Microsoft = Microsoft
Research

Optimizing Optimistic Concurrency Control
for Tree-Structured, Log-Structured Databases

Philip A. Bernstein (Microsoft Research)
Sudipto Das (Microsoft Research)

Bailu Ding (Cornell University)

Markus Pilman (ETH Zurich)

Hyder: Scale-out OLTP w/0o partitioning

Scale-out OLTP usually requires
partitioning the DB nternet
= Partitioning the DB is hard

Web Web

Data sharing architectures Server § Server Server
I

= The entire database is accessible by all
servers that can run transactions

= Scales-out without partitioning

Hyder

= The log is the database
= All servers roll-forward the log

Lite of a transaction in Hyder

R&ad } Meld:
Snapshot @ &= Conflict detection

Intention

Transaction }

and merge

Append to
log

Broadcast

o &= intention

Database is a search tree

In this paper, it's a balanced binary search tree (AVL or Red-Black)
Tree is serialized into a network-attached shared log stored on SSDs

(G
Binary
O © &= oo h
Q G ﬂ Tree

Tree is marshaled into the log

QOO0RQ R0 |

Database tree is multi-versionead

To update a node, copy its ancestors up to the root
Copy on write

e /\
G @)
OO o
o © \ @
(D) (D)

Update
D’s value

Transactions execute optimistically

Fach server has a cache of the last committed database state
A transaction executes optimistically

Reads a snapshot, creates an intention, and appends it to the log
DB cache : : AR
- Transaction execution L~
Q= ~~-111r-|1. Get pointer to snapshot A o &
2. Generate updates locally -* “M g
' © 3. Append intention log record- | S
last committed - - ___ \‘\
Y y

€2y
-~---
-_— oy
L]

A @)L WOWLG)| eee |[@-O-E)C)

Meld validates and merges intentions

Meld - sequentially roll-forward transactions in log order

For each intention log record I for transaction T,

= check whether T experienced a conflict
= if not, T committed, so merge I into server’s last committed state

= efficient conflict detection using metadata in I and last committed state
Determinism — All servers make the same commit/abort decisions

Did a committed transaction 's conflic
write into T's readset or zone .
writeset here? E}l transaction T

ROO-BPO-TRses @-O-GFE

Hyder’s evolution
Simulation model presented at CIDR 2011

C++ main-memory implementation presented at VLDB 2011

Single-machine transactional file system within Microsoft

All prior implementations were on a single server

Hyder I, distributed implementation with a highly-optimized meld
= Written from scratch in C# in 2013-2014
= CORFU as the distributed shared log [Balakrishnan et al. NSDI 2012]

Hyder |

Major Learnings

Solved many issues that limited performance

Studied performance for a variety of workloads

Bottlenecks in Hyder
= Log append throughput
= Network bandwidth
= Meld throughput
= Data contention and optimistic concurrency control

Optimized meld to increase peak update transaction
throughput by 3X across a variety of workloads

Hyder II: Optimizing Melo
Stagnant CPU speeds limit meld’s throughput
Parallelize meld via pipelining by adding two deterministic

preliminary stages when melding in intention

* Premeld: Merge intention with a recent snapshot leaving very little
for the sequential final meld

= Group meld: Merge two intentions into one

DL

Hyder's Log

Meld as an operator

S S

1 v
IOT coo |1 \ Hyder’s Log
<

|
|
|
I's conflict zone >

Meld merges /to S,

At high transaction loads, tens of thousands of transactions appear
in I's conflict zone

Can we model meld as an operator on trees and apply it repeatedly
in parallel?
= Meld two trees and output a tree

Premeld to a later snapshot

) Sn-d 5

; v v
IOT coe [, 4l o0 |l |] \ Hyder's Log
i >
I's premeld conflict zone —i 7 k&-— I's Post-premeld conflict zone
< I's conflict zone >

Premeld / to a later snapshot S,_, when [arrives at a server after
serialization, append, and broadcast

Premeld conflict zone is ~2 orders of magnitude smaller than post-
premeld conflict zone

Significantly reduces the work to do a final meld of /to S,
Challenges: determinism, metadata for final meld

Experimental Results

Experimental Setup

Cluster of twenty commodity servers on 10Gbps network,
and server-grade Intel SSDs

Workload generator derived from YCSB

= Multi-operation transactions
= Database of 1T0M items, each item about 1K

Various workload parameters varied

= No. of operations per transaction, default 10

No. of write operations per transaction, default 2
Isolation level, default Serializable

Data distribution, default in Uniform

Database size ...

Workload with all Write Transactions

50,000

NN
o
()
()
o

1

w
()
()
()
o

1

)]
o
o
)
o

!

—
o
o
)
o

!

Throughput (txns/sec)

o

M Hyder Il ® Hyder Il - Grp M Hyder Il - Pre

1 2 4 6 8 10

Number of Hyder Il servers

Group meld: ~1.5X improvement,
Premeld: ~3X improvement

Conflict zone length

Tree nodes visited per txn

100,000
<
g 10,000
O
5§ 1,000
5 100
£
5 10
*

1
300
250
200
150
100
50
0

- W Hyder Il ®mHyder Il - Grp ®Hyderll - Pre

m Hyder Il

Lbhhbl

Number of Hyder Il Servers

W Hyder Il - Grp W Hyder Il - Pre

2 4 6 8 10
Number of Hyder Il servers

Read-Write Transaction Mix

800,000
o

& 700000
600,000

400,000
300,000

e 100,000
|9]
0

eee |R 4

- =2R s’

-A 4R &

Number of Hyder Il servers

Conclusion

Hyder: a novel architecture for scaling-out transactions
without partitioning the database

An end-to-end implementation of Hyder
Hyder II: Pipelined parallelism to optimize meld
Analyzed behavior under a variety of workloads

= Read-only transactions scale almost linearly
= Premeld improves throughput by 3X

Partitioned Hyder in IEEE Data Eng. Bulletin, March 2015
More information: http://aka.ms/hyder

http://aka.ms/hyder

-
LTI e

,‘/'
m Microsoft

»

