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Abstract

Understanding the role of genetic variation in human diseases remains an important problem to be solved in genomics. An
important component of such variation consist of variations at single sites in DNA, or single nucleotide polymorphisms
(SNPs). Typically, the problem of associating particular SNPs to phenotypes has been confounded by hidden factors such as
the presence of population structure, family structure or cryptic relatedness in the sample of individuals being analyzed.
Such confounding factors lead to a large number of spurious associations and missed associations. Various statistical
methods have been proposed to account for such confounding factors such as linear mixed-effect models (LMMs) or
methods that adjust data based on a principal components analysis (PCA), but these methods either suffer from low power
or cease to be tractable for larger numbers of individuals in the sample. Here we present a statistical model for conducting
genome-wide association studies (GWAS) that accounts for such confounding factors. Our method scales in runtime
quadratic in the number of individuals being studied with only a modest loss in statistical power as compared to LMM-
based and PCA-based methods when testing on synthetic data that was generated from a generalized LMM. Applying our
method to both real and synthetic human genotype/phenotype data, we demonstrate the ability of our model to correct
for confounding factors while requiring significantly less runtime relative to LMMs. We have implemented methods for
fitting these models, which are available at http://www.microsoft.com/science.
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Introduction

Population structure, family structure and/or cryptic relatedness

are well-known confounding factors that cause spurious associa-

tions to be found in GWAS [1–6]. Standard statistical hypothesis

testing of association between markers and phenotypes can

produce a large number of false positive associations, as SNP

markers may be correlated with phenotype purely as a result of

confounding factor effects. As the cost of genotyping drops and the

sizes of such studies continue to grow above tens of thousands of

individuals [7–9], the influence of such confounding effects on

GWAS will become more acute, requiring statistical analysis

methods that will both scale for large numbers of individuals while

accounting for the confounders.

The standard techniques for dealing with confounding factors

fall into several classes. An effective class of methods includes

approaches formulated as LMMs [10], which model confounding

factors using pairwise similarity measures between every pair of

individuals. As the effects of confounders are all encoded in the set

of SNPs carried by all individuals, the set of similarities can then be

used in a regression model to distinguish between spurious and

true SNP-phenotype associations. Other methods have been

proposed that use a principal components analysis of individuals’

SNPs [4], perform a post-hoc correction of test statistics such as

Genomic Control [2], or cluster individuals before performing an

aggregate association between clusters and phenotypes [11]. These

methods, while accounting for confounding factors under different

assumptions, have been shown to either suffer from insufficient

statistical power when the confounding effects are strong [4,5] or

are unable to fully capture their effects altogether, such that many

false positives are produced [3,5,12]. In several recent studies

[3,5,12,13], methods based on LMMs were found to produce

fewer false positives and had higher statistical power as compared

to other methods for modeling confounding factors, making

LMMs a popular class of GWAS methods that have high statistical

power and low false positive rates.

Although LMMs have been shown to effectively model and

correct for confounding factors in GWAS, an important problem

that remains to be solved is how to minimize the computational

costs of such methods. Methods based on LMMs typically incur

high computational costs, particularly for studies with larger

numbers of individuals, as the matrix operations required for

parameter estimation scale cubically with the number of

individuals. In the regime where the number of individuals grows

large and where confounding factors exert strong effects, this may

hinder the applicability of LMMs. One possible approach to the

above problem is to turn to alternative classes of models that allow

us to model similarities between individuals in order to account for

confounding factors in the data (as do LMMs) while eschewing the

need for costly matrix operations during parameter estimation. In

particular, probabilistic graphical models are a natural class of

statistical models that allow both for modeling similarities between
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individuals and fast parameter estimation. In this paper we

propose a probabilistic graphical model and parameter estimation

method for associating SNPs to phenotype that both accounts for

confounding factors and runs significantly faster than current

LMM-based methods for larger numbers of individuals, allowing

the method to scale to larger study sizes. Unlike LMM-based

methods (which present local optima in parameter estimation [3])

or PCA-based methods [4], our method for parameter estimation

is not prone to local optima and is also guaranteed to yield unique,

globally optimal parameter estimates. We will apply our model to

real and synthetic human genotype datasets, where we show

significantly lower runtimes for our method as compared to LMM-

based methods for larger study sizes, with only a modest loss in

statistical power relative to LMM-based methods when testing on

synthetic data that was generated from a generalized LMM.

Finally, we have implemented methods for fitting these models,

which are available at http://www.microsoft.com/science.

Results

We present a model for relating individuals’ phenotypic labels as

a function of a given SNP marker and other covariates. The

output of our model will be some statistic for the SNP marker, so

that we can perform a GWAS by applying our model to each SNP

marker in a large set of interest. Given a set of individuals, we

assume that phenotypes consist of binary labels corresponding to

the absence/presence of a phenotype in an individual, although

the model can easily be generalized to polytomous discrete or

continuous phenotypes. For a given locus, our model specifies a

joint probability over individuals’ observed phenotypes, condi-

tioned on each individual’s SNP and covariates. The joint

probability will be a function of all pairs of individuals’ phenotypes

and each individual’s SNP and covariates. Under our model, the

contribution of each pair of individual phenotypes will increase or

decrease as a function of the genetic similarity between the pair of

individuals. Analogously, the contribution of each individual’s

SNP and covariates will vary as a function of how strongly the

SNP and covariates influence that individual’s phenotype, taking

into account genetic similarity between individuals. The depen-

dencies between individuals due to genetic similarity, in addition

to the influence of genetic variation and covariates in generating

phenotypes, can be modelled using a graph in which nodes

correspond to observed phenotypes and covariates. Edges in the

graph denote dependencies between phenotypes and covariates

(Figure 1).

The goal of associating SNPs to phenotypes then corresponds to

parameter estimation under our model in which genetic similarity

between individuals is accounted for (see Methods for more

details). For a given SNP, the model parameters can be assigned a

p-value which we will use as a test statistic of significance of

association between the given SNP and individuals’ phenotypes

under the null hypothesis that no associations hold between

genetic variation and phenotype (see Methods). To test the utility

of the proposed model for association studies, we describe in the

next section a series of experiments that measure the degree to

which the above model accounts for confounding factors and its

computational cost for larger studies.

Experiments
Given our probabilistic model for estimating associations

between SNPs and phenotype, we would like to test two aspects

of the model. The first is that of calibration, or whether the

distribution of p-values is uniform under the null hypothesis for

each SNP. On synthetic data, it is straightforward to guarantee

this condition. On real data, we use our prior belief that very few

SNPs are associated with the phenotype to obtain this condition.

As is standard practice in GWAS, we summarize the departure of

an observed p-value distribution from the theoretical null

distribution by use of the l statistic, or genomic inflation factor

[2], which measures how much smaller the observed median p-

value is compared to that expected in the theoretical null

distribution. Therefore, on data containing no (or very few)

associations, lw1 suggests that the p-value distribution is inflated

(too many small, significant p-values), which can happen when

confounding factors are inadequately modeled. Conversely, lv1
implies deflated p-values (too few small p-values). In general, small

variations from l~1 are expected to occur even in synthetically

generated datasets with no associations due to sampling error for a

finite number of SNPs.

The second aspect we wish to test is that of discrimination, or

whether the model can distinguish spurious associations from real

ones. To do this, we must apply our method to data where the

ground truth as to the strength of associations to be found is known

at the outset. Ideally, we would sample individuals’ phenotypes

under the undirected graphical model, conditioned on their SNPs

and covariates. However, obtaining samples from the correct joint

probability is in general intractable (see Methods). An alternative is

to instead generate synthetic data from a generalized linear mixed

model (GLMM), which is tractable, and then assess the statistical

power of our method in distinguishing between spurious and true

associations for this dataset (see Methods for details on how

synthetic data were generated). One caveat is that sampling from

the GLMM would mean that our model is misspecified and would

suffer some loss of power relative to a LMM when both are applied

to the sampled data. However, provided that we are able to

generate data similar to real genotype/phenotype data, the

analysis on synthetic data will inform us about whether the

method will have significant statistical power on real data.

Furthermore, if the outputs of our model are similar between

synthetic and real data, then this would suggest that the model has

adequately captured the statistics of the data in the sense of

modeling confounding factors.

To test the above two aspects, we used both real data and

synthetic phenotypes generated from a GLMM using real human

genotype and phenotype data. The GAW14 [14] dataset consists

of 7,579 SNP markers for 1,261 individuals from four distinct

subpopulations (white non-Hispanic, black non-Hispanic, Hispan-

ic, and other), where an individual’s phenotype corresponds to

whether he/she smokes or not. We also used the GOLDN dataset

Figure 1. The graphical model for relating genetic variation to
phenotype. Nodes correspond to variables in the model and edges
correspond to dependencies between variables under the model.
Shaded nodes correspond to observed variables under the model.
Conditioned on each individual’s SNP and covariates, phenotypic labels
are modeled using a fully connected undirected graphical model.
doi:10.1371/journal.pone.0021591.g001
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[15] which consisted of 647 SNP markers for 1,114 individuals

from two National Heart, Lung and Blood Institute (NHLBI)

Family Heart Study (FHS) field centers, where an individual’s

phenotype corresponds to whether he/she is above or below the

population median height. In both datasets, due to a large amount

of population structure and family structure, it is expected that the

effects of confounding factors will be strong.

We applied our model to the above real datasets and to the

synthetically-generated data, where for all datasets, individual age

covariates were binned into five ranges 0{21, 21{30, 30{45,

45{65, 65z and each individual’s age group, encoded as a

binary 5-vector, was used in the regression. All covariates and SNP

values were standardized to have zero mean and unit standard

deviation across individuals. We see that the distributions of p-

values in both real and synthetic datasets are not significantly

different from the uniform distribution of p-values that is expected

under the null hypothesis, as measured by both one-sample

Kolmogorov-Smirnov tests (p = 0.16,0.13 for the synthetic and

real GAW14 data, p = 0.74,0.74 for synthetic and real GOLDN

data) and the genomic inflation factor l, shown in Figures 2(a,b),

3(a,b), 4(a,b) and 5(a,b). These two results suggest that our model

adequately models confounding factors and has a low false positive

rate in the presence of confounders. For comparison,

Figures 2(c,d,e,f), 3(c,d,e,f), 4(c,d,e,f) and 5(c,d,e,f) show p-values

obtained from 1) a logistic regression of phenotype onto covariates

and SNPs without accounting for confounding factors and 2) from

using the PCA-based Eigenstrat method [4]. Here we see that an

inflation of the number of significant p-values occurs for these

latter two methods, as the distribution of p-values obtained

deviates significantly from the uniform distribution (pv1|10{24).

One possible explanation for the inflation seen in the p-values

produced by the PCA-based method is that it may be biased

against due to the relatively small number of markers evaluated in

the GAW14 and GOLDN datasets. However, upon additional

evaluations on the larger Wellcome Trust Case Control Consor-

tium dataset [16] (Figure 6) containing of 360,657 SNP markers

across 3,400 individuals, we observe similar results in that the

PCA-based method again produces inflated p-values, whereas our

method produced no significant deviation from the uniform

distribution of p-values expected under the null hypothesis. We

also note that the distributions of p-values obtained are similar for

both real data and synthetic data in which the SNP regression

weight is set to 0 (Figures 2,3), suggesting that our sampling

method has produced synthetic data which is representative of real

data.

In addition to testing the calibration of our method, we would

also like to test its ability to distinguish spurious associations from

real ones, or its statistical power. A method that produces few

significant p-values for data where bSNP~0 and many significant

p-values for data where bSNPw0 will have high statistical power,

as measured by true and false positive rates. The results of the

synthetic experiments are shown in Figure 7 for the GAW14 and

GOLDN datasets. The plots are shown as receiver operating

characteristic (ROC) curves of the true positive rate as a function

of the false positive rate (see Methods). The performance of our

model can then be summarized using the area under the ROC

curve, or AUC, which is high if our model has high statistical

power in discriminating between real and spurious associations.

For comparison, we also applied the LMM-based method of [12],

which also accounts for confounding factors, to the above synthetic

data using the same set of similarities as that used by our method,

but interpreted instead as a covariance matrix among individuals

under a multivariate Gaussian distribution. As an additional point

of comparison, we also applied the Eigenstrat method [4] to the

synthetic data. As expected, due to the mismatch between the

model used to generate the synthetic test data and our model,

there is a modest loss in power as compared to the LMM, whereby

the loss in model power decreases as the SNP weight bSNP is

increased (Figure 7). The loss in power is partially explained by

noting that the data was generated from a GLMM using a

Gaussian covariance matrix h, which corresponds to the same

covariance matrix used in the LMM. However, h in our model

cannot be interpreted as a covariance matrix under a multivariate

Gaussian distribution, implying a larger mismatch between our

model and the data as compared to that between the LMM and

the data. We also see that Eigenstrat, while having low

computational cost, does not adequately account for confounding

factors and so has significantly lower power as compared to our

method.

In addition to assessing the statistical power of our method, we

also assessed the runtime of our method as a function of the study

size, or number n of individuals. To do this, we synthesized

datasets consisting of the phenotypes, SNPs and similarities of the

GAW14 dataset replicated several times (up to 35,000 individuals),

such that each synthetic dataset generated this way has an

increasing number of individuals. We then applied both our

method and the LMM to the synthetic datasets and recorded the

total time taken to perform a GWAS for each dataset. All

experiments were run on a single machine running Windows

Server Enterprise with two Intel Xeon E5450 3.0 GHz 64-bit

CPUs with 64.0 GB of RAM. Figure 8 shows the runtime of both

methods as a function of the study size: as can be seen, the runtime

for estimating the parameters of the LMM grows quickly as the

number of individuals increases, whereas for our method, the

runtime does not grow quickly. In particular, the difference in

runtime becomes acute as the study size exceeds 20,000

individuals, resulting in significant runtime speedups (48 mins.

for our method as compared to over 33 hours for the LMM for a

study with 37,830 individuals). We remark here that although the

experiments were carried out on a single machine, the differences

in runtime of our method over the LMM-based method would

also apply for experiments carried out on computation clusters

with multiple compute nodes.

Discussion

We have presented a novel GWAS method that accounts for

confounding factors such as population structure, family structure

or cryptic relatedness. Similar to LMMs and PCA-based methods

for association, our model accounts for confounding factors

through the use of pairwise similarities between patients, which

allows us to significantly reduce false positive rates when

performing associations. In contrast to LMM-based and PCA-

based methods, our method retains high statistical power and is

relatively inexpensive even as the number of individuals in a study

grows. Our experimental results on both real and synthetic

genotype data demonstrate that our method can adequately

account for confounding factors in order to reduce false positive

rates, with a modest loss in statistical power as compared to LMM-

based and PCA-based methods for data that is generated from a

generalized LMM. We have shown that our method is significantly

faster than methods based on LMMs, where significant speedups

are obtained as the number of individuals in a study grows. As

future studies grow to encompass tens of thousands of individuals

[7–9], the speedups afforded by our method over LMM-based

methods are expected to be even larger than ones shown here.

Although other methods that also have fast runtimes for large

datasets could be used, in the regime where the effect of
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confounders is even stronger than it is for smaller studies, it is

expected that these methods will not be able to model confounders

adequately so as to reduce false positive associations. Our method

presents a reasonable tradeoff between statistical power, low false

positive rates and runtime that make it ideally suited for

application to larger association studies where other methods

either produce too many false positives or incur high computa-

tional costs. Future work would involve extending the method to

multinomial discrete phenotypes and for modeling multiple

phenotypes simultaneously, examining the use of other pairwise

similarity measures, or the possibility of incorporating additional

covariates into the similarity measures themselves.

Figure 2. P-value histograms for the GAW14 dataset. a),b) Histograms of p-values obtained from our method for the synthetic (a) and real (b)
GAW14 data. For comparison, p-values obtained from a logistic regression that does not account for confounding factors and from Eigenstrat [4] are
shown for synthetic (c,e) and real (d,f) GAW14 data. Dotted red lines indicate the expected histogram for the uniform distribution under the null
hypothesis p0~1.
doi:10.1371/journal.pone.0021591.g002
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Methods

Datasets
GAW14 dataset. The GAW14 dataset consisted of a subset of

the data provided to the Genetic Analysis Workshop 14 (GAW 14)

as part of the Collaborative Study on the Genetics of Alcoholism

(U10 AA008401), which is described in detail elsewhere [14]. A

total of 1,279 individuals genotyped at 7,579 loci were used from the

GAW14 dataset for our analysis. Genotypes are coded using the

number of minor alleles,such that the SNP value at a given locus

takes on values 0,1,2. Age, sex and ethnic sub-population were

recorded for each individual and used as covariates in our analysis.

Measured phenotypes included alcohol dependence and smoking

activity: the smoking activity phenotype was used for our analysis.

Figure 3. P-value histograms for the GOLDN data. a),b) Histograms of p-values obtained from our method for the synthetic (a) and real (b)
GOLDN data. For comparison, p-values obtained from a logistic regression that does not account for confounding factors and from Eigenstrat [4] are
shown for synthetic (c,e) and real (d,f) GOLDN data. Dotted red lines indicate the expected histogram for the uniform distribution under the null
hypothesis p0~1.
doi:10.1371/journal.pone.0021591.g003
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GOLDN dataset. Details about the GOLDN study has been

described in detail elsewhere [15]. Briefly, the largest three-

generation families were recruited from the pool of families that

had participated in the National Heart, Lung, and Blood Institute

Family Heart Study (FHS) at either the Minnesota or Utah field

centers. A total of 1114 individuals from 190 families, genotyped at

647 SNP markers, were included in our analysis. Genotype data

was encoded as for the GAW14 dataset. Age and sex was recorded

for each individual and used as covariates in our analysis.

Measured phenotypes in this dataset included height, physical

activity and cholesterol levels: the height phenotype was the one

used for our analysis.

Figure 4. Quantile-quantile (QQ) plots for the GAW14 data. QQ plots of model negative log p-value statistics obtained from our method as a
function of expected negative log p-values under the null hypothesis p0~1 for the synthetic GAW14 data with bSNP~0 (a) and real data (b). For
comparison, negative log p-value statistics obtained from a logistic regression that does not account for confounding factors and from Eigenstrat [4]
are shown for the synthetic data with bSNP~0 (c,e) and real data (d,f). Dotted red lines indicate 95% confidence bounds.
doi:10.1371/journal.pone.0021591.g004
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WTCCC dataset
The Wellcome Trust Case Control Consortium (WTCCC) data

consisted of SNP data for about 1,900 individuals with Crohn’s disease

and about 1,500 controls from the UK Blood Service Control Group

(NBS). SNPs were excluded from analysis using the more conservative

SNP filter described by the WTCCC in [16], wherein a SNP was

excluded if either its minor-allele frequency less than 0.01, it was

missing in greater than one percent of individuals, or it was in the

extended MHC region. After filtering, 360,657 SNPs remained. Non-

white individuals and close family members were not excluded.

Figure 5. Quantile-quantile (QQ) plots for the GOLDN data. QQ plots of model negative log p-value statistics obtained from our method as a
function of expected negative log p-values under the null hypothesis p0~1 for synthetic GOLDN data with bSNP~0 (a) and real data (b). For
comparison, negative log p-value statistics obtained from a logistic regression that does not account for confounding factors and from Eigenstrat [4]
are shown for the synthetic data with bSNP~0 (c,e) and real data (d,f). Dotted red lines indicate 95% confidence bounds.
doi:10.1371/journal.pone.0021591.g005
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Genome-wide association studies using conditional
random fields

Given a set of individuals V~f1, � � � ,ng, we assume that

phenotypes consist of binary labels f{1,z1g corresponding to

the absence/presence of a phenotype in an individual, although

the model can easily be generalized to polytomous discrete or

continuous phenotypes. Denote by yi the observed phenotype for

the ith individual i and let y~(y1, � � � ,yn) be the vector of observed

phenotypes for all individuals in the study. Let xi be the vector of

covariates for individual i and let X~(x1, � � � ,xn) denote the

matrix of covariates for the individuals in the study. Here, the

covariates for an individual would include that individual’s SNP

marker at a given loci and possibly labels for age, gender and

ethnicity.

For a given locus, our model consists of a probabilistic graphical

model over individuals’ observed phenotypes, conditioned on each

individual’s SNP and covariates. A probabilistic graphical model

consists of two parts: the first is an graph G~(V ,E) in which

Figure 6. Histograms and quantile-quantile (QQ) plots for the WTCCC data. Negative log p-value statistics obtained from our method (a,b),
logistic regression that does not account for confounding factors (c,d) and from Eigenstrat [4] (e,f) for the WTCCC data. Dotted red lines in the QQ
plots (right panel) indicate 95% confidence bounds.
doi:10.1371/journal.pone.0021591.g006
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nodes in V correspond to individuals and undirected edges in E

between pairs of nodes correspond to possible dependencies

between the phenotypes of pairs of individuals. The second part of

the model is a joint probability distribution on individuals’

phenotypes that is a function of all pairs of individuals’ phenotypes

and each individual’s SNP and covariates. Given a graph and the

corresponding joint probability distribution, the graphical model

captures both the dependencies between individuals due to genetic

similarity, in addition to the influence of genetic variation and

covariates in generating phenotypes. The influence of genetic

variation and covariates is captured using a set of weights b, where

a larger weight magnitude for a given covariate denotes an

increased influence of that covariate on determining phenotype.

The joint probability of phenotypic labels, conditioned on each

individual’s genetic variant and covariates is then given by

P yjX,G,h,bð Þ~
exp {

X
(i,j)[E

hijyiyj{
X
i[V

yib
T xi

 !

Z X,G,bð Þ , ð1Þ

where hij is a real-valued genetic similarity for edge (i,j) that

models genetic similarity between individuals i and j, and

Z X,G,bð Þ~
X

y
exp {

X
(i,j)[E

hijyiyj{
X

i[V
yib

T xi

� �
is the

partition function that ensures that the probability sums to unity.

In the above model, we assume that genetic similarities, denoted

collectively as h, are provided and fixed. Various ways of setting

the similarities can be used. Based on their previous use in LMMs

[12], we found that using similarities based on Identity-by-State

(IBS) worked best, where the IBS value between two individuals is

equal to the fraction of SNP marker alleles that are shared between

individuals [17] across the entire set of SNPs being studied. The

use of the IBS similarity measure here allows us to account for the

effects of confounding factors which are encoded in the set of SNPs

carried by all individuals.

Given individuals’ phenotypes y and covariates X and a matrix of

genetic similarities h, the goal is to estimate the effect of a particular

SNP on the individuals’ phenotypes by estimating the weight vector

b. A common criterion that is used consists of maximizing the above

probability with respect to the weights for the observed data, or the

maximum-likelihood criterion. However, a key difficulty with the

above model is that estimating the weights requires that we compute

the partition function and its derivatives, which, for even a moderate

number of individuals, will be intractable, as it requires summing

over all possible joint configurations of the binary vector y. An

alternative criterion for parameter estimation that does not require

computing Z(X,G,b) altogether here is to instead optimize the

pseudo-likelihood [18] function for the above model, which has been

previously shown to be asymptotically consistent and here yields fast

parameter estimates. We define the negative log-pseudo-likelihood

function as

L bð Þ~{
X
i[V

Li bð Þ

~{
X
i[V

yi~z1½ � log piz yi~{1½ � log 1{pið Þð Þ,
ð2Þ

where the conditional probability of individual i’s phenotype given

y{i is denoted as pi:pi(b)~P(yi~z1jy{i,X,G,b). We note that

evaluating and differentiating the pseudo-likelihood does not

depend on the partition function, as under the above model, the

conditional probability for individual i given all other individuals’

phenotypes y{i is given by

P yijy{i,X,G,bð Þ~
exp { 2yi

X
j[N(i)

hijyj{2yib
T xi

 !

1z exp { 2yi

X
j[N(i)

hijyj{2yib
T xi

 ! , ð3Þ

where N (i) denotes the set of neighbors of individual i with respect

to graph G and we note that the partition function Z(X,G,b) has

dropped out. Thus, to perform genome-wide associations, we

optimize the above function with respect to b: this can be done by

using a gradient-based optimization whereby we iteratively update

the vector of weights b using the gradient of the pseudo-likelihood.

The above pseudo-likelihood corresponds to solving a logistic

regression problem with covariates 2yixi and an additive term for

each individual i, given by 2yi

X
j[N(i)

hijyj , which models the

contribution of other individuals’ phenotypes in determining the

phenotype of i. We remark that computing this additive term need

only be done once and requires time that is quadratic in the number

of individuals, which contrasts with cubic runtime required by

LMM-based methods [12,13]. Furthermore, the time required for

parameter estimation per SNP is linear in the number of individuals,

as we need only compute a conditional probability pi for each

individual and corresponding derivatives with respect to weight

vector b. The resulting optimization problem is convex, with a

unique global optimum, so we are guaranteed to obtain a unique

solution b̂b that maximizes the pseudo-likelihood, in contrast to

parameter estimation in LMMs, which may be prone to local

minima.

Figure 7. Assessing statistical power on synthetic data. The plots are shown as receiver operating characteristic (ROC) curves of the true
positive rate as a function of the false positive rate for the GAW14 dataset (a,b,c,d) and the GOLDN dataset (e,f,g,h) for various values of the SNP
regression weight when using our method (blue), a LMM-based method (red), a PCA-based method (green) and random guessing (black dotted).
doi:10.1371/journal.pone.0021591.g007

Figure 8. Comparison of runtimes. Runtimes for the CRF and LMM
models (in hours) are shown as a function of study size. All experiments
were run on a machine with two 3.0 GHz CPUs and 64.0 GB of RAM.
doi:10.1371/journal.pone.0021591.g008
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Pseudo-likelihood estimation in the conditional random
field

The gradient descent updates for parameter estimation under

our method take the form b/b{ag, where aw0 is a learning rate

parameter and g is the gradient of the pseudo-likelihood given by

g~+bL(b)~{
X
i[V

xi(½yi~z1�(1{pi){½yi~{1�pi):

The weight vector b is updated until convergence in L(b). For our

experiments, we used a~
5

n
, which was selected for fast

convergence.

Significance testing of SNPs
Given an estimate b̂b that minimizes the negative log-pseudo-

likelihood function, define the robust variance estimator [19] as

X
:
X

(b̂b)~H{1(
X
i[V

gig
T
i )H{1, ð4Þ

where H is the Hessian matrix of the pseudo-likelihood objective

function, given by

H~++bL(b)~
X
i[V

xix
T
i pi(1{pi), ð5Þ

and gi is given by

gi~+bLi(b)~{xi(½yi~z1�(1{pi){½yi~{1�pi): ð6Þ

The statistic b̂b{b0 has been shown to be asymptotically

distributed according to N(0;
X

) [20–23]. In particular, it

follows that the statistic
(b̂bSNP{b0)2

s2
SNP

is x2 with one degree of

freedom, where b̂bSNP is the learned weight for a given SNP,

s2
SNP~S1,1 and b0~0 is the weight for the SNP under the null

hypothesis. The above is equivalent to performing a Wald test on

b̂bSNP with a robust variance estimator for the variance of b̂bSNP.

Measuring genomic inflation
Given x2 statistics x2

1, � � � ,x2
p for each SNP j~1 � � � , p of

interest, we can compute a genomic inflation factor l [2] as

l~
median(x2

1, � � � ,x2
p)

0:4549
: ð7Þ

Evaluating model performance
To gauge the calibration and discrimination of our model for

both weaker and stronger associations, we generated data with

different SNP regression weights using a GLMM. For each SNP,

we generated SNP-phenotype associations by setting the SNP

regression weight bSNP to 0,0:075,0:15,0:3,0:6, sampling a vector

U from a Gaussian distribution N (mzxbSNP,h) and finally

generating the output phenotype for each individual with

probability P(yi~z1jui,w)~
1

1z exp (w:ui)
, where w was cho-

sen in order to obtain synthetic phenotype data with similar

phenotype frequencies as those of real phenotype data.

Given a set of model p-values for synthetic data, we define a

false positive (FP) to be a SNP that has a significant p-value for

some significance level a for synthetic data in which bSNP~0. A

true negative is defined as a SNP that is not significant at

significance level a for synthetic data in which bSNP~0. True

positives (TP) and false negatives (TN) are defined similarly for

synthetic data with bSNPw0. By varying the significance level a,

we can evaluate the performance of our model using a receiver

operating characteristic (ROC) curve, or plotting true positive rate

TP=(TPzFN) as a function of the false positive rate

FP=(FPzTN) for various synthetic datasets with bSNPw0. The

performance can then be summarized using the area under the

ROC curve, or AUC. Methods that have higher AUC have higher

statistical power in discriminating between real and spurious

associations.
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