrix v(cat) = Z(“cat,k d ),
k=1

L

Count of LTG(k)
u:The vector of LTG(k)

M . i th du tn
\ < # total letter-trigrams — In the word "ca /

= Address both the scalability and generalizability issues

[Huang, He, Gao, Deng, Acero, Heck, 2013]
80
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Letter-trigram based word representation

e Collision:

* Different words have the same letter-trigram representation?
* Statistics

e collision rate = 0.004%

e Collision Example: #bananna# <=> #bannana#

Unique letter-trigram

Vocabulary size Number of Collisions

observed
40K 10,306 2
500K 30,621 22

5M 49,292 179
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Other representation: random projection

* Sparse random projection T A T TR
matrix R with entries
sampledi.i.d. from a o i et B8 A
distribution over [0, 1, -1]

* Entriesof 1 and -1 are o s
equally probable

¢ P(Rl] — 0) — 1——,
where d is the original

inpUt dimenSiona“ty- Each word will have a set of sparse random
encoding of the 10000 basic units

b e e B ) Lo R PR
1000 2000 3000 4000 5000 BODO 7000 8OO0 9000 10000

[Li, Hastie, and Church 2006]
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More Word Input Representations

* Multi-hashing approach to input
representation

* |etters, context-dept letters, phones, context-
dept phones, roots/morphs, context-dept
morphs

* Word-level hashing
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Semantic embedding: from word to phrase/doc

* A semantic representation at the phrase, sentence,
or even document level is desirable
— The meaning of a single word is often ambiguous.

— A phrase/sentence/document contains rich contextual
information that could be leveraged.

— The semantic intent is better defined at the
phrase/sentence level rather than at the word level.
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Semantic embedding for phrases and documents

e History: Latent Semantic Analysis (LSA)

e LSA extracts low dimensional semantic structure using SVD to get a
low rank approximation of the word-document co-occurrence matrix

* Many extensions exist: PLSA, LDA, etc.
* However, the expressive power of linear models are restricted

* Go deeper:
— e.g., semantic hashing (Salakhutdinov & Hinton 2007, 2010)
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Deep models for phrase semantic embedding

Abstract representation in the

semantic space
/

each layer gradually
extracts deeper invariance

Raw text feature, e.g.,
bag-of-words.

Text string s
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Semantic Hashing

1) Single layer learning: Restricted Boltzmann Machine (RBM)
2) Multi-layer training: deep auto-encoder, learn internal representations

Model is trained to minimize the reconstruction error Document
re-construction error
Stepl: get initial weights Step2: deep auto-encoder (to be minimized in training)
from RBM | 0K |
| wf
300 | L 500 |
| wy
| 250 | unrolling [ 500 |
e —> W

: Embedding Ws
L5001 of the document I 500 I
__________________________________ W
i i W
L 40K | | 40K |
Document

(Salakhutdinov & Hinton 2007, 2010)
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Issues of the auto-encoder

 The objective for training the auto-encoder?

— What is the relation between minimizing re-
construction error and good embedding?

 What does good embedding mean?

— Good embedding helps end-to-end tasks, so:
* Optimizing embedding directly instead of minimizing
the doc re-construction error

* Learning the model with end-to-end user behavior log
data (weak supervision) beside documents
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Learning Semantic Embedding using the DSSM

* Deep structured semantic models (DSSM)
— The DSSM refers to a series of deep semantic models developed
recently at MSR
e With variations on model structures and training objectives
— The DSSM is trained by an embedding similarity-driven objective
* projecting semantically similar phrases to vectors close to each other

* projecting semantically different phrases to vectors far apart

— The DSSM uses the letter-trigram sub-word embedding for the input
word representation

[Huang, He, Gao, Deng, Acero, Heck, 2013]
[Shen, He, Gao, Deng, Mesnil, 2014]
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Learning Semantic Embedding using the DSSM

[Huang, He, Gao, Deng, Acero, Heck, 2013]
Initialization:

Neural networks are initialized with random weights

Semantic vector ——> Vg D+ ; £
: B 1

4

w
% d=500 d=500

w; # LI LI
Letter-trigram @ d=500 d=500 d=500
embedding matrix —— W, t t t
Letter-trigram enco. dim = 50K dim = 50K
matrix (fixed) — W, f t t
Bag-of-words vector

Input word/phrase s: “racing car” t*: “formula one” t: “ford model t”
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Learning Semantic Embedding using the DSSM

Training (Back Propagation): [Huang, He, Gao, Deng, Acero, Heck, 2013]
Compute Cosine similarity between semantic vectors - w

Compute ,_ exp(cos(;,v,+)) cos(vs, Vy+) cos(vs, Ve-)
gradients Zt’ ={ttt~ }exp(cos(vs vt’))

Semantic vector —— 4 &

g5) c-500 | d 500

w; § # 4
Letter-trigram @ d=500

embedding matrix ——> W, ‘ ‘ ‘

Letter-trigram enco. dim = 50K dim = 50K dim = 50K

matrix (fixed) ™~ W,

Bag-of-words vector

Input word/phrase s: “racing car” t*: “formula one” t~: “ford model t”
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Learning Semantic Embedding using the DSSM

Lo [Huang, He, Gao, Deng, Acero, Heck, 2013]
After training converged:

Cosine similarity between o
semantic vectors similar apart

Semantic vector — i

Letter-trigram @ d=500 d=500 d=500
embedding matrix —— W, t t t

Letter-trigram enco. dim = 50K dim = 50K dim = 50K

matrix (fixed) ™~ W, f

Bag-of-words vector

Input word/phrase “racing car” “formula one” “ford model t”
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Evaluation

e Evaluated on a document ranking task
* Docs are ranked by the cosine similarity between embedding vectors of the
query and the doc

Model Input NDCG@1
dimension %
BM25 baseline -- 30.8
Probabilistic LSA (PLSA) 29.5
Auto-Encoder (Word) 40K 31.0 (+0.2)
DSSM (Word) 40K 34.2 (+3.4)
DSSM (Random projection) 30K 35.1 (+4.3)
DSSM (Letter-trigram) 30K 36.2 (+5.4)

The higher the NDCG score the better, 1% NDCG difference is statistically significant.

 The DSSM learns superior semantic embedding
* Letter-trigram + the DSSM gives superior results

DSSM-based
embedding improves
5~7 pt NDCG over
shallow models
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Analysis of Auto-encoder vs. DSSM
Auto-encoder o DSSM
Supervision: query
document <——— AE: unsupervised
@ re-construction error (e.g.’ dOC<->dOC) —

DSSM: weakly supervised
(e.g., query<->doc search log)

Training objective:
AE: reconstruction error

Embedding > of the doc /

DSSM: distance between
embedding vectors

Embedding

Input:
dim = 50K

; AE: 1-hot word vector/ _
ocument DSSM: letter-trigram ——

document

The DSSM can be trained using a variety of weak supervision signals
without human labeling effort (e.g., user behavior log data).
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DSSM for Semantic Word Clustering and Analogy

* Learn word embedding by means of its neighbors (context)
— Construct context <-> word training pair for DSSM
— Similar words with similar context -> higher cosine

similar
* Training Condition: E
* 30K vocabulary size
 10M words from Wikipedia

* 50-dimentional vector t

dim = 120K
s: “w(t-2) w(t-1) w(t+1) w(t+2)” t: “w(t)”

[Song et al. 2014]
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DSSM for Semantic Word Clustering and Analogy

Semantic clustering examples: top 3 neighbors of each word

king earl (0.77) pope (0.77) lord (0.74)
woman person (0.79) girl (0.77) man (0.76)
france spain (0.94) italy (0.93) belgium (0.88)
rome constantinople (0.81) paris (0.79) moscow (0.77)
winter summer (0.83) autumn (0.79) spring (0.74)

rain rainfall (0.76) storm (0.73) wet (0.72)

car truck (0.8) driver (0.73) motorcycle (0.72)

Semantic analogy examples (following the task in Mikolov et al., 2013)
Wii Wy = W3 1?7 = V?=V3_V1+V2

summer : rain =winter:? snow (0.79) rainfall (0.73) wet (0.71)

italy : rome = france : ? paris (0.78) constantinople (0.74) egypt (0.73)
man:eye=car:? motor (0.64) brake (0.58) overhead (0.58)
man : woman = king : ? mary (0.70) prince (0.70) queen (0.68)
read : book = listen : ? sequel (0.65) tale (0.63) song (0.60)

[Song et al. 2014]
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Interim Summary

* Word embedding

* Sub-word embedding gives a decomposable robust word
representation

* The phrase/document level semantic embedding

* Using the DSSM to learn semantic embedding for
phrases and documents
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Part IV

Deep Learning in Machine
Translation
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Statistical machine translation

(SMT)

C: Bk N fE Bl 5 R B S3k ik

E: Rescue workers search for survivors in collapsed houses

Statistical decision: E* = argmax P(E|C)
E

Source-channel model: E* = argmax P(C
E

Translation models: P(C|E) and P(E

1

Log-linear model: P(E|C) = 2

E)P(E)
C)

exp 2; A;hi(C, E)

Evaluation metric: BLEU score (higher is better)

[Koehn 2009]
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Generative modeling for P(E|C)

e Story making (art)

— how a target sentence is generated from a source
sentence step by step

 Mathematical formulation (science)
— modeling each generation step in the generative
story using a probability distribution
* Parameter estimation (engineering)

— implementing an effective way of estimating the
probability distributions from training data
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Translation modeling: P(E|C)

* Translation process (generative story)
— Cis broken into translation units
— Each unit is translated into English
— Glue translated units to form E

 Translation models
— Word-based models

— Phrase-based models
— Syntax-based models
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Phrase-based models

C: HAR N RIEEIRE 5 R B IR L Chinese

105


http://research.microsoft.com/c/1040
http://research.microsoft.com/c/1040

Microsoft

Research
Phrase-based models

C: HAR A mAEEiEn B R R SR AT
S rescue staff in  collapse  of  house in  search SUrvivors

e oam | [a wm ow R ow| [ gaR] [ kak. |

Y B

‘ Rescue worlers I mn collapsed houses ‘ ‘ search for ] ‘ SULVIVOrS ]

e - " - A

M: ¥ g M,

‘ mn collapsed houses

“

L search for ‘ [ SUTVIVOTS

L Rescue workers

E: Rescue workers search for swrvivors in collapsed houses.

Chinese

Segmentation

Translation

Permutation

English
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Mathematical formulation

* Assume a uniform probability over segmentations

— P(E|C) < X (st ane P(TIC,S) - P(M|C,S,T)
B(C,E)
* Use the maximum approximation to the sum

— P(E|C) ~ (Sr,%%ep(ﬂC, S)-P(M|C,S,T)

B(C,E)
* Assume each phrase being translated independently
and use distance-based reordering model

— P(E|C) nax [1%_, P(ex|cp)d(start; — end;_; — 1)

B(C,Q)
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Parameter estimation

Kk AR

£ {555

M BRI ERH

rescue

workers

search

for

SUrvivors

n ||

collapsed

houses

MLE: P(e|c) =

N(ce)

Yo N(ce')

Don’t forget smoothing

(RHE. rescue)

(A i, workers)

({£.in)

({8145, collapsed)

(55 )4, house)

(L. in)

(4. search)

(4L, survivors)

(HEE A B, rescue workers)

(#£ {8114, in collapsed)

({835 ). collapsed)

(H 552 house)

(573X, search for)

(4R A:iL#. search for survivors)
(“4EiL #. for survivors)

({8353 ¥ B5 2. collapsed house)
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DSSM for phrase translation modeling

Ej— 1 s E_.f ‘I‘. Ef"‘ 1
... (the process of) | (machine translation) Target phrases
\l/ Continuous representations of
I:I ¥e; target phrases
I:I Y5 Continuous representations of
1
source phrases
... (le processus de) ! (traduction automatique) Source phrases
f i—1 fa f i+1

Translation score as dot product of

— T
scnre[ i € ::I = V: V.. ) i
fu 7 Ffz}re; feature vectors i the continuous space

* Follows the “story” of phrase translation models, but

e Uses different parameter estimation method
— Map source/target phrases into the same semantic space

— Phrase translation score == similarity between their
feature vectors in semantic space

[Gao, He, Yih, Deng, 2014] 109
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A closer look at the mapping

Feature vector ) 100 (k) v
A wz
Neural network - 100
- A Wl
Word vector 200K (d) X
A
Raw phrase (Wy oWy eorf

Bag-of-words representation of a phrase: x
Map X to a low-dim semantic space: ¢(x): R¢ - R
Mapping is performed using a neural net:

y = ¢(x) = tanh (WZT(tanh(WlTx)))
Translation score as similarity between feature vectors

_ _ T
score(f,e) = simg(Xs,Xe) = ¥rYe
[Gao, He, Yih, Deng, 2014]
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Using the DSSM for SMT

e Define a new translation feature:

o1 (F, E,8) =) simg(xy, x,)

(f,e ))EA
* Integrate into the Iog linear model for SMT:
P(E|F) = Z(F 5 eXpZA h;(F, E)

E* = argmaxz: Ah;(F,E)
E .

[Gao, He, Yih, Deng, 2014]
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Parameter estimation

* Parameters (A, 0)

— A: a handful of parameters in log-linear model.
— 0: projection matrices of the DSSM.

* Take three steps to learn (A, 0):
— Generate N-best lists using a baseline SMT system

— Fix A, and optimize 0 w.r.t. a loss function on the
N-best lists of training data.

— Fix O, and optimize A to maximize BLEU on
development data.

[Gao, He, Yih, Deng, 2014]
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Training DSSM parameters, 0

* Define a loss function £(0), which is
— Friendly to optimizer: differentiable/convex

— Aiming the right target: closely related to task-specific
metric (BLEU)

* Update 0 with gradient descent

9L(0)
=130

Onew —

* Algorithms
— Batch training, L-BFGS
— Stochastic Gradient Descent (SGD)

[Gao, He, Yih, Deng, 2014]


http://research.microsoft.com/c/1040
http://research.microsoft.com/c/1040

Microso

icrasoft:
Research

Loss function: L(0)

* Expected BLEU based on n-best list

- P(E|F;) =
exp(ATh(F;,E,A)+Ap41hm41(Fi.E.8))
YEcGEN(F;) eXPATh(FLE,A)+ Ay 1M +1(FE.0))
* Friendly to optimizer?
— Differentiable but non-convex
 Aiming the right target?
— Closely related to BLEU

[Gao, He, Yih, Deng, 2014]
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Gradient: dL(0)/00

0L(0) 3 0L(0)  Osimg(XfXe)
oo ~ “<(U.e) dsimg(Xf,Xe) 00
* Error term:—0.L(0)/0simg(X¢, X,)

— how the overall loss changes with the translation
score of the phrase pair

* dsimg(Xr, X.)/00 can be computed via Back
Propagation (BP)

[Gao, He, Yih, Deng, 2014]
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Evaluation

* Two Europarl translation tasks
— English-to-French (EN-FR)
— German-to-English (DE-EN)

e Baseline

— A state-of-the-art phrase-based SMT system, i.e.,
Moses

e Evaluation metric
— case insensitive BLEU score
— 1 reference
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Results

# | systems EN-FR DE-EN

TEST1 TEST2 TEST1 TEST2
1 |Baseline 33.04 33.06 26.10 26.07
2 | MRF 33.73 33.91 26.91 26.81
3 |DSSM 34.03 34.39 27.21 27.03
4 | Topic model 33.08 33.15 26.08 26.11
5 |DPM 33.10 33.29 26.25 26.23

MRF: Markov Random Fields with xBleu (Gao and He 2013)

DSSM: DSSM with xBleu
Topic model: generative bilingual topic model (Gao et al. 2011)
DPM: discriminative linear projection model (Gao et al. 2011)
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Interim Summary

* Map the sentences in source/target languages
into the same, language-independent semantic
space

* The DSSM-based semantic translation model
leads up to 1.3 BLEU improvement

 DSSM training: end2end optimization based on a
task-specific objective
 Other DNNs for SMT

— [Auli et al. 2013; Auli and Gao, 2014; Hu et al. 2014;
Devlin et al. 2014]
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Part 'V

Deep Learning of Semantic
Similarity Models for Web
Search and Beyond
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Deep Structured Semantic Model (DSSM):
learning semantic similarity between X and Y

Web search Search query Web documents

Ad selection Search query Ad keywords

Entity ranking Mention (highlighted)  Entities

Recommendation Doc in reading Interesting things in doc or
other docs

Machine translation Sentence in language A Translations in language B

Nature User Interface  Command (text/speech) Action

Summarization Document Summary
Query rewriting Query Rewrite
Image retrieval Text string Images

[Huang et al. 2013; Shen et al. 2014; Gao et al. 2014a; Gao et al. 2014b] 120
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An example of web search

Best Home Remedies for Cold and Flu

e cold home remedy
By: Catherine Browne, L .Ac., MH, Dipl. Ac.
In Chinese medicine, colds and flu's are delineated ¢ CO I d re meedy

into several different energetic classifications.
Here we will outline the different types of cold °
and flu viruses that you will likely encounter, and ﬂ u treatm e nt

then describe the best home remedies for these
specific patterns that you can use to treat the ° h oW to d ea | W|t h
stuffy nose

cold or influenza virus.

Cold and Flu Basics
The basic pathogenic influences are:

+ Wind
« Cold
+« Heat
+ Damp

Wind

Theaoretically, wind enters the body through the back of the neck area or
nose carrying the pathogen. It first attacks the Lung system (including the
sinuses) because the Lung organ system is the most external Yin argan, a
thus the most vulnerable to an external invasion. External Wind invasion is
marked by acute conditions with a sudden onset of symptoms.
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Smart matching between Q and D

* Fuzzy keyword matching R&D progress
— Q: cold home remedy

— D: best home remedies for cold and flu
e Spelling correction

— Q: cold remeedies

— D: best home remedies for cold and flu
* Query alteration/expansion

— Q: flu treatment

— D: best home remedies for cold and flu

* Query/document semantic matching
— Q: how to deal with stuffy nose
— D: best home remedies for cold and flu
— Q: auto body repair cost calculator software
— D: free online car body shop repair estimates
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Learning DSSM on labeled X-Y pairs (clicked Q-D pairs)

Semantic Space

Web Documents /

X

Implicit Supervised Information

Q: auto body repair
cost calculator
software

Map query (X) and docs (Y) into the same semantic space via deep neural net
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Learning DSSM on labeled X-Y pairs (clicked Q-D pairs)

Semantic Space

Web Documents /

Implicit Supervised Information

Q: auto body repair

cost calculator
software
(]
.®
. Map query (X) and docs (Y) into the same semantic space via deep neural net
i . Relevant docs are closer to query than irrelevant docs in that space
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DSSM: explore the power of deep learning

Learning: maximize the similarity between

Relevance measured . .
by cosine similarity sim(X, Y) relevant queries and docs

Semantic layer h 128 128 Representation: use DNN to extract abstract

* * semantic representations
fC) g()
f f
Word sequence Xt W1,Wo, ...,Wr, W1q,W2, ..., Wro
X \4

DSSM combines three pieces of MSR work

* DNN structure follows deep auto-encoder (Deng, Seltzer, Hinton, et al. 2010)

* The use of search logs for translation model training (Gao, He, and Nie, 2010)

* Parameter optimization uses the pairwise rank loss based on cosine similarity (Yih et al. 2011; Gao et al. 2011)

[Shen, He, Gao, Deng, Mesnil, 2014] 125
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DSSM: explore the power of deep learning

Relevance measured
by cosine similarity

Semantic layer h
Max pooling layer Vv
Convolutional layer Ct
Word hashing layer ~ f;

Word sequence X

DSSM combines three pieces of MSR work

@H D Hﬂ D

fi,f2, ..,

TQ

fi,f, ..., T

W1q,Wo, ...

T

X

Wto

W1,Wo, ...

T

Y

\WTo

Learning: maximize the similarity between
relevant queries and docs

Representation: use DNN to extract abstract
semantic representations

Convolutional and Max-pooling layer: identify
key words/concepts in Q and D

Word hashing: use sub-word unit (e.g., letter-
ngram) as raw input to handle very large
vocabulary

* DNN structure follows deep auto-encoder (Deng, Seltzer, Hinton, et al. 2010)
* The use of search logs for translation model training (Gao, He, and Nie, 2010)
* Parameter optimization uses the pairwise rank loss based on cosine similarity (Yih et al. 2011; Gao et al. 2011)

[Shen, He, Gao, Deng, Mesnil, 2014]
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Example: search intent identification

[ )
auto body repair calculator

777 |} NN N\ q
uery as a word sequence
m m mlm rather than “bag of words”
v |V 0\ v
I

Calculator software <s> Sliding Window input:
n-gram phrase (n = 3)

<s> auto body I

Convolutional Layer h: generate

" word-within-context embedding

. Max Pooling Layer v: identify
key words in a query

Semantic Layer y
127


http://research.microsoft.com/c/1040
http://research.microsoft.com/c/1040

Microsoft

Research

Convolutional and max-pooling layers

wlw2 w3 w4 w5 w6t w7

wlw2 w3 w4 w5 wé w7

wlw2 w3 w4 w5wbé w7

* Extract local features using convolutional layer
— {w2, w3} - topic blue
— {w5, wb} = topic green

* Generate global features using max-pooling
— Key topics of the doc = blue and green

— keywords of the doc: w2-w3 and w5-w6

— Link btw keywords and key topics
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Intent matching via convolutional DSSM

* Semantic matching of query and document

{autoJ[bod\d[repaid cost{calculatogl software

.

4

.

264 170 294 209 132 231 224 186
264 170 294 209 132 231 224 186
/*_ -
£
free online car|body|shop| repair|estimates

Most active neurons at

the max-pooling layers of
the query and document

nets, respectively
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More examples

Query

Tifle of the top-1 returned document retrieved by CLSM

warm environment arterioles do what

auto body repair cost calculator software

what happens if our body absorbs excessive amount vitamin d
how do camera use ultrasound focus automatically

how to change font excel office 2013

where do 1 get my federal tax return transcript

12 fishing boats trailers

acp ariakon combat pistol 2.0

thermoregulation wikipedia the free encvclopedia

free online car body shop repair estimates

calcium supplements and vitamin d discussion stop sarcoidosis
wikianswers how does a camera focus

change font default styles in excel 2013

how to get trasncripts of federal income tax returns fast ehow
trailer kits and accessories motorcvcle utility boat snowmobile
paintball acp combat pistol pamntball gun painthall pistol package
deal marker and gun
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Training C-DSSM from Query-Doc pairs

Mini-batch SGD on GPU
Objective: Bayes Risk based on cosine similarity

For each query Q, there is a set of documents D
* D can be constructed via sampling
 Each D in D has a relevance label w.r.t. Q

p(DI0) = —XP(YR@.D))
( |Q) XDreD eXP(YR(Q;D’))'
* R(Q,D) is cosine similarity

loss(Q, D) = Xpep P(DIQ)cost(Q, D),

 cost(.) is a function of relevance label
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Mine Q-D pairs from search logs

how to deal with stuffy nose? &%  NO CLICK

stuffy nose treatment ==  NO CLICK

http://www.agelessherbs.com/BestHome
RemediesColdFlu.html

cold home remedies &=

[Gao, He, Nie, 2010] 132


http://research.microsoft.com/c/1040
http://research.microsoft.com/c/1040

Microsoft

Research
Mine Q-D pairs from search logs

how to deal with stuffy nose? == |Best Home Remedies for Cold and Flu

LHildlalea B -l il 3 di-JdaF1B - kiaTale =1 al=

By: Catherine Browne, L.Ac., MH, Dipl. Ac.

stuffy nose treatment ==

In Chinese medicine, colds and flu's are delineated
into several different energetic classifications.

. Here we will outline the different types of cold
CO/d home remedles <;> and flu viruses that you will likely encounter, and
then describe the best home remedies for these
specific patterns that you can use to treat the

cold or influenza virus.

Cold and Flu Basics
RE basic pathogenic Imuences are.

« Wind
« Cold
+ Heat
« Damp

Wind

Theoretically, wind enters the body through the back of the neck area or
nose carrying the pathogen. It first attacks the Lung system (including the
sinuses) because the Lung organ system is the most external Yin argan, a
thus the most vulnerable to an external invasion. External Wind invasion is
marked by acute conditions with a sudden onset of symptoms.

[Gao, He, Nie, 2010] 133
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Mine Q-D pairs from search logs

how to deal with stuffy nose?
stuffy nose treatment

cold home remedies

Best Home Remedies for Cold and Flu

STIrTrt A AT VTR rmAal R Th AT rAne

By: Catherine Browne, L.Ac., MH, Dipl. Ac.

In Chinese medicine, colds and flu's are delineated
into several different energetic classifications.
Here we will outline the different types of cold

and flu viruses that you will likely encounter, and
thoan dw :

QUERY (Q)

Title (T)

how to deal with stuffy nose

best home remedies for cold and flu

stuffy nose treatment

best home remedies for cold and flu

cold home remedies

best home remedies for cold and flu

go israel

forums goisrael community

skate at wholesale at pr

wholesale skates southeastern skate supply

breastfeeding nursing blister baby

clogged milk ducts babycenter

thank you teacher song

lyrics for teaching educational children s music

immigration canada lacolle

cbsa office detailed information

[Gao, He, Nie, 2010]

l
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Evaluation Methodology

* Measurement: NDCG, t-test

* Test set:
— 12,071 English queries sampled from 1-y log
— 5-level relevance label for each query-doc pair

* Training data for translation models:
— 82,834,648 query-title pairs

e Baselines
— Lexicon matching models: BM25, ULM

— Translation models
— Topic models
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Translation models for web search

D: best home remedies for cold and flu

Q: how to deal with stuffy nose

 Model documents and queries as different languages

e Cast mapping queries to documents as bridging the
language gap via translation

e Leverage statistical machine translation (SMT)
technologies and infrastructures to improve search

relevance

[Gao, He, Nie, 2010]
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SMT for document ranking

* Given a Q, D can be ranked by how likely it is
that Q is “translated” from D, P(Q|D)

Best Home Remedies for Cold and Flu

h ow to d ea l WI th By: Catherine Browne, L.Ac., MH, Dipl. Ac.
N

S thf y hose ? In Chinese medicine, colds and flu's are delineated
into several different energetic classifications.
Here we will outline the different types of cold
and flu viruses that you will likely encounter, and

thoan daccviba tho bhact bharmaa camandiacs Fare b~

e Word based models
* Phrase based models
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Word based models

Sample IBM-1 word
translation probability
after EM training on
the query-title pairs

q P(q|w) 0 P(q|w)
titanic 0.56218 Vista 0.80575
ship 0.01383 Windows 0.05344
movie 0.01222 Download 0.00728
pictures 0.01211 ultimate 0.00571
sink 0.00697 Xp 0.00355
facts 0.00689 microsoft 0.00342
photos 0.00533 bit 0.00286
rose 0.00447 compatible 0.00270
people 0.00441 premium 0.00244
SUIVIVOrS 0.00369 free 0.00211
w = tifanic w = vista
q P(q|w) q P(q|w)
everest 0.52826 pontiff 0.17288
mt 0.02672 pope 0.09831
mount 0.02117 playground 0.03729
deaths 0.00958 wally 0.03053
person 0.00598 bartlett 0.03051
summit 0.00503 current 0.02712
climbing 0.00454 quantum 0.02373
cost 0.00446 wayne 0.02372
visit 0.00441 john 0.02034
height 0.00397 stewart 0.02031

w = gverest

w = ponfiff

138


http://research.microsoft.com/c/1040
http://research.microsoft.com/c/1040

Microsoft:

Research
Phrase based models

q P(q|w) q P(q|w)
titanic 0.43195 sierra vista 0.61717
Ims ftitanic 0.03793 SV 0.02260
titanic sank 0.02114 vista 0.01678
titanic sinking 0.01695 sierra 0.01581
titanic survivors 0.01537 az 0.00417
titanic ship 0.01112 bella vista 0.00320
titanic sunk 0.00960 arizona 0.00223
titanic pictures 0.00593 dominoes sierra | 0.0022
vista
titanic exhibit 0.00540 |donmunos sierra vista| 0.0022
ship titanic 0.00383 meadows 0.00029

W = rms titanic W = sierra vista

Figure 6: Sample phrase translation probabilities learned from
the word-aligned query-title pairs.

 Phrases, with context information, lead to less
ambiguous translations than words
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Generative Topic Models

Q: stuffy nose treatment €—— D: cold home remedies

Q: stuffy nose treatment €—— | Topic | €= D: cold home remedies

* Probabilistic latent Semantic Analysis (PLSA)
— P(QID) =[lgeq 22 P(ql9p,)P(z|D, 8)
— D is assigned a single most likely topic vector
— Q is generated from the topic vectors

e Latent Dirichlet Allocation (LDA) generalizes PLSA
— a posterior distribution over topic vectors is used
— PLSA = LDA with MAP inference
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Bilingual topic model for web search

B CaOrmuronl
.|d| - @&ﬁd

» For each topic z: (¢, $p2) ~ Dir(B)
* For each Q-D pair: 8 ~ Dir(a)
* Each g is generatedbyz ~ 0 and q ~ qu

 Each wis generated by z ~ @ and w ~ ¢p?

[Gao, Toutanova, Yih, 2011]
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MAP Estimation via EM

* Estimate (0, $%, dP) by maximizing joint log
likelihood of Q-D pairs and the parameters

e E-Step: compute posterior probabilities
— P(z|q,8%P),P(z|w, 62P)

 M-Step: update parameters using the
posterior probabilities

- P(q|¢p).P(w|pD), P(2|02D)
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Results
# Models NDCG@1 NDCG@3
Lexical Matching Models
1 BM25 30.5 32.8
2 Unigram LM 30.4 (-0.1) 32.7 (-0.1)
Topic Models
PLSA [Hofmann 1999] 30.5 (+0.0) 33.5 (+0.7)
4 BLTM [Gao et al. 2011] 31.6 (+1.1) 34.4 (+1.6)
Clickthrough-based Translation Models
WTM [Gao et al. 2010] 31.5 (+1.0) 34.2 (+1.4)
6 PTM [Gao et al. 2010] 31.9 (+1.4) 34.7 (+1.9)
Deep Structure Semantic Model
DSSM [Huang et al. 2013] 32.0 (+1.5) 35.5 (+2.7)
8 C-DSSM [Shen et al. 2014] 34.2 (+3.7) 37.4 (+4.6)

e Convolutional DSSM is the new state-of-the-art

[Shen, He, Gao, Deng, Mesnil, 2014]
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Deep Structured Semantic Model (DSSM):
learning semantic similarity between X and Y

Web search Search query Web documents

Ad selection Search query Ad keywords

Entity ranking Mention (highlighted)  Entities

Recommendation Doc in reading Interesting things in doc or
other docs

Machine translation Sentence in language A Translations in language B

Nature User Interface  Command (text/speech) Action

Summarization Document Summary
Query rewriting Query Rewrite
Image retrieval Text string Images

[Huang et al. 2013; Shen et al. 2014; Gao et al. 2014a; Gao et al. 2014b] 144
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