

Optimizing Optimistic Concurrency Control for Tree-Structured, Log-Structured Databases

Philip A. Bernstein (Microsoft Research) Sudipto Das (Microsoft Research) Bailu Ding (Cornell University) Markus Pilman (ETH Zurich)

Hyder: Scale-out OLTP w/o partitioning

Scale-out OLTP usually requires partitioning the DB

Partitioning the DB is hard

Data sharing architectures

- The entire database is accessible by all servers that can run transactions
- Scales-out without partitioning

Hyder

- The log is the database
- All servers roll-forward the log

Life of a transaction in Hyder

Database is a search tree

In this paper, it's a balanced binary search tree (AVL or Red-Black) Tree is serialized into a network-attached *shared log* stored on SSDs

Database tree is multi-versioned

To update a node, copy its ancestors up to the root Copy on write

Transactions execute optimistically

Each server has a *cache* of the last committed database state

A transaction executes *optimistically*

Reads a snapshot, creates an *intention*, and *appends* it to the log

Meld validates and merges intentions

Meld - sequentially roll-forward transactions in log order

For each intention log record *I* for transaction *T*,

- check whether **T** experienced a conflict
- if not, **T** committed, so merge **I** into server's last committed state
- efficient conflict detection using metadata in I and last committed state

Determinism – All servers make the same commit/abort decisions

Hyder's evolution

Simulation model presented at CIDR 2011

C++ main-memory implementation presented at VLDB 2011

Single-machine transactional file system within Microsoft

All prior implementations were on a single server

Hyder II, distributed implementation with a highly-optimized meld

- Written from scratch in C# in 2013-2014
- CORFU as the distributed shared log [Balakrishnan et al. NSDI 2012]

Hyder II

Major Learnings

Solved many issues that limited performance

Studied performance for a variety of workloads

Bottlenecks in Hyder

- Log append throughput
- Network bandwidth
- Meld throughput
- Data contention and optimistic concurrency control

Optimized meld to increase peak update transaction throughput by 3X across a variety of workloads

Hyder II: Optimizing Meld

Stagnant CPU speeds limit meld's throughput

Parallelize meld via pipelining by adding two deterministic preliminary stages when melding in intention

- **Premeld**: Merge intention with a *recent snapshot* leaving very little for the sequential final meld
- Group meld: Merge two intentions into one

Meld as an operator

Meld merges I to S_n

At high transaction loads, **tens of thousands** of transactions appear in *I*'s conflict zone

Can we model meld as an operator on trees and apply it repeatedly in parallel?

Meld two trees and output a tree

Premeld to a later snapshot

Premeld I to a later snapshot S_{n-d} when I arrives at a server after serialization, append, and broadcast

Premeld conflict zone is ~2 orders of magnitude smaller than postpremeld conflict zone

Significantly reduces the work to do a final meld of I to S_n Challenges: determinism, metadata for final meld

Experimental Results

Experimental Setup

Cluster of twenty commodity servers on 10Gbps network, and server-grade Intel SSDs

Workload generator derived from YCSB

- Multi-operation transactions
- Database of 10M items, each item about 1K

Various workload parameters varied

- No. of operations per transaction, default 10
- No. of write operations per transaction, default 2
- Isolation level, default Serializable
- Data distribution, default in Uniform
- Database size ...

Workload with all Write Transactions

Group meld: ~1.5X improvement, Premeld: ~3X improvement

Read-Write Transaction Mix

Conclusion

Hyder: a novel architecture for scaling-out transactions without partitioning the database

An end-to-end implementation of Hyder

Hyder II: Pipelined parallelism to optimize meld

Analyzed behavior under a variety of workloads

- Read-only transactions scale almost linearly
- Premeld improves throughput by 3X

Partitioned Hyder in IEEE Data Eng. Bulletin, March 2015

More information: http://aka.ms/hyder

