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ABSTRACT 

This paper presents an efficient algorithm for high-quality speech 
capture in applications such as hands-free teleconferencing or 
voice recording by personal computers. We process the micro-
phone signals by a subband adaptive filtering structure using a 
modulated complex lapped transform (MCLT), in which the 
subband filters are adapted to maximize the kurtosis of the linear 
prediction (LP) residual of the reconstructed speech. In this way, 
we attain good solutions to the problem of blind speech derever-
beration. Experimental results with actual data, as well as with 
artificially difficult reverberant situations, show very good per-
formance, both in terms of a significant reduction of the per-
ceived reverberation, as well as improvement in spectral fidelity. 

1. INTRODUCTION 

The quality of speech captured by personal computers in busi-
ness offices is usually degraded by environment noise and by 
reverberation (caused by the sound waves reflecting off walls and 
other surfaces). Quasi-stationary noise produced by computer 
fans and air conditioning can be significantly reduced by spectral 
subtraction or similar techniques [1]. Reducing the distortion 
caused by reverberation is a difficult blind deconvolution prob-
lem, due to broadband nature of speech and the high order of the 
equivalent impulse response from the speaker’s mouth to the 
microphone. The problem is, of course, alleviated by the use of 
microphone headsets, but those are usually inconvenient to the 
user. 

In this paper we present an efficient algorithm for speech 
dereverberation using subband adaptive filtering for fast conver-
gence. The key new concept is to control the adaptive subband 
filters not by a mean-square error criterion, but by a kurtosis 
metric on LP residuals. In this way, we make efficient use of the 
a priori knowledge that the signal to be recovered is speech. The 
algorithm is capable of reducing reverberation even when a sin-
gle microphone signal is available, but better results are obtained 
with arrays containing several microphones. 

We can model the signal received by the c th microphone as 

 ( ) ( ) ( ) ( )T
c c cx n n n w n= +s g  (1) 

where ( ) ( ) ( )1
T

n s n N s n=  − +  s ! , with s(n) the “clean” 
speech signal to be recovered, ( )cw n  are additive noises, 
and ( )c ng are the N-tap acoustic impulse responses. For a typical 
“wideband telephony” sampling rate of 16 kHz, N can vary from 
1,000 to over 4,000. 

A simple multi-microphone speech enhancement system is 
the delay-and-sum beamformer [2], in which an estimate of s(n) 
is formed by simply averaging ( )c cx n L− . The delays, cL , are 
computed to best enhance the desired speech signal. More effi-
cient approaches have been reported, such as the use of subband 
envelope estimation [3], and decomposition of the received mi-
crophone signals into minimum-phase and allpass components 
[4]. Such techniques have shown only modest improvement over 
the delay-and-sum approach, in terms of reverberation reduction. 
The use of speech models to improve performance has been dis-
cussed in many reports, e.g. [5], [6]. In this paper, we extend use 
of explicit speech models by optimizing a metric of time-domain 
signal concentration to control the adaptation of the dereverbera-
tion filters. We achieve significant improvement in performance 
over the delay-and-sum beamformer, both in subjective signal 
quality and in spectral definition. 

2. SPEECH ENHANCEMENT 

For clean voiced speech, LP residuals have strong peaks corre-
sponding to glottal pulses, whereas for reverberated speech such 
peaks are spread in time [6]. A measure of amplitude spread of 
LP residuals can serve as a reverberation metric. To test this 
concept, we performed the following experiment: in a standard 
11’×11’ office, we collected speech signals played back through 
a mouth simulator (Brüel &Kjær 4227) with a sampling fre-
quency of 16 kHz, at fourteen locations, 6” to 84” (6” spacing) 
from a single omnidirectional electret microphone. We computed 
10-th order LP residuals over 32 ms (512 samples) frames, and 
then the final kurtosis as the average of the frame kurtosis. A 
typical result is shown in Figure 1, for a female speaker in the 
presence of interfering office noise. We conclude that LP resid-
ual kurtosis is a reasonable measure of reverberation. 

Our goal is to develop an online adaptive gradient-descent 
algorithm that maximizes LP residual kurtosis. In other words, 
we seek to find blind deconvolution filters that make the LP re-
siduals as far as possible from being Gaussian – an idea that has 
been applied to blind deconvolution problems in underwater 
acoustics and geophysics [7],[8]. The following sections present 
our implementation of such an adaptive algorithm. We begin by 
developing an online single channel time-domain system. This is 
readily extended to handle multiple channels. While the approach 
is easier to describe in the time-domain, a frequency-domain 
implementation leads to better results, and thus we present the 
details of the frequency-domain mutichannel system. 



2.1 Single Channel Time-Domain Adaptation 

This system is shown in Figure 2 (a). The received noisy rever-
berated speech signal is x(n) and its corresponding LP residual is 

( )x n� . ( )nh is the L-tap adaptive filter at time n. The output is 
( ) ( ) ( ),Ty n n n= h x� � where ( ) ( ) ( ) ( )1 1

T
n x n L x n x n=  − + −  x� � � �! . 

An LP synthesis filter yields y(n), the final processed signal. 
Adaptation of ( )nh is similar to the traditional LMS adaptive 
filter [9], except that instead of a desired signal we use a feed-
back function, f(n), described below. 

A problem with the system in Figure 2 (a) is LP reconstruc-
tion artifacts. This can be avoided in a simple manner. For small 
adaptation rates, the system in Figure 2 (a) is linear. ( )nh can be 
computed from ( )x n�  but applied directly to x(n), as shown in 
Figure 2 (b). LP reconstruction artifacts are avoided at the small 
price of running two filters. 

To derive the adaptation equations, recall that we desire a 
filter that maximizes the kurtosis of ( )y n� , given by 

 ( ) ( ){ } ( ){ }4 2 2E E 3J n y n y n= −� �  (2) 

where the expectations E{} can be estimated from sample aver-
ages. The gradient of J(n) with respect to the current filter is 
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where the dependence on the time n is not written for simplicity. 
In a manner similar to [10], we can approximate the gradient by 
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We refer to f(n) as the feedback function. This function is used to 
control the filter updates. For continuous adaptation, 

( ){ }2E y n� and ( ){ }4E y n� are estimated recursively. The final 
structure of the update equations for a filter that maximizes the 
kurtosis of the LP residual of the input waveform is then given 
by 

 ( ) ( ) ( ) ( )1n n f n nµ+ = +h h x�  (5) 

where 
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Parameter µ controls the speed of adaptation, and β controls the 
smoothness of the moment estimates. 

2.2 Multichannel Time-Domain Adaptation 

A multichannel time-domain implementation extends directly 
from this single-channel system just described. As before, our 
objective is to maximize the kurtosis of ( )y n� , the LP residual of 

( )y n . In this case, ( ) ( ) ( )1
C T

c cc
y n n n== ∑ h x , where C is the 

number of channels. Extending the analysis of the previous sub-
section, it is easy to see that the multichannel update equations 
become 

 ( ) ( ) ( ) ( )1c c cn n f n nµ+ = +h h x�  (7) 

where the feedback function f(n) is computed as in (6) using the 
multichannel ( )y n . To jointly optimize the filters, each channel 
is independently adapted, using the same feedback function. 

2.3 Frequency-Domain Implementation 

Direct use of the time-domain LMS-like adaptation equations in 
(5) and (7) is not recommended, because the large variations in 
the eigenvectors of the autocorrelation matrices of the input sig-
nals may lead to very slow convergence, or no convergence at all 
under noisy situations [9]. We use subband adaptive filtering 
structure based on the modulated complex lapped transform 
(MCLT), as proposed in [11]. Since each subband signal has an 
approximately flat spectrum, we expect not only faster conver-
gence but reduced sensitivity to noise [11]. A multichannel 
MCLT-based subband version of the structure of Figure 2 (b) is 
shown in Figure 3. Even though that figure shows only two chan-
nels, generalization to more channels is easy. Also, although two 
inverse MCLT blocks per channel are shown in Figure 3, it is 
clear that we can add the channels in the MCLT domain, so that 
only one IMCLT is needed for ( )y n and only one for ( ).y n�  
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Figure 1. Kurtosis of LP residuals as a reverberation metric. 
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Figure 2. (a) A single channel online time-domain adaptive 
algorithm for maximizing kurtosis of the LP residual. (b) 
Equivalent system, which avoids LP reconstruction artifacts. 



We assume that the microphone signals are decomposed via 
MCLTs into M complex subbands. To determine M, we consider 
the tradeoff that larger M are desired to whiten the subband spec-
tra, whereas smaller M are desired to reduce processing delay. A 
good compromise is to set M such that the frame length is about 
20–40 ms. Each subband s of each channel c is processed by a 
complex FIR adaptive filter with L taps, ( ),c s mH , where m is 
the MCLT frame index. By considering that the MCLT approxi-
mately satisfies the convolution properties of the FFT [11], we 
can easily map the update equations in (7) to the frequency do-
main, generating the new update equation 

 ( ) ( ) ( ) ( )*, 1 , , ,c c cs m s m F s m s mµ+ = +H H X�  (8) 

where the superscript * denotes complex conjugation. 
Unlike in an LMS formulation, the appropriate feedback 

function F(s, m) cannot be computed in the frequency domain. 
To compute the MCLT-domain feedback function F(s, m), we 
generate the reconstructed signal ( )y n� and compute f(n) from (6). 
We then compute F(s, m) from f(n)  using the MCLT. The over-
lapping nature of the MCLT introduces a one-frame delay in the 
computation of F(s, m). Thus, to maintain an appropriate ap-
proximation of the gradient, we use the previous input block in 
the update equation (8), generating our final update equation 

 ( ) ( ) ( ) ( )*, 1 , , 1 , 1 .c c cs m s m F s m s mµ+ = + − −H H X�  (9) 

Assuming the learning gain µ  is small enough, the extra delay in 
the update equation above will introduce a very small error in the 
final convergence of the filter. 

2.4 Implementation Issues 

Kurtosis is insensitive to the total energy of the waveform. 
Therefore, like in most blind deconvolution problems, there is a 
gain uncertainty. As usual, we can solve that by maintaining a 
constant norm within the filter coefficients at each update cycle. 

It is interesting to note that, although our optimization crite-
rion of maximizing kurtosis of the LP residual makes more sense 
for voiced speech, we have not found a need to restrict this algo-
rithm to adapt only during voiced segments. Continuously adapt-
ing the filters, even during unvoiced or silent periods, provides 
satisfactory results. This is because during these periods the input 
energy in x�  is generally small, reducing the adaptation rate. 

For our dereverberation experiments, we obtained good re-
sults with the following parameters: β = 0.99, µ = 0.0004, and 

( ) [ ],0 1 0 0 0 .
T

c s =H "  

3. EXPERIMENTAL RESULTS 

We present several experimental results from our proposed algo-
rithm, comparing them to a delay-and-sum beamformer. As per-
formance metrics, we use equalized room impulse responses and 
spectrograms. We refrained from computing mean-square error 
(MSE) between the original and reconstructed signals, because 
our system is not driven to minimize MSE, and minimum MSE 
does not necessarily correspond to better sounding speech. 

3.1 Experiment 1 

We collected data using a linear microphone array with 3” spac-
ing between elements, at a distance of 7’ from the mouth simula-
tor. To understand the performance of the algorithm we com-
puted the impulse responses from the mouth simulator to each of 
the four microphone elements, by playing two minutes of white 
noise through the mouth simulator and correlating the received 
waveform with the transmitted white noise sequence. Without 
changing the room, ambient noise was collected (by turning on 
fans and computers) on the same array using the same system 
configuration. For reference, reverberated noisy speech was also 
collected by playing “clean” female speech signal through the 
mouth simulator. Finally, synthesized noisy speech was obtained 
by convolving the clean female speech signal with the impulse 
responses and adding the real room noise. Simulations were run 
using both the noisy speech and the synthetic speech, with no 
difference observed when the SNR was the same. Therefore, by 
acquiring real ambient noise from the same setup and room, we 
can realistically simulate (1) while being able to control the sig-
nal-to-noise (SNR) ratio and monitor the equalized room impulse 
response. 

We used a 4-channel, 256-subband structure with only one 
tap in each subband adaptive filter. The results are shown in 
Figure 4. The equalized impulse response from our proposed 
approach is more impulsive than the equalized response from the 
delay and sum beamformer. Potentially more significant is the 
number of zeros in the spectrum of the equalized delay-sum im-
pulse response that have been removed by the processing pre-
sented here. The spectrum of the equalized impulse response 
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Figure 3. A two-channel online frequency-domain adaptive algorithm for speech dereverberation. A system with more than two 
channels extends directly from this system. 



from our proposed approach is considerably flatter in the impor-
tant 0.5kHz to 4kHz region, compared to that of delay-and-sum. 

3.2 Experiment 2 

To test the ability of our proposed algorithm to equalize longer 
reverberation we simulate four impulse responses as white noise 
under a decaying exponential. A 4-channel 512-subband filter 
with one tap per band was used. Using these impulse responses 
we generate a received signal using the same female speaker and 
noise segments from Experiment #1. The result of this processing 
is shown in Figure 5. Listening to the processed waveform it is 
possible to hear a dramatic reduction in reverberation after about 
5 seconds of adaptation. Figure 5 also shows that most of the 
spectral details of the original signal are recovered with our algo-
rithm. 

4. SUMMARY 

In this paper we presented a new approach to dereverberate 
speech. Our approach is based on the principle that LP residual 
of reverberated speech (specifically voiced speech) is a time-
spread version of the impulse-like LP residual of clean speech. 
We have shown that a kurtosis metric is effective in measuring 
reverberation. Computing the gradient of this metric with respect 
to the deconvolution filters is relatively easy. This yields a final 
form for adaptive filters that is simple and LMS-like. 

For improved performance, we used a dual-filter structure to 
avoid LP reconstruction artifacts, and a subband filtering struc-
ture based on the MCLT. In that way, convergence is achieved 
within a few seconds, and computational complexity is not much 
higher than that of a standard LMS adaptive filter. 

We validated the performance of our system on real world 
data, from both stationary and moving (not presented here) 
sources. It has also been validated on artificially difficult rever-
beration, with significantly better results than delay-and-sum 
beamforming. 
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Figure 4. Results for Experiment 1. Compare the equalized impulse 
response for a delay & sum beamformer to our proposed approach 
in (a) the time-domain (ideal result would be an impulse), (b) the 
frequency-domain. 
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Figure 5. Results for Experiment 2. Compare the equalized im-
pulse response for a delay-and-sum beamformer to our proposed 
approach in (a) the time-domain (ideal result would be an im-
pulse), (b) the frequency-domain. The three voiced-speech spec-
trograms (darker is more intense) in (c) are: original (left), delay-
and-sum (center), and our proposed approach (right); the horizon-
tal time window is 1 sec, and the vertical range is 0 – 4 kHz. Note 
the better spectral definition obtained with the proposed algo-
rithm. 


