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ABSTRACT

This paper introduces a new Acoustic Echo Suppression (AES)
algorithm for suppressing the residual echo after the Acoustic Echo
Canceller (AEC). By temporally segmenting the frequency bins of
the residual signal spectrum into blocks and modelling the data in
each block and each frequency bin as realizations of a random vari-
able, we can compute the probability of presence of residual echo
and derive an appropriate ML suppression rule based on this proba-
bility. The computation of the probabilities is based on the Expec-
tation Maximization algorithm. The proposed method shows bet-
ter performance as compared to state of the art methods for resid-
ual echo suppression while producing no audible degradation in the
near end signal and no musical noise. Test results indicate that the
proposed approach provides an increase in the ERLE of up to 3 dB
more than the state of the art echo suppressor while yielding a com-
parable mean opinion score (MOS) for the near end speech quality.
Furthermore, the proposed method is independent of the double talk
detector – which makes it robust to misclassifications on the part of
the AEC algorithm.

Index Terms— Echo suppression, EM learning, Probabilistic
suppression rule, Suppression rule, Adaptive filters

1. INTRODUCTION

Acoustic Echo Cancellation (AEC) algorithms often do not provide
sufficient echo reduction. In part, this is because they model room
impulse responses by short, finite-length filters, which cannot com-
pletely cancel echoes and, in part, because the reverberation tail is
stochastic in nature – making it impossible to model by linear filters.
This mismatch between the true impulse response and the estimated
response of the AEC leads to what is termed as residual echo.

Over the past years, many methods have been developed to
suppress the residual echo. These approaches, generically called
Acoustic Echo Suppressors (AES), treat the echo signal as an un-
correlated interference that must be suppressed, and use methods
from the area of single-channel signal enhancement for this purpose.
Echo cancellation and suppression is generally done in the short-
time–frequency domain (the spectral representation of an acoustic
signal obtained from overlapped, windowed, discrete frequency
transforms). AES algorithms then weight each short-time–frequency
(T-F) point according to some optimization criterion that assigns a
high gain to T-F points containing near-end signals and suppresses
T-F points that predominantly contain echo.

The simplest of all techniques is center-clipping, which pro-
duces significant suppression – albeit with equally drastic near-end
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speech distortion, and is, furthermore, heavily dependent on the dou-
bletalk detector. More sophisticated techniques estimate the power
spectral density (PSD) of the residual echo for Weiner filtering [1,
2, 3] or spectral subtraction [4]. However, all these approaches bring
with them the disadvantages common to single-channel noise sup-
pression algorithms: distortions and musical noise.

The recent approach of [5] models the magnitude of the resid-
ual echo, in each frequency bin and in each time frame, as a linear
combination of the loudspeaker signals of the previous time-frames,
for that frequency bin. This leads to the estimation of a temporal,
linear ‘filter’ for each frequency that minimizes the mean square er-
ror between the current microphone input frame and the loudspeaker
outputs for the current and previousL frames. For this approach,
it is assumed that the AEC removes most of the phase information
in the echo signal (corresponding to the direct path and the early re-
flections) leaving only the reverberation tail to be suppressed by the
AES. The adaptation of the regression coefficients is done in the ab-
sence of doubletalk, necessitating a good doubletalk detector. Simi-
lar approaches are proposed in [6, 7]. As these methods also rely on
spectral subtraction, they are sensitive to musical noise.

This paper is motivated by the approaches in [3, 5]. The spec-
trum of the residual is temporally segmented into short blocks (of the
order of 0.3 – 0.5 s). For each block and each bin, we consider two
mutually exclusive cases: (a) The block contains, mainly, near end
signals (a mixture of near end speech and noise) or (b) it contains,
mainly, the residual echo. Depending upon the hypothesis, we write
the corresponding probability density function of the observed data
and compute the probabilities of the respective hypothesis. Based on
these estimates, we develop a new rule for residual suppression. The
performance of the approach is compared with the state of the art [5]
using the ERLE measure and the objective perceptual evaluation of
near end speech quality [8, 9].

2. SIGNAL MODEL

The block diagram of the classic AEC+AES system is indicated in
Figure 1. z (t) denotes the far end signal;x (t), the microphone
input; s (t), the near end speech andṽ (t), the near end noise.y (t)
is the output from the AEC, containing the residual and the near end
signals, and̂y (t) represents the output of the AES. We then have the
following relations between these signals, in the time domain:

x (t) = h (t) ∗ z (t) + s (t) + ṽ (t)

y (t) =
(

h (t) − ĥ (t)
)

∗ z (t) + s (t) + ṽ (t)

ŷ (t) ≈ s (t) + ṽ (t) , (1)

whereĥ (t) is the estimate of the room impulse response from the
AEC and∗ indicates convolution. However, as the AEC and AES



generally perform in the short-time–frequency domain, we may
rewrite the above equation in this domain as:

X (k, n) = H (k, n) Z (k, n) + S (k, n) + Ṽ (k, n)

Y (k, n) =
(

H (k, n) − Ĥ (k, n)
)

Z (k, n) + S (k, n) + Ṽ (k, n)

Ŷ (k, n) ≈ S (k, n) + Ṽ (k, n) , (2)

wherek indicates the discrete frequency bin index andn, the frame.
As far as the AES is concerned, we need distinguish only between

AEC AES

z (t)

y (t)x (t)

ṽ (t)

s (t)
ŷ (t)

h (t) ∗ z (t)

Fig. 1. Block diagram of the typical Acoustic Echo Reduction sys-
tem

near end signals and the residual: we need not be concerned with the
individual properties (speech/noise) of the near end signals. This is
left to the noise suppressor which usually follows the AES. Subse-
quently, in a slight abuse of notation, we shall simplify the equations
by usingV (k, n) to denote thesum of the near end signals:

V (k, n) = S (k, n) + Ṽ (k, n) (3)

3. EM BASED AES

For each frequency bink, we process the residual in a blockwise
manner considering, at a time, ablock consisting ofN frames of the
spectrum. Such a blockb may be written as:

Yb (k) = (Y (k, bN) , . . . , Y (k, (b + 1)N − 1))T
, (4)

and is depicted in Figure 2, for a frequency bink. Note that the

k

k + 1

k − 1

bN bN + n (b + 1)N − 1

Fig. 2. Selection of a block of frequency frames for the proposed
approach

selected blocks may or may not overlap.
For each block, and each bin, we shall posit two mutually exclu-

sive hypotheses:

1. H1: the block contains, predominantly, the residual echo.

2. H0: the block contains, predominantly, signals from the near
end,

and aim to find the probability of each hypothesis for each block
and each bin. Once we have these probabilities, we compute the
output of the AES in a manner analogous to the maximum likelihood
estimate of McAulay and Malpass [10]:

Ŷb (k) = P
(

Hk,b
0

)

Yb (k) . (5)

Note that we have explicitly specified the block and frequency
bin indices to indicate that the probabilities of the hypotheses
vary with time and frequency. For the subsequent development
of the method, however, they shall be dropped for purposes of
convenience, and reintroduced where necessary. We next pro-
ceed by assuming that the signals are realizations of random vari-
ables, which allows us to write the probability of each observa-
tion of Y (n) = Y (bN + n) given the speaker (far end) signal
Z (n) = (Z (bN + n − L) , . . . , Z (bN + n))T as

p (Y (n) |Z (n)) =

1
∑

i=0

P (Hi) p (Y (n) |Hi,Z (n)) (6)

where we model the probabilities of the observed signal based on
each hypothesis as:

p (Y (n) |H0,Z (n)) ∼ N (0, Ψv1
) (7)

p (Y (n) |H1,Z (n)) ∼ N
(

W
H
Z (n) , Ψv2

)

. (8)

Equation (8) is inspired by the approach in [5]: the residual is mod-
elled as a linear combination of the current andL previous frames of
the speaker signal.

Note that the variancesΨv1
andΨv2

in (7) and (8) are modelled
as different variables to take the mismatch of the regression model
into account.

The unknown parameters that need to be estimated are: the prob-
abilitiesP (Hi), the variancesΨvi

, and the regression coefficients
W. These can be written as a vector of parameters:

Θ =
(

P (H0) , P (H1) , Ψv1
, Ψv2

,W
T
)T

(9)

For notational convenience, we shall subsequently replace the
P (Hi) by αi. Our problem, now, is the following: givenN obser-
vationsY (n) and the corresponding far end signal vectorsZ (n),
n = 0, . . . , N − 1, estimate the parameter vectorΘ. The maximum
likelihood [11] solution of this problem is:

Θopt = argmax
Θ

p (Y (0), . . . , Y (N − 1)|Z(0), . . . ,Z(N − 1),Θ)

= argmax
Θ

N−1
∏

n=0

p (Y (n)|Z(n),Θ) , (10)

where the last simplification is obtained by assuming conditional
temporal independence among the signalsY . Using (7) and (8)
in (10), we obtain the followinglog likelihood function:

Θopt = argmax
Θ

ln

(

N−1
∏

n=0

1
∑

i=0

P (Hi) p (Y (n)|Hi,Z(n),Θ)

)

= argmax
Θ

N−1
∑

n=0

ln

(

1
∑

i=0

αip (Y (n)|Hi,Z(n),Θ)

)

. (11)

Maximizing the log likelihood function directly for the optimal
Θ is not trivial. However, recognizing that the form of (11) is similar



to the estimation of the mixture of densities problem [12], we may
proceed towards solving this using theExpectation Maximization al-
gorithm. Following [12], we form the complete log likelihood func-
tion by positing the existence of unobserved data that indicate which
hypothesis “generated” each observed sampleY (n). We then take
the expected value over this complete log-likelihood function (the
expectation step) and, after some trivial algebraic manipulations, ob-

tain the auxiliary equationQ
(

Θ,Θ(`)
)

as:

Q
(

Θ,Θ
(`)
)

=

N−1
∑

n=0

1
∑

i=0

ln (αip (Y (n)|Hi,Z(n),Θ)) ·

P
(

Hi|Y (n),Z(n),Θ(`)
)

, (12)

whereΘ(`) is the estimate of the parameter vector at iteration`.

In the above, we may obtainP
(

Hi|Y (n),Z(n),Θ(`)
)

using the

Bayes’ rule as:

P
(

Hi|Y (n),Z(n),Θ(`)
)

=
α

(`)
i p (Y (n)|Hi,Z(n),Θ)

1
∑

i′=0

α
(`)

i′
p (Y (n)|Hi′ ,Z(n),Θ)

.

(13)
From (7), (8) and (12), the auxiliary function may be expanded to:

Q
(

Θ,Θ
(`)
)

=

N
∑

n=0

(

1
∑

i=0

ln (αi) P
(

Hi|Y (n),Z(n),Θ(`)
)

−

(

ln (Ψv1
) +

|Y (n)|2

Ψv1

)

P
(

H0|Y (n),Z(n),Θ(`)
)

(14)

−

(

ln (Ψv2
) +

|Y (n) − WHZ(n)|2

Ψv2

)

P
(

H1|Y (n),Z(n),Θ(`)
)

)

The optimal parameters for the next iteration may then be found by
maximizing (14) with respect to the parameters, and using the con-
straints

∑

i
αi = 1. This yields the following update rules:

αi =
1

N

N−1
∑

n=0

P
(

Hi|Y (n),Z(n),Θ(`)
)

(15)

Ψv1
=

N−1
∑

n=0

|Y (n)|2P
(

H0|Y (n),Z(n),Θ(`)
)

N−1
∑

n=0

P
(

H0|Y (n),Z(n),Θ(`)
)

(16)

Ψv2
=

N−1
∑

n=0

|Y (n) − W
(`)H

Z(n)|2P
(

H1|Y (n),Z(n),Θ(`)
)

N−1
∑

n=0

P
(

H1|Y (n),Z(n),Θ(`)
)

(17)

W = R
−1

p (18)

where:

R =

(

N−1
∑

n=0

P
(

H1|Y (n),Z(n),Θ(`)
)

Z(n)ZH(n)

)

and

p =

(

N−1
∑

n=0

P
(

H1|Y (n),Z(n),Θ(`)
)

Y
∗(n)Z(n)

)

.

If we choose to neglect the additional variance forH1 due to the
mismatch in modelling, we reduce the system of variables by one
and the update rules are modified according to:

Ψv =
1

N

(

N−1
∑

n=0

|Y (n)|2P
(

H0|Y (n),Z(n),Θ(`)
)

(19)

+

N−1
∑

n=0

|Y (n) − W
(`)H

Z(n)|2P
(

H1|Y (n),Z(n),Θ(`)
)

)

.

Note that only the update rule for the variance is affected.
Thus, we can obtain an estimate for the probability of each hy-

pothesis in each block and each bin, and use this to compute the
output signal as in (5).

4. EXPERIMENTAL RESULTS

To test the proposed approach, signals were recorded at a sampling
frequency of 16 kHz, in an office room with aT60 of 0.27s. The spec-
trum was computed using a 512 point FFT and a Hann window with
a 50% overlap. The AEC is performed using a classic frequency do-
main NLMS algorithm. The output of the AEC was then processed
using the EM based suppressor and was compared to the magnitude
regression based approach of [5]. The parameters for our algorithm
were as follows:N = 24, L = 8. The blocks were selected in
a non-overlapping manner. For each frequency, 20 iterations of the
EM algorithm were carried out. The quantitative performance of the
algorithms was evaluated on the basis of their average Echo Return
Loss Enhancement (ERLE) value, which is computed as in [13], for
example. We also test the perceptual quality of the near end speech
after the AES, using a slightly modified version of the wideband per-
ceptual evaluation of speech quality [9] to obtain the Mean Opinion
Score (MOS). The results are presented in Table 1. It may be seen

Table 1. Test results for the AEC, the AEC+AES based on the mag-
nitude regression model of [5] and the AEC+AES based on the pro-
posed system

Test Baseline Reg. AES EM-AES
ERLE (dB) 12.37 17.54 21.15

MOS 3.2 3.69 3.78

that the proposed approach performs very well, yielding an average
of 8.7dB of residual echo suppression as compared to the 5dB aver-
age of the regression based approach. The MOS values of both ap-
proaches are comparable indicating that the achieved ERLE increase
is not at the cost of near end sound quality. Figures 4 and 5 illustrate
the performance of the proposed AES approach in the presence of
near end signal. For comparison, the segment containing only the
near end signal is presented in Figure 3. Observe that the near end
signal is preserved during its passage through the AES – including
short segments comprising plosives and fricatives.

5. DISCUSSION AND CONCLUSIONS

We have proposed an approach to AES based on a probabilistic
model. The probability of presence of residual echo is estimated
by means of the EM algorithm and is used to compute an ML esti-
mate of the output. Also, as the gains are limited between [0,1], and
the estimation is performed on short blocks, musical noise is absent
in the output.

One issue that needs to be addressed is the overlap between adja-
cent blocks. Decreasing the overlap would increase the latency of the
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Fig. 3. Spectrum of the near end speech only.
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Fig. 4. Spectrum showing the residual along with doubletalk. Note
the significant amount of residual echo.

system, whereas increasing the overlap increases the computational
load. Therefore, this factor must be judiciously selected so that it
provides an acceptable trade off between latency and computational
expense.

Another issue is the tracking and the use of the regression coef-
ficients and the variances in each hypothesis. Currently these vari-
ables are not utilized in the computation of the gain function - save
as necessary ‘nuisance’ parameters. However, they provide useful
information regarding the state of the environment. Optimal utiliza-
tion of these parameters shall be the subject of a future publication.
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