OPTIMAL CONTROL OF MULTIPLE BIT RATESFOR STREAMING MEDIA

Cheng Huang'*,

Philip A. Chou?,

Anders Klemets?

1 Dept. of Computer Science and Engineering, Washington University in St. Louis, MO, 63130
2 Microsoft Corporation, One Microsoft Way, Redmond, WA, 98052

Lcheng@cse.wustl.edu,

Abstract— Perhaps the major technical problem in streaming
media on demand over the Internet is the need to adapt to changing
network conditions. Today’s commercial streaming media systems
rely on Multi Bit Rate coding for adaptation. However, existing
algorithms are empirical and often fail in a dynamic network. In
this paper, we extend our optimal coding rate control framework
and address the unique problems posed by the MBR stream
switching constraints. A purely client-driven solution is provided,
which achieves three goals: low startup delay (much less than 1 s
even without bursting), continuous playback in the face of severe
congestion, and maximal quality and smoothness over the entire
streaming session. We argue that our algorithm complements any
transport protocol, and we demonstrate that it works effectively with
both TCP and TFRC transport protocols. Finally, we demonstrate
that our algorithm is robust against data loss and delay.

|I. INTRODUCTION

Perhaps the major technical problem in streaming media on
demand over the Internet is the need to maintain a good user
experience in the face of time varying network conditions. Users
expect that regardless of the network conditions, the startup delay
will be low, playback will be continuous, and quality will be as
high as possible given the average network bandwidth.

Buffering at the client is the key to meeting these user
expectations. Technically, buffering serves several distinct but si-
multaneous purposes. First, it allows the client to compensate for
short-term variations in packet transmission delay (i.e., “jitter”).
Second, it gives the client time to perform packet loss recovery
if needed. Third, it allows the client to continue playing back
the content during lapses in network bandwidth. And finally, it
allows the content to be coded with variable instantaneous bit
rate, thus improving overall quality.

By controlling the size of the client buffer over time it is
possible for the client to meet the above mentioned user expecta-
tions. If the buffer is initially small, it allows a low startup delay.
If the buffer never underflows, it allows continuous playback.
If the buffer is eventually large, it asymptotically allows high
robustness as well as high, nearly constant quality. Thus, client
buffer management is a key element affecting the performance
of streaming media systems.

The buffer duration (i.e., the number of seconds of content
in the buffer) tends to increase or decrease depending on the

*Supported in part by NSF Grants CCR-TC-0209042 and ANI-
0322615

2{pachou, anderskl} @microsoft.com

ratio between the arrival rate r, (the number of bits per second
of real time that arrive at the client) and the coding rate r.
(the number of bits per second of encoded content, on average).
If ro/rc is greater than the playback speed v, then the buffer
duration increases; otherwise it decreases. The arrival rate r,
is essentially determined by the network capacity. Hence, if
the network capacity drops dramatically for a sustained period,
reducing the coding rate r. is the only appropriate way to
maintain the buffer duration and prevent an underflow leading
to a rebuffering event. Adjusting the coding rate in the face of
time varying network conditions is the problem of coding rate
control.

Today’s commercial streaming media systems [1], [2] rely on
multi bit rate (MBR) coding to perform coding rate control.
In MBR coding, semantically identical content is encoded into
alternative bit streams at different coding rates and stored in the
same media file at the server, allowing the content to be streamed
at different levels of quality corresponding to a set of coding rates
{rc}, typically using bit stream switching.

However, coding rate control algorithms employed in existing
systems are empirical and often fail in dynamic network environ-
ments. The failures can be clearly observed as rebuffering events:
playback stalls while the buffer “reloads” so that playback can
be resumed. However, long startup delays, low perceived quality,
and network stress are also symptoms of poor coding rate control.
The difficulties faced by coding rate control algorithms include
dealing with the stream switching constraints inherent in MBR
files, such as widely spaced available coding rates and random,
widely spaced available switching times. (The latter may be due
to, for example, the need to wait for an | frame in a stream
before switching to it.) Such difficulties complicate the coding
rate control algorithms in the MBR case.

In this paper we extend our framework for optimal coding rate
control [3], which is based on linear quadratic optimal control
theory and was originally designed for scalable streaming media.
Here we address the unique problems posed by the MBR stream
switching constraints not present in scalable media. In addition,
we provide a purely client-driven solution, which is more likely
to be directly applicable to existing systems.

I1. OPTIMAL CODING RATE CONTROL

The elements of our control model are illustrated in Figure 1.
Media time refers to the clock running on the device used to cap-
ture and timestamp the original content, while client time refers to
the clock running on the client used to play back the content. The
playback deadline, which indicates the time at which frames are

() playback deadline
d / target schedule

upper bound
/ arrival schedule

tz(n)

g /
E tb(n) /
c
k3] /
S Q

Qz\>

6\0
T4(n) media time

Fig. 1. Coding Rate Control Model

instantaneously decoded and rendered, increases linearly at a rate
of 1/v seconds of client time per second of media time, where v
is the playback speed. (For instance, slow motion sets v = 1/2,
then each second of media will be consumed in 2 seconds of
client time.) The arrival schedule, which indicates the times at
which encoded frames arrive at the client, increases in steps of
size b(n)/ra, where b(n) is the size in bits of frame n. The
arrival schedule is bounded between a lower and an upper bound
representing a leaky bucket [4] containing the encoded stream.
The upper bound increases linearly at slope r./r,. The goal of
our control system is to control the upper bound so that it tracks a
target schedule sufficiently in advance of the playback deadline.
It should be clear that the direction of the upper bound can be
changed by changing the coding rate r., possibly to compensate
for a change in the arrival rate r, (affected by available network
bandwidth). It turns out that the upper bound t,(n) at frame n
evolves according to the linear dynamical system

re(n+1)

ty(n+1) =tp(n) + T + w(n),

where r.(n + 1) is the coding rate of frame n + 1, 7, is a
smoothed estimate of the arrival rate, and f the frame rate. Any
deviation caused by using 7, instead of the instantaneous arrival
rate r, in the above equation is captured by the noise term w(n).
Thus we can use linear feedback to make the upper bound ¢;(n)
track a target schedule ¢7(n) by controlling the coding rate of
a future frame. We also wish to minimize quality variations due
to large or frequent changes in the coding rate. This is achieved
by designing the feedback gain to minimize the quadratic cost
function

N

I= Z((tb(n) —tr(n))*+o (W>2>

n=0

where the first term penalizes the deviation of the buffer tube
upper bound from the target schedule and the second term
penalizes the relative coding rate difference between successive
frames. Here, IV is the control window size and o is a Lagrange
multiplier or weighting parameter balancing the two terms.

By defining the error state e(n) = ty,(n) — tr(n) and the
control input u(n) = (re(n + 2) — re(n + 1)) /4, the linear

dynamical system can be expressed in error space as:

2 —1 3 0 1
en+1)=1|1 0 0]|e(n)+ |0|un)+ [0]d(n), (1)
0o 0 O 1 0

where e(n) = [e(n) e(n — 1) u(n — 1)]7 is a state vector in
the error space and d(n) = w(n) — w(n — 1). Correspondingly,
the cost function becomes:
N
I= Z{e(n)TQe(n) +u(n —1)" Ru(n — 1)}7 (2)
n=0
where @ = CTC (with C = [1 0 0]) and R = o. Thus,
the original coding rate control problem can be converted to
a standard regulator problem in error space. After an optimal
control feedback gain G* is obtained by solving the corre-
sponding discrete algebraic Riccati equation (DARE) [5] (letting
N — o0), the ideal coding rate for frame n 42 can be computed
as (refer to [6] for detailed derivation and analysis of stability
and robustness)

re(n+2) =rc(n+1) — G'e(n)fq.

The term ¢, (n) within the error vector e(n) can be estimated as
ta(n) + g(n)/7a, where g(n) is the amount of space left in the
leaky bucket after frame n is inserted.

I11. MULTIPLE BIT RATE STREAMING

The optimal coding rate control framework was originally
designed for scalable streaming media. To apply it to MBR
streaming, there are several differences that need to be carefully
addressed.

First, in MBR streaming there are only a limited number of
coding rates (usually 5-7) available. This coarse quantization
of the desired coding rate introduces a significant nonlinearity
into the closed loop system. In fact, the large gaps between
the available coding rates introduce oscillations. For example,
if two neighboring coding rates straddle a constant arrival rate,
the controller will oscillate between the two coding rates in an
attempt to keep the client buffer at a target level.

Second, in MBR streaming the coding rate cannot be switched
at an arbitrary time. In fact, before the server can switch to a
new stream, it must wait for the next switch point (e.g., an |
frame) in the new stream, which could be five or ten seconds
away. Thus, the old coding rate may continue for quite a while
before it changes to the new coding rate. From the controller’s
perspective, this long random extra delay tends to destabilize the
closed-loop system.

Third and finally, in MBR streaming, server performance issues
are critical. The commercial-grade streaming media systems that
use MBR streaming do so because of the minimal computational
load that it imposes on the server compared to scalable streaming.
Thus, for MBR streaming it is important to keep almost all
computation and state maintenance on the client side. A purely
client-driven solution is desirable.

A. Conservative Up-Switching

In this subsection we discuss a technique to help stabilize the
control system and reduce steady state oscillations to a period of

buffer duration buffer duration

AT1 AT3 2 ATT
consume data consume data
of rate r.> of rate ry"®"
y >
time

AT, >, -

buffer drops back
to level aT;

finish data of
rate r.

switch from
I'COId to I,Cnew

Fig. 2. Conservative rate up-switching.

at least a minute. With this technique, rapid down-switching is
permitted. In fact, we choose a small value of o, changing the
balance between responsiveness and smoothness of the coding
rate in favor of a rapid switching response. However, only con-
servative up-switching is permitted. Conservative up-switching
ensures that spurious changes in coding rate do not occur, and that
oscillations in the coding rate have a low frequency. In particular,
conservative up-switching reduces the oscillations between two
adjacent but widely spaced MBR coding rates, one above the
arrival rate and one below the arrival rate.

The idea behind conservative up-switching is to establish a
conservative limit on how high the coding rate can be raised
above the arrival rate. If the current coding rate is below the
arrival rate, and the client buffer duration begins to increase above
its target level, then the coding rate can be switched up to a new
coding rate above the arrival rate only if the new coding rate
is below the conservative limit. Given the current client buffer
duration, the conservative limit is set to a value such that if the
coding rate is switched up to a new coding rate at this value,
the client buffer would take at least A¢ seconds of client time
to drain back to the target level. Thus, the mechanism ensures
that the period of oscillation will be at least At seconds. In our
experiments, we set At to be 60 seconds.

Figure 2 shows how we compute the conservative limit. Let
AT be the client buffer duration (in media time) at the moment
that the coding rate is switched up from #2'¢ to r7°*. Thus Ar,
is the number of seconds of content that will be consumed at the
old coding rate 2% before content at the new coding rate begins
to be consumed. (For simplicity we assume that all of the content
in the client buffer at the time of the switch is coded at rate 79'%.)
Let A, be the number of seconds of content that is consumed at
the new coding rate r2“* before the client buffer duration drops
to some level A7s seconds (in media time), greater than the target
level A7r. The duration of this phase is determined such that
the total time since the switch is exactly At = (A1 + Am) /v
seconds (in client time). Now, the number of bits that arrive in
this time is ro At = ¢ (A2 + A13) > 1Y (A2 + A7r) =
re?(vAt — Am + ATr), or

. ro At
new < a
Te = UAt— Am + oAty ©)

where Atr is the target buffer duration in client time. The
parameter At can be tuned to yield the desired behavior. A
large At means that up-switching is more conservative, while
a smaller At means that up-switching is more prompt. In our

. - Audio Time AvailBW
Audio | Video "
(Kbps)| (Kbps) +Video (Sec) (Kbps)
(Kbps) 0-25 500
32 32 64 25-70 400
32 64 96 70-130 300

32 189 221
32 314 346
32 464 496

130-190 200
190-220 300
220-550 400
TABLE |
LEFT: BIT RATESIN MBR FILE. RIGHT: AVAILABLE BANDWIDTH.

implementation, At is set to 60 seconds while the target Atr is
typically about 10 seconds. This improves controller stability for
MBR streaming.

B. Buffer Tube Upper Bound Estimation

We now address the problem of reducing server load. As
discussed at the end of Section I, the buffer tube upper bound
used by the controller is computed as ¢,(n) = to(n) + g(n)/fa,
where g(n) is the amount of space left in the leaky bucket after
frame n is inserted (in bits). If the server can perform leaky
bucket simulations for each of its streams in parallel, then when
switching to a new stream at frame no, it can transmit g(no)
to the client. The client can then maintain the leaky bucket
simulation for the new stream, computing g(n) for each n > no.

If for complexity reasons the server is unable to perform the
leaky bucket simulations for all of its streams in parallel, then
the client must estimate g(no) upon a switch to a new stream
at frame no. We propose estimating g(no) = B — b(no), where
B is the known leaky bucket size for the new stream and b(no)
is the size of the received frame ng, in bits. This results in a
conservatively large estimate of g(no), and hence an upper bound
on the upper bound ¢,(no). However, it can be shown that this
upper bound tightens over subsequent frames n > no as the
leaky bucket simulation progresses [6]. We use this bound in all
the experiments in this paper.

1V. PERFORMANCE AND DISCUSSIONS

We evaluate the performance of the controller using an MBR
file containing a 20-minute clip of The Matrix coded at five
different combinations of audio and video bit rates, as listed in
Table | (left), using a 5-second leaky bucket for each coding
rate. Using the popular network simulator ns-2 [7], we set up a
simple network with a 2 Mbps bottleneck and constant bit rate
(CBR) cross traffic such that the bandwidth available to the TCP
connection between the streaming media server and client varies
over time according to the schedule listed in Table I, simulating
congestion conditions that cause multiple rebuffering events in
Windows Media 9.

When TCP is used to carry data from the server to the client,
our coding rate controller satisfies users’ expectations, with less
than one second of startup delay, no rebuffering, and maximal
quality and smoothness over the entire session. Indeed, Figure 3
(top) shows that the coding rate (and hence the quality) is as high
as possible given the average arrival rate, except during the first
15 seconds or so, in which the coding rate is lower than the arrival
rate to build up the client buffer without incurring a large startup

600

500
400
@
Q.
)
X 300
Q
@
200 r
100
arrival rate
0))) coding rate
0 100 200 300 400 500 600
stream time stamp (sec)
35 T T T
30
3 25| /4\
1 /
e / /
g 20| /
=]
S 15
o
10
5)) bu[fer usage
0 100 200 300 400 500 600

stream time stamp (sec)
Fig. 3. Controller performance during congestion.

delay. Smoothness is also achieved, since the coding rate does
not change spuriously, dropping only when the client buffer falls
below its target and rising only when it can sustain the higher
bit rate for at least 60 seconds in steady state. Correspondingly,
Figure 3 (bottom) shows that after the initial 15 seconds, the
buffer duration hovers between 10 and 35 seconds, and does not
underflow.

When the TFRC protocol is used to carry data from the server
to the client, similar results are obtained when there is no packet
loss in the network, as shown in Figure 4(a). When there is 5%
packet loss in the network, TFRC reduces the transmission rate
accordingly, as shown in Figure 4(c). This makes it difficult to
understand the effect of packet loss on the controller. However,
when packet loss is only induced within the client application,
5% packet loss (Figure 4(b)) is essentially the same as 0% packet
loss (Figure 4(a)). This indicates that the controller is robust to
a significant number of frames being dropped. The reason for
such robustness is that the client in any case groups together all
frames within approximately 1-second intervals, creating large
virtual frames at a virtual frame rate of f = 1 frame per second.
A dropped frame simply causes the virtual frames to be slightly
smaller, and the estimates for ¢,(n) to be slightly larger (more
conservative). Thus, our controller should work well even in
wireless networks with significant packet loss due to interference
and noise.

Finally, we study the effect of round trip time (RTT) on
controller performance. Since our virtual frame rate is f = 1
frame per second, and the buffer size is on the order of 10 seconds
or more, the controller is unaffected by large RTTS, as illustrated
in Figure 5.

(a) no data loss (b) application data

loss (5% loss rate)

(c) network data
loss (5% loss rate)

Fig. 4. Performance Impact of Data Loss (over TFRC protocol)

rate (kops)

(@) RTT = 80ms

(b) RTT = 160ms

(c) RTT = 320ms

Fig. 5. Performance Impact of RTT (over TCP protocol)

REFERENCES

[1] G.J. Conklin, G.S. Greenbaum, K.O. Lillevold, A.F. Lippman, and
Y.A. Reznik. Video coding for streaming media delivery on the
Internet. |EEE Trans. Circuits and Systems for Video Technology,
11(3):269-281, March 2001. special issue on Streaming Video.

[2] W. Birney. Intelligent streaming. http://www.microsoft.com/-
windows/windowsmedia/howto/articles/intstreaming.aspx, May 2003.

[3] C. Huang, P. A. Chou, and A. Klemets. Optimal coding rate control
for scalable streaming media. In Proc. Int'| Packet Video Workshop,
Irvine, CA, December 2004. IEEE.

[4] J. Ribas-Corbera, P. A. Chou, and S. Regunathan. A generalized
hypothetical reference decoder for H.264/AVC. |EEE Trans. Circuits
and Systems for Video Technology, 13(7), July 2003.

[5] B. D. O. Anderson and J. B. Moore. Optimal Control: Linear
Quadratic Methods. Prentice Hall, 1990.

[6] C. Huang, P. A. Chou, and A. Klemets. Optimal coding rate control
for scalable and multi bit rate streaming media. Technical Report
MSR-TR-04-XXX, Microsoft Research, Redmond, WA, December
2004. In preparation.

[7]1 K. Fall and K. Varadhan. The ns manual. The vint project, December
2003. http://www.isi.edu/nsnam/ns/.

