
The VideoMouse: A Camera-Based
Multi-Degree-of-Freedom Input Device

Ken Hinckley, Mike Sinclair, Erik Hanson, Richard Szeliski, Matt Conway
Microsoft Research, One Microsoft Way, Redmond, WA 98052

{kenh, sinclair, erikhan, szeliski, mconway}@microsoft.com; Tel: +1-425-703-9065

ABSTRACT
The VideoMouse is a mouse that uses a camera as its input
sensor. A real-time vision algorithm determines the six
degree-of-freedom mouse posture, consisting of 2D motion,
tilt in the forward/back and left/right axes, rotation of the
mouse about its vertical axis, and some limited height
sensing. Thus, a familiar 2D device can be extended for
three-dimensional manipulation, while remaining suitable
for standard 2D GUI tasks. We describe techniques for
mouse functionality, 3D manipulation, navigating large 2D
spaces, and using the camera for lightweight scanning tasks.

Keywords
Input devices, interaction techniques, multi-degree-of-
freedom input, rotation, tilt sensing, camera-based input

INTRODUCTION
Many tasks, such as navigation, 3D object manipulation,
and image editing [15][6] can require multiple degrees of
freedom (DOF) of rotation, zooming, or translation.
Conventional mice, however, allow integrated control of
only two degrees of freedom at any one time. While 3D or
6DOF input devices can help to provide these missing
degrees of freedom, such devices can be ineffective for
standard 2D cursor control. Mice can also be augmented
with wheels or joysticks for added DOF’s [27], but
typically these controls are dedicated to secondary low-
DOF tasks such as scrolling or panning. All of these
devices have limitations in a workflow which may
frequently switch between 2D pointing tasks and multi-
DOF manipulations. Input devices and interaction
techniques that can enhance the directness and degree of
manipulation possible in such a workflow thus represent an
important area of inquiry.

A promising approach is to evolve the mouse so that it can
indeed sense additional degrees of freedom, as exemplified
by the Rockin’ Mouse [1]. The Rockin’Mouse is a mouse-
like tilt-sensing input device which has a curved base with a
small flat spot for stability. This simple design, the essence
of which we have adopted for the current VideoMouse
form-factor, provides simultaneous, integral control [1][13]
of 4 DOF while moving the device on a planar surface. This

class of planar multi-DOF devices has a good balance of
properties which are favorable for both 2D and 3D
interaction. The flat spot affords constraint of the device to
standard 2D translation, yet a subtle tilting motion can
activate additional degrees of freedom when needed.

Fig. 1 The VideoMouse uses a camera to sense six
degree of freedom motion in a mouse-like form factor. It has
a curved base to afford tilting the device [1].

The VideoMouse (fig. 1) uses a camera as its sensor. We
believe that as the computing power to do image processing
increases and the cost of CCD cameras decreases, this will
result in a commercially feasible approach for a multi-DOF
mouse. Indeed, “solid state” mice1 which use CCD cameras
to sense relative 2D motion will soon be available to the
consumer market [18]. The VideoMouse, however, senses
6DOF, including the tilting sensed by the Rockin'Mouse,
rotation of the mouse about its vertical axis, and height up
to 1 inch from the mouse pad. To implement the vision
algorithms with current computing power and image
processing techniques, we currently employ a mouse pad
printed with a special 2D grid pattern. We believe that this
requirement could be removed with future refinements by
using tracking and registration techniques (e.g., [18][22]).

We describe the technology and implementation of the
VideoMouse as well as interaction techniques which take
advantage of the device's unique capabilities. We address
several fundamental issues necessary to provide truly
mouse-like interaction, such as the ability to move the
VideoMouse such that translation is always relative to the
current orientation of the device. We describe rate and
position control mappings of the input axes, a two-handed
technique where the nonpreferred hand rotates the mouse
pad to allow quick inspection of a scene (as opposed to an
object within the scene), and a technique to facilitate
navigation in large 2D structures such as spreadsheets.

1 These solid state mice differ from previous optical mice [16]
because they can sense 2D motion over almost any surface.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST ’99. Asheville, NC
 1999 ACM 1-58113-075-9/99/11... $5.00

CHI Letters vol 1, 1 103

Z

X

Y
Rz

Rx

Ry

Beyond 6DOF sensing, the camera of the VideoMouse
itself also affords “lightweight scanning” tasks, such as
scanning the title of a document or a barcode to bring up a
related electronic document on the computer. Since the
camera can detect when it is not on the mouse pad, our
software can infer when the VideoMouse is being used in a
context that is appropriate for image capture.

The VideoMouse’s camera-based technology, extended
degrees of freedom, and new interaction techniques
represent a significant advance which builds on the
approach of the Rockin’Mouse. Indeed, we hope that the
present paper can help to stimulate additional experimental
study and development of interaction techniques for this
class of planar multi-DOF devices.

RELATED WORK
A number of previous works explore rotation and tilt-
sensing input devices. Balakrishnan et al. [1] describe the
Rockin’Mouse input device, which is motivated in part by
an insightful analysis of the desirable properties of the
mouse, such as ease of acquisition due to stability and
effective button integration. They present a formal
experiment which shows that using the left-right tilt of the
Rockin’Mouse to control Z position results in 30% faster
3D positioning than standard modal techniques with a
mouse.

Mackenzie et al. introduce the Two-Ball Mouse [17], which
senses changes in rotation about its vertical axis. The
authors classify the degrees of freedom sensed by a variety
of input devices and suggest a hypothetical mouse-like 5
DOF device which combines the capabilities of the Two-
Ball Mouse and the Rockin'Mouse. We contribute the
VideoMouse as an example of such a device.

Kurtenbach et al. describe uses of tablet-based rotation-
sensing pucks in a prototype artwork application [15]. Such
rotation-sensing pucks are now commercially available as
the “Intuos 4D Mouse” from Wacom [23]. A task analysis
of artwork applications [6] suggests that the ability to rotate
an image while sketching can be important. Fitzmaurice et
al. [7] use 6DOF “bricks” on an ActiveDesk display surface
to provide rotation sensing in a drawing application.

Rekimoto [21] as well as Harrison et al. [9] suggest
techniques for tilt-sensing handheld displays. Similar
techniques might prove useful on desktop displays if an
appropriate tilt-sensing input device were available.

Several experimental studies suggest that the integrated
degrees of freedom provided by 3D devices can indeed be
beneficial for some tasks. An experimental study of the
Rockin’Mouse found that users can simultaneously control
translation and the left/right tilt axis for 3D positioning [1].
Jacob et al. found that a 3D input device can provide
superior performance if the user perceives the control
degrees of freedom as an integral attribute, whereas a 2D
device performs better if the user perceives the DOF’s as
separable from one another. Hinckley et al. found that users
can perform a precise orientation task about 35% faster

with an absolute orientation-sensing device than with a 2D
device mapped to control orientation [12].

DEVICE DOF ANALYSIS
A careful analysis of the VideoMouse device characteristics
is useful both to distinguish it from previous devices and to
better reason about what sorts of interaction techniques may
be appropriate for such a device. In this regard, we find

MacKenzie et al’s [17] analysis of
the Two-Ball mouse, Rockin’
Mouse, and other devices a useful
starting point. Table 1 extends this
analysis with a more detailed look
at exactly what is sensed along
each input dimension (fig. 2) for
the Two-Ball mouse, Rockin’
Mouse, and VideoMouse.

Fig. 2 Device DOF’s provided by the VideoMouse.

Two-Ball
Mouse

Rockin’
Mouse

Video
Mouse

input
DOF

Sensed
property

Rate/
Posn1

Sensed
property

Rate/
posn1

Sensed
property

Rate/
posn1

x dx p x p dx p

y dy p y p dy p

z z (0-3 cm) p

Rx Rx (±60°)
2 r, p Rx (±25°) r, p

Ry Ry (±60°)
2 r, p Ry (±20°) r, p

Rz dRz p Rz (360°) p

 Table 1 : A comparison of the sensed properties for each
input DOF for several multi-DOF mice.
1 Rate/posn: This indicates if the sensed DOF property is
suitable for rate mode, position mode, or both (r, p).
2 ±60° is the specified tilt range for the Wacom tablet
technology used by the Rockin’Mouse.

An interesting property shared by the Rockin’Mouse and
VideoMouse for the Rx (tipping the device forward or back)
and Ry (tilting the device left or right) axes is that they can
be intuitively mapped to either a position control mode or a
rate (velocity) control mode. Since the devices can move
through a significant range of degrees (unlike a force-
sensing joystick, for example), they are suitable for position
mode; an example of such a mapping is the Ry tilting to Z
height mapping used by Balakrishnan et al. [1] for a 3D
positioning task. These input axes are also suitable for rate
mode because each axis has a natural center point (the flat
spot) and gravity naturally pulls the device back to this
center point, both of which are desirable for rate control
[24]. Note also that a clutching mechanism may be needed
to extend the range of the tilt input when in position mode
but is not needed when in rate mode.

The VideoMouse can provide absolute Rz rotation in a full
360 degree range. Because Rz has no self-centering

CHI Letters vol 1, 1 104

property, our design intuition was that rate control would
probably not work well for this axis; we return to this issue
when we discuss 3D manipulation techniques. Since the
Two-Ball Mouse bases its rotation sensing on a (dx, dy)
motion vector from each roller ball, it can only sense
changes in rotation.

The VideoMouse is the only one of these devices that
senses height, albeit in a small range of about 1 inch. Our
current prototype uses a fixed-focus camera, which limits
our ability to resolve the grid at a distance. Note that the
sensed height is absolute, but only increases from the
device resting state. This provides an excellent match for
certain actions, such as making an animated character jump,
or significantly, the lifting gesture used to clutch a mouse.

BASIC INTERACTION ISSUES AND FUNCTIONALITY
Traditional mice have a number of compelling properties
which have made them the dominant device for 2D desktop
interaction. For example, when the mouse is released, it
remains in a stable state, ready for reuse. Also, the mouse
reclutching mechanism – lifting the mouse and putting it
back down elsewhere to extend its range of motion – is
simple and effective [1]. We found that it was necessary to
address several fundamental device properties of this sort
with the VideoMouse to ensure that it would provide
mouse-like interaction qualities. Of course, we also needed
to implement a robust real-time tracking algorithm to
calculate the device motion and orientation information.

Mouse Reclutching Gesture
Unlike a traditional mouse, the VideoMouse does not have
a built-in mechanical reclutching gesture. By using the
mouse height and tilt angle sensing, however, we can
simulate mouse reclutching. Note that one cannot directly
use the height parameter to reclutch: when the mouse is
tilted but still in contact with the mouse pad, from the
user’s perspective he or she has not “lifted” the mouse even
though the sensed height of the camera above the mouse
pad has increased. Instead, we calculate a maximum and a
minimum nonlinear height threshold function based on the
current tilt angles (Rx and Ry). If the height exceeds the
maximum threshold, the device is considered out of
proximity. If the device is already out of proximity and the
sensed height falls below the minimum threshold, the
device is considered back in proximity. Separate minimum
and maximum thresholds are used so that slight noise in the
height sensing (or from hand tremor) will not result in
unstable switching between the two states.

It is also possible to provide this functionality with a
hardware switch that senses when the device base makes
contact with a solid surface [1]. Our approach uses the
sensor information to do this in software.

Motion in Local Coordinates
An important property of mechanical “roller ball” mice is
that they always sense device motion relative to the current
local orientation of the mouse. This is not true for many
optical mice that utilize special mouse pads, because they
can only sense device motion relative to the rectilinear

coordinate system of the mouse pad. Rather than moving
one’s hand at whatever orientation seems natural and
comfortable, users are instead forced to match hand
motions and the orientation of the mouse to the mouse pad.

We soon realized that this was an issue for the VideoMouse
as well, since the device does report its motion and current
orientation with respect to the grid pattern. But because the
device senses absolute rotation, unlike previous optical
mice, we can correct for this to provide a mouse that
responds as if it senses motion relative to its local
orientation. Each motion sample is rotated by the current
device rotation Rz and added to the previous cursor
position. Because absolute rotation is sensed, cursor motion
that matches hand motion is always maintained.

Although this is a straightforward observation and easy to
implement, this technique results in a major improvement
to the usability and comfort of the device for 2D
translational movements.

Stability
We were concerned the curved base of the VideoMouse
might result in unintended tilting of the device, causing
poor 2D positioning. However, in practice we find that the
flat spot (as first introduced by the Rockin’Mouse) is quite
effective in maintaining the upright posture of the mouse,
while still allowing the device to be tilted easily when
needed. Also, if the device is released while tilted, it
quickly rights itself, so that it is always ready for reuse.

Video Processing
Camera Hardware
The VideoMouse uses a 320x240 CCD camera. Six red
light emitting diodes mounted inside the mouse provide
illumination. We chose red LED's to match the quantum
(best) efficiency of the CCD camera. The video signal is
carried to a PC, digitized with an Osprey video capture
card, and processed to determine the 6DOF camera pose.
The pose information is transmitted to a second PC which
renders the 3D graphics scene.

Pose Estimation
Pose estimation (determining the 3D position and
orientation of a camera based on the 2D location of known
markers) is a well studied problem in computer vision [5].
Since we are estimating 6 DOF, we must find at least three
markers (each marker provides two independent pieces of
information). More can be used for redundancy. For the
mouse pad grid, we can only use planar configurations of
markers. Since we want the processing to be relatively
straightforward, we use a grid of dots sufficient to encode
an absolute up vector and changes in position.

Our technique is based on finding the vanishing points of
the parallel lines in the grid. If the calibration pattern were a
cube, then we could directly calculate the focal length and
rotation of the camera [4]. However, with only a planar grid
pattern, we must determine the focal length from at least
three different views of the pattern [28].

CHI Letters vol 1, 1 105

Our pose estimation algorithm is based on a grid pattern of
black dots (fig. 3). The centroid of each circle can be
computed very quickly, and gives a precise location. Once
the dot centers have been computed, we connect each dot to
its four nearest neighbors and use the line segments
connecting nearest neighbors (edgels) to extract the grid
pose as follows:

1. Correct for radial lens distortion. We estimate the lens
distortion parameters using a plumb line method [8].
When correcting edgels, we re-compute their locations
(centers) and orientations.

2. Extract lines. We use a Hough transform [2] to vote for
lines through the edges.

3. Extract vanishing point. We use a generalized Hough
transform to vote for vanishing points associated with
pairs of nearby lines. Then we go back to the original
lines to refine the vanishing point estimates by
minimizing Σi(l i

Tv)2, where l i is the line equation in
homogeneous coordinates, and v is the vanishing point
in homogeneous coordinates. This can be found as the
minimum eigenvector of the symmetric 3×3 matrix
ΣI(l il i

T).

4. Compute the rotation matrix. We use the best two
vanishing point estimates to compute the rotation
matrix R. The z-axis is the cross product of the two
vanishing point vectors. Perpendicular x- and y-axes
are found using weighted averages of the vanishing-
point vectors and their cross products with the z-axis.

5. Find the phase (2D motion). The inverse rotation
matrix is used to rotate the grid to find a canonical grid
(of horizontal and vertical lines) in the projective
plane. The x-coordinates of the centers of the vertical
lines and the y-coordinates of the centers of the
horizontal lines are used to find the median spacing
between grid lines. We then use the horizontal and
vertical lines closest to the origin to find the phase of
the grid relative to the origin using the median spacing
as a frequency.

6. Estimate the height. The median spacing between grid
lines calculated above is compared with the median
spacing found when the VideoMouse is at rest to find
the current distance to the mouse pad. We estimate the
height by multiplying this distance by the r33

component of the rotation matrix.

We put white mini-dots (holes) inside selected (enlarged)
black dots (marker dots) to enable phase computation (2-D
motion) over a wider range. After grid lines have been
found, lines containing marker dots are identified and the
phases of these lines are used to get a position estimate that
allows faster mouse motion. For example, given our current
sampling rate of 30 Hz, a grid with dots spaced 0.1” apart
and marker dots in every third row and column is
theoretically limited to motions slower than 4.5 in/s.

By placing the holes slightly higher than the centers of the
marker dots, we are able to compute an estimate of the “up”

direction when we find the dots. This “up” direction is used
to make sure that the x- and y-axes are oriented correctly
when the rotation matrix is computed.

Fig. 3 Left: Raw input image showing the 2D grid pattern.
Right: Vision algorithm extraction of grid orientation.

Revised Grid Design
In practice, the above grid design does not allow mouse
motions as fast as we would like, so we added more holes
to the marker dots to encode 3-bit row and column
coordinates. When large dots with holes are found, the
largest hole is used to encode orientation information, as in
the previous design. The other holes can fall in six possible
locations relative to the centroids of the dot and the largest
hole (fig. 4). The presence or absence of a hole encodes one
bit of row or column position information. This allows
mouse motions eight times as fast as the previous design.

Fig. 4 The revised grid encodes position information in
the large dots for better tracking of rapid 2D mouse motions.

-10

0

10

20

30

40

50

60

70

-10 0 10 20 30 40 50

Rotation in Y

Rotation in XY (1/8" spacing)

Rotation in X

Rotation in XY (5/48" spacing)

Fig. 5 Actual angle vs. computed angle for the vision
tracker. The dotted line shows the ideal response. Angle
estimates are fairly accurate between the -20° and 20°
range used in practice. Estimates are consistent over
different grid orientations and spacings

We used a mechanical device to hold the VideoMouse
steady so that we could find the mean and standard
deviation of a series of 1000 angle estimates. This device

CHI Letters vol 1, 1 106

allowed us to rotate the mouse from side-to-side and
measure the angle of rotation to within two degrees. We
placed grids under the mouse at different orientations and
compared measured angles with computed angles. The
angles measured with the video mouse were fairly accurate
between -20° and 20° and were consistent over different
orientations and grid spacings (fig. 5).

The estimates with 45° grid orientations were noisier than
with 0° and 90° grid orientations. Most of the standard
deviations of the angle estimates were less than .1 degrees,
and all standard deviations that we measured were less than
.3 degrees, but there are still some uncommon position and
orientation combinations for which the code has trouble
making angle estimates. While this performance
demonstrates the feasibility of our implementation
approach, further refinements would be necessary for a
commercial version of the device.

Limitations of the Current VideoMouse Prototype
Although the VideoMouse represents a promising
technology, we are working to further improve several
aspects of the device. Our current set-up with two separate
PC’s introduces approximately 150-200ms end-to-end lag
in the system. We believe that much of this lag will be
eliminated when everything is integrated in a single
machine. Also, we currently sample the grid at 30 Hz which
is slower than we would like. A higher sampling rate would
allow a simpler grid design to track rapid hand motions,
and would help further reduce lag.

Our new grid design allows significantly faster 2D
translation with the mouse, but still has some bugs which
can occasionally introduce noise or sudden jumps in the
orientation, especially for 45° orientations of the Rz axis.
This can also result in inaccurate estimates for the Z height.

Our current curved base for the VideoMouse is hand-made
and thus not easily described by a simple analytic equation.
When combined with the sometimes erroneous Z height of
the new grid design, this can result in erroneous detection
of tilting or the out of proximity state for the mouse.
However, we believe that when we resolve these technical
details, software detection of these states will work reliably.

3D OBJECT MANIPULATION WITH THE VIDEO MOUSE
With appropriate interaction techniques, the additional
degrees-of-freedom provided by the VideoMouse can
support many 3D object manipulation tasks. Although the
VideoMouse is a 6DOF sensing device, for the 3D object
manipulation techniques we describe in this section, we use
only 5 of the 6DOF for manipulation. Lifting the device (Z
axis translation) is always interpreted as the mouse
reclutching gesture. This style of usage is most similar to
the traditional mouse: no matter what the user is doing with
the device or what the mode of the software, lifting the
device can be depended upon as a gesture to separate
device motion from the virtual object or cursor motion.
Nonetheless, the VideoMouse sensor does provide the 6th

degree of freedom if it is needed for height manipulation.

This functionality could be made available if the user held
down a keyboard modifier key, for example.

In this section, we assume that a keyboard modifier, the
Ctrl key, is used as a clutch, so that holding down the Ctrl
key while moving the mouse manipulates the selected
object in 5DOF. Releasing the Ctrl key drops the object at
its current position and orientation and allows the user to
once again move the 2D cursor. We also support clicking
and holding the left mouse button as a clutch for 3D object
manipulation; this method was actually preferred by most
of our test users for its familiarity and simplicity. One
advantage of using a keyboard modifier, however, is that it
separates the clutch from the hand controlling the device,
which allows better fine motor control.

As a final note, we intersperse observations and comments
from our usability testing throughout our description of the
interaction techniques. Test users tried out the various
object manipulation features of the VideoMouse in a simple
scene with a ground plane and two cubes. Participants were
asked to perform example object manipulation tasks (such
as “Move the small cube so that it aligns with the large
cube”); these 3D manipulation tasks were interleaved with
standard 2D cursor control to select the object to
manipulate, for example. Seven test users participated; two
users described themselves as “3D gamers.”

Rotation About the Vertical Axis
By clicking and dragging an object without tilting the
VideoMouse, our software can readily support a 3DOF
manipulation mode for 2D translation plus in-plane rotation
about the vertical (Rz) rotation axis (see fig. 2). Since the
hand may rotate at the wrist, elbow, or shoulder as it
translates, moving the mouse typically also results in some
rotation. Thus interaction techniques for a rotation-sensing
mouse should either be designed with a certain amount of
forgiveness for unintended rotations, or with a clutching
mechanism that allows the user to control whether or not
device rotation is used.

Absolute Mode for Rz Rotation
An absolute mapping of the VideoMouse’s Rz rotation to
the virtual object rotation works well for this axis. During
user tests, we observed that with an absolute mapping any
unintended rotation that is introduced as the user translates
an object can be quickly corrected with a final ballistic
rotation of the mouse. We also observed that many users
would pinch or twist the mouse in their finger tips to allow
dexterous manipulation of the rotation across a wider range
of physical movement.

However, a direct ratio of one Control unit to one Display
unit (1:1 C:D ratio) is limiting because it is difficult to
rotate one’s mouse across the full 360 range sensed by the
VideoMouse. The Rz rotation is sensed precisely enough
that a relatively high C:D ratio can allow an extended range
of motion that overcomes the biomechanical limits of the
hand while still allowing precise rotation. Our software
currently defaults to a C:D ratio of 1:4, but during our
usability testing we observed that subjects could work

CHI Letters vol 1, 1 107

effectively with settings ranging from 1:2 to 1:5. The
“optimal” setting likely depends on individual preferences
as well as the specific task at hand.

Rate Mode for Rz Rotation
We also experimented with using a rate mode for rotation
about the vertical axis, where deflection of the device from
the start of the rotation gesture (when the Ctrl key is
pressed) controls the velocity of rotation rather than the
absolute rotation angle itself. The rate mapping seems to
suffer fundamental limitations because (1) this axis of the
device has no inherent self-centering property, which is
desirable for rate control [24]; and (2) because as one
moves the mouse some rotation is inevitably introduced–
thus causing the object to start spinning unexpectedly.
Unlike the absolute mode for rotation, such unintentional
spinning cannot be corrected in a single ballistic rotation of
the mouse, but rather requires a series of gestures to stop
the object from spinning, reverse its rotation, and then
recenter the mouse to its “zero” orientation.

Nonetheless, some users did prefer the rate mode for
rotating the object. One advantage of using a rate mode for
Rz is that a reclutching mechanism is not necessarily
needed. By rotating and holding the device, the virtual
object will continue to spin until it approaches the desired
rotation. With an absolute mapping (times a gain factor),
when a physical limit in the rotation is reached, the user
must “ratchet” the object by releasing the Ctrl key (or by
lifting the mouse) to drop it, reset the orientation of the
device, and then hold down the Ctrl key to rotate the object
some more. The subjects who preferred the rate mode also
tended to find such ratcheting motions less intuitive.

The velocity for a given angle is calculated with a nonlinear
mapping [24]. A small dead band of ±2° is provided so that
the rotation can be brought to a definite stop. The resulting
equation is:

dRz = sgn(Rz) ∗ K ∗ max(||Rz|| - Rzmin, 0) α

where dRz is the calculated velocity, K is the control gain,
Rzmin is the size of the dead band, and α is the nonlinear
parameter. The sgn function multiples by the sign of Rz to
keep dRz in the same direction as the rotation.

Tilting the VideoMouse
We use the tilt degrees of freedom (Rx, or tilting forward
and back, and Ry, or tilting left and right) to control the
other two degrees of freedom of object orientation. A rate
control is much more effective for the tilt axes than for the
Rz rotation axis because the device does naturally return to
its flat spot, where the rates are mapped to zero. Tilting
with a rate control allows the user to either quickly spin the
object with a large tilt, or to very precisely nudge the rate
with a subtle tilting of the hand. The tilt velocity is
calculated with the equation shown above, again with a
dead band of ±2° for each axis. This dead band prevents a
slight accidental tilting of the device, or inaccuracies in the
tilt data, from affecting the virtual object.

Note that this interesting combination of rate control for Rx

and Ry and absolute rotation control for Rz does not seem to
cause any inherent problems. Indeed, this combination
helps to circumvent one of the primary objections to rate
control – the inability to rapidly rotate an object or the
scene to see things from another viewpoint, and just as
quickly return the original orientation by “muscle memory”
[1]. Since the Rz axis does provide an intuitive absolute
mapping, one can quickly flip between widely separated
rotations along this axis. However, it is true that
movements along the rate-controlled axes could not be
immediately reversed in this manner.

We did observe a couple of problems with tilting during our
usability testing. First, tilting forward can sometimes result
in an accidental mouse button click. Our software can
easily ignore most such accidental clicks (because we can
detect that the user was tilting the mouse when the click
occurred), but the user still thinks that he or she has made a
mistake because the “clicking” feedback from the button
gives the impression that an action has been initiated. A
second and more significant problem is that for a right-
hander, it is easier to tilt the mouse to the right than to the
left. The VideoMouse is adapted from the shell of the
Microsoft IntelliMouse Pro, which has a slight slope to the
right to encourage a neutral hand posture. We chose this
mouse shell because it does make it easier to tilt the hand to
the left than if the hand were held flat on the desk surface2.
Our sense is that increasing this slope may be helpful for
tilting, although we have not yet constructed such a
prototype. A number of other ergonomic refinements may
be possible if one designed a mouse from the ground up to
afford tilting motions.

Interactive Audio Feedback
We provide interactive audio feedback proportional to the
rate of tilting. The impression is similar to that of a race car
accelerating. Separate acceleration sounds are mixed for
each tilt axis. This gives the user excellent feedback for
exactly how much of each tilt axis is being engaged, even if
the object is rotating very slowly and thus perhaps difficult
to notice visually. We also provide distinctive “clicks”
when a rate-based tilt first begins as well as when the
VideoMouse returns to its flat spot. Our sense is that this
feedback is both fun and quite useful to help augment and
reinforce hand-eye coordination. Unfortunately, however,
the audio feedback was not implemented at the time of our
usability testing so we do not yet have any reactions from
end-users to report, so while the audio seems useful its
benefit remains unproven.

In general, a number of other qualities of the system are
sonified. For example, dragging the objects (translating in
XY) creates a soft sliding noise proportional to the speed of
movement. We also provide audio feedback for lifting up or
putting back down the VideoMouse; unlike a mechanical

2 The creators of the Rockin’ Mouse also noticed in one device
design variation that a “neutral posture” slope seemed helpful
[Ravin Balakrishnan, personal communication].

CHI Letters vol 1, 1 108

mouse, which makes a noise as it is lifted, lifting the
VideoMouse is almost perfectly silent without this
feedback. Similarly, the user hears a thudding noise when
the VideoMouse reaches the edge of the grid pattern; this
makes the user aware of this error condition without having
to visually monitor where the mouse is on the mouse pad.

Absolute Mode for Tilting
We implemented an absolute mode for controlling object
orientation with the tilt axes, but did not test it with users.
The range of rotation that is sensed (and that is comfortable
ergonomically) is limited for these axes. Also, lifting the
mouse is less effective as a reclutching gesture when tilting
the mouse. Thus, a rate mapping seems appropriate for
specifying an arbitrary orientation with the current tilt-
sensing capabilities of the VideoMouse. Nonetheless, an
absolute mapping for the tilt axes can be extremely useful
for some tasks (e.g., [1]). We will present another such
example later in this paper. Indeed, we see the flexibility of
the device to support either rate or absolute mode mappings
of the tilt axes from software as one of its strengths.

Device Ergonomics
Obviously, a device that requires extreme wrist flexion
would raise significant repetitive strain injury concerns.
While we do not believe that planar multi-DOF devices
necessarily engender such difficulties, this is a legitimate
concern which needs further study. However, our design
experience with the VideoMouse suggests the following
observations that can help to address ergonomic issues.

First, the 6DOF manipulation literature suggests (and
indeed, we believe it is vital) that the device should
encourage a finger-tip grip for 3D interaction, rather than a
whole-hand grip which mandates wrist flexion. Zhai et al.
[26] report that the bandwidth of 6 DOF manipulation is
maximized when the fingertips participate in manipulation.
We believe a mouse design with a smaller, more circular
shape and a shorter vertical profile than our current
prototype would be helpful in this regard. Furthermore,
using the fingertips of both hands encourages comfortable
and dexterous 6DOF manipulation [10]. One technique for
using both hands to aid manipulation with the VideoMouse
is described in the next section.

Second, we believe the degree of tilt or rotation is not so
much the key issue as is the hand posture and muscle
groups required to orient the mouse. Encouraging a finger-
tip grip may help to extend the range of motion for the
device while also making it comfortable and pleasant to
use. Failing this, if rate control techniques are used for the
tilt axes, the angular displacement of the device can be
limited to a range of approximately ±5° to 10° for each
axis. If subsequent study finds that rate controls really are
the best match for the planar multi-DOF axes, the hardware
could be designed to physically limit tilting to a small
range; we have not yet implemented this as our intuition is
that positional mappings of the tilt axes can be quite useful,
and furthermore we wanted our prototype device to allow
as general-purpose postural sensing as possible.

Our sense is that these issues are subtle and difficult to get
right, and given that the VideoMouse prototype adapts an
existing mouse shell, the device form-factor could probably
be improved by redesigning and reevaluating the device
ergonomics from the ground up.

TWO-HANDED ROTATION USING THE MOUSE PAD
Although we initially assumed that one would use the
rotation-sensing capabilities of the VideoMouse by rotating
the mouse itself, we soon realized that one could just as
easily rotate the mouse pad instead. This affords a two-
handed interaction technique where the user can rotate the
pad with the nonpreferred hand while either holding the
VideoMouse still with the preferred hand, or
simultaneously counter-rotating the mouse to extend the
continuous range of rotation beyond the biomechanical
limits of the preferred hand acting alone.

By sensing such nonpreferred-hand use of the mouse pad
via touch sensing [11], the mouse pad becomes a “prop”
[10] for rotating the scene or ground plane, while rotating
the mouse by itself manipulates an object within the scene
(fig. 6). This gives the user a very lightweight and direct
way to inspect the scene from multiple vantage points (and
other uses can be envisioned as well [6]). We also reduce
the rotational gain factor (to a 1:2 C:D ratio instead of the
default 1:4) so that the user may rotate the scene slowly
with the nonpreferred hand or rapidly by simultaneously
counter-rotating the mouse hand. Users found the technique
very intuitive and easy to master.

Fig. 6 Two-handed rotation of the mouse pad allows
rotation of the entire scene. To resolve the depth ambiguity
seen here in the top right image, the user has rotated the
ground plane to a different viewpoint (bottom right).

The mouse pad has a finger-sized recess located in each
corner of the pad, and we can sense when the user puts his
or her finger in one of these recesses to rotate the pad. The
user can also to choose to move the mouse pad without
triggering the touch sensors by simply grabbing it at any
other point. This makes the gesture of grabbing the mouse
pad (to rotate the scene) intentional, yet very easy to do.
The mouse pad has a raised pivot point which gives it a
slight affinity to rotate about its center like a turntable, yet
without feeling “wobbly.” Our current implementation of
the touch-sensing mouse pad requires a wire to tether it to
our touch-sensing circuitry. However, we believe it may be
possible to build a wireless version using the capacitive
coupling techniques described by Zimmerman et al. [29].

We currently use only the rotation of the mouse, and ignore
any cursor movement. Some change in the cursor position

CHI Letters vol 1, 1 109

Fig. 7 Several snapshots from a sequence of the user navigating through
the spreadsheet.

accompanies the rotation (since it does not occur about the
center of rotation of the camera itself). Nonetheless, it
might be interesting to map significant forward/back
motion of the mouse to control the distance of the camera
from the scene, for example.

We should also note that regardless of the mouse pad
orientation, the cursor motion as one translates the mouse
always corresponds to the user’s hand motion. Our
technique for mapping mouse motion to the local
orientation of the mouse automatically has this effect, even
when the mouse pad is upside down, for example.

Kinesthetic Correspondence with Mouse Pad Rotation
Because there are two moving objects (the mouse pad and
the mouse), and only one rotation sensor, we know only the
relative rotation between the two objects; we do not know
for certain which object the user is actually rotating. We
initially had some concern because this can result in a
situation where the user will rotate the mouse or the mouse
pad in one direction, while the objects on the screen will
rotate in the other. Such a loss of kinesthetic
correspondence is generally considered non-intuitive [3].

To investigate this issue, we implemented an option so that
the rotation of the ground plane could either be (1) in
correspondence with the rotation of the mouse pad,
assuming the user is moving the pad; or (2) counter-rotated
to match the rotation of the mouse, assuming that the user
holds the mouse pad still and moves only the mouse (if the
user were to hold the mouse still and move the mouse pad,
the scene would then rotate in the opposite direction of the
mouse pad rotation with this second option).

When we tried each of these options during user testing,
remarkably most users did not even notice if the scene
rotated backwards when they rotated the mouse pad. All
four test users found either direction of
rotation to be intuitive and most were
surprised when we pointed out the
difference.

One user who did notice this had a
tendency to hold the mouse pad still, and
rotate the mouse instead. This user felt
that the rotation was a bit more natural
when it corresponded to the mouse
rotation. For this reason, our current
default is option (2), counter-rotation.
Most users who do rotate the mouse pad
don’t notice that the scene spins in the
opposite direction, while users who tend
to rotate just the mouse may find this
option more natural. We believe that,
similar to the old debate about the
“correct” direction of scrolling when
dragging a scroll bar, users can adopt
either a mental model of “the mouse pad
is the floor” or “the mouse pad controls a
camera spinning around the floor” with
equal ease.

SPREADSHEET NAVIGATION
We have also experimented with using the tilting
capabilities of the VideoMouse to aid navigation of
spreadsheets, which serves as a concrete example of
navigation in a large 2D space. Navigating such spaces with
standard scroll bars is quite tedious. Not only do scroll bars
control only one dimension of panning at a time, but also a
distant destination for navigation may be beyond the edges
of the screen, and thus invisible to the user. The user must
either remember where other information is in the
spreadsheet relative to their current location, or search for
the desired destination while scrolling. Similar issues also
arise with zooming user interfaces [19].

Another approach is to use a menu to change the
magnification of the document so that more area can be
seen, select a new region, and then revert the magnification
to the original setting, but this also is a tedious process
involving many steps which interrupt the user's workflow.
Some mice with wheels can support this functionality by
holding down Ctrl and rolling the wheel to zoom, but the
navigation occurs in discontinuous steps, which can cause
the user to get disoriented, and is still disjoint from the
mechanism to select a new region.

We use tilting the mouse forward or back as a distinct
gesture to zoom out to an overview of the spreadsheet (fig.
7). This can be combined with normal 2D motion of the
device to move a semi-transparent selection region.
Releasing the mouse button then flies the user into the new
region of the spreadsheet indicated by the selection region.

The tilt angle is scaled by a gain factor to allow continuous
control of the height of the camera above the spreadsheet.
This is an example of a absolute mode for mapping the tilt
data to height. In that regard, this mapping is similar to the
height control described by Balakrishnan et al. [1], but the

CHI Letters vol 1, 1 110

interaction metaphor is different. Our technique currently
does not distinguish between tilting the mouse forward and
tilting the mouse back; however, such a distinction might
be used to extend the technique to allow both zooming in
for more detail as well as zooming out for an overview.

This technique is related to Rekimoto’s technique for
navigating maps with a tilting display [21]. For desktop
usage, a metaphor where the information remains parallel
to the screen (rather than tilting away in the distance as
demonstrated by Rekimoto) seems more natural. Also, our
technique allows the user to combine 2D mouse motion
with tilting to simultaneously control the height above the
document and the position of the selection region.

Quickly tilting the device up and then back down is also
used as a discrete gesture to “show more” of the
spreadsheet. This gesture backs out to a fixed overview,
and then the user can move the mouse around (while flat on
the desktop) to position the selection region. We believe
that it would be useful to allow a series of such gestures to
continue backing out to higher and higher-level overviews,
but we have not yet implemented this.

Test users were very enthusiastic about this capability, but
had mixed reactions to using our current absolute function
of forward/back tilt to control this action. We plan to
explore additional mappings of the VideoMouse degrees-
of-freedom to control this functionality. Nonetheless, test
users were able to use the technique to quickly navigate to
distant areas of the spreadsheet, and felt strongly that the
technique makes this action much easier.

LIGHTWEIGHT SCANNING TASKS
We believe the camera of the VideoMouse could help to
enable lightweight scanning tasks, which are short, almost
trivial scanning tasks that may need to be frequently
interleaved with standard GUI interaction. Such tasks can
occur naturally when the user works with paper documents
that have electronic counterparts [14][20]. An example
would be the processing of paper invoices that also exist as
electronic records in a database.

The field-of-view of the VideoMouse is too small to make
it useful for scanning in large images or entire pages of text.
But it is useful for quick scanning tasks that would be too
cumbersome if the user had to put down the mouse to
switch to a handheld scanner. For example, users could
scan the title of a document, and OCR software could be
used to trigger a query for related electronic documents.

The VideoMouse has a physical registration marker on its
side to assist lining up the camera with the desired text on
the piece of paper. We observed that it is easier for users to
use this physical registration mark to guide hand motion
across the text than it is to use the live video window. One
minor problem is that the mouse still occludes the very
beginning of the line of text, so the video window does help
the user to position the mouse at the beginning of the line.

The VideoMouse pose estimation algorithm calculates a
confidence measure which we use to sense when the mouse

has been removed from our special mouse pad. Thus, the
system knows when the mouse is being used in a context
appropriate for scanning, so clicking and dragging the
mouse in this case could scan in an image instead of issuing
normal mouse clicks to widgets on the screen.

When the user finishes scanning a video sequence, we
stitch together the individual images in a way that
resembles hand-held scanners. We can register successive
input frames to create a single mosaic [22]. If we assume
the user is keeping the mouse flat on the page, after
undoing the radial distortion of the camera, we only need to
estimate 3 DOF (2-D translation and in-plane rotation)
when building the mosaic. Fig. 8 shows a single,
uncorrected, input image and the resulting mosaic
computed from the entire video sequence. In order to
prevent successive errors in rotation estimation from
accumulating, we could also try to estimate the absolute
orientation of each input image (e.g., by Houghing the input
edgels), but we have not yet implemented this.

Fig. 8 Left: A single input image. The camera senses that
it is no longer looking at the grid. Top Right: Results of the
image mosaic algorithm. Bottom Right: Contributions of
individual images to the mosaic.

We have implemented camera sensing of the mouse context
and the image processing necessary to reassemble the
resulting video sequence. This demonstrates the ability to
intelligently capture short scanned sequences. We have not
yet implemented a mechanism to bring up the live video on
the user's primary monitor (a secondary monitor is currently
used). We also need to integrate optical character
recognition software with our system to allow the
extraction of actual text. Nonetheless, we believe the
implemented system and design ideas clearly demonstrate
the potential value of having simple image capture facilities
tightly integrated with the keyboard-mouse user interface.

CONCLUSIONS AND FUTURE WORK
Additional study of the class of planar multi-DOF devices
is needed. Experimental studies might include assessing the
overall task performance for both 2D cursor movement and
3D manipulation, as well as measuring users’ ability to
coordinate all 6DOF [25]. The device capabilities also call
for improved design of the physical form factor and careful
ergonomic analyses. We are considering designs that move
the device center of rotation to the nodal point of the
camera, as well as spring-loading of the base to provide
feedback for tilting and return-to-center force.

A great deal more work needs to be done on interaction
techniques to map the device DOF's to other tasks of
interest. For example, we feel that the VideoMouse may
enable interesting new 3D navigation techniques. It may

CHI Letters vol 1, 1 111

also provide exciting new interaction for 3D computer
games or flight simulators. As another example,
manipulators or “3D Widgets” to map 2D mouse motion to
various parameters for 3D object manipulation have
become standard in many 3D applications. A multi-DOF
device like the VideoMouse might enable new sets of such
manipulators that map the device DOF’s in task-dependent
ways. Note that such multi-DOF manipulators could act at a
much higher level of abstraction than existing 3D widgets.

This paper has presented a new camera-based input device
with multi-DOF sensing and image capture capabilities. We
believe that the camera-based technology will result in a
practical and commercially feasible extension to current
mouse technology. We have discussed a number of
interaction techniques for such a device including 3D
manipulation, two-handed rotation of the mouse pad,
navigation in large 2D structures such as a spreadsheet, and
use of the camera for lightweight scanning.

ACKNOWLEGEMENTS
Thanks to Dave Thiel for audio feedback, Dan Robbins for
photographs, and Mary Czerwinski for user test assistance.

REFERENCES
1. Balakrishnan, R., Baudel, T., Kurtenbach, G.,

Fitzmaurice, G., "The Rockin'Mouse: Integral 3D
Manipulation on a Plane," CHI'97, 311-318.

2. Ballard, D.H., Brown, C.M., "Computer Vision". 1982,
Englewood Cliffs, New Jersey: Prentice-Hall.

3. Britton, E., Lipscomb, J., Pique, M., "Making Nested
Rotations Convenient for the User," Computer
Graphics, 12 (3): p. 222-227, 1978.

4. Caprille, B., Torre, V., "Using Vanishing Points for
Camera Calibration," International Journal of
Computer Vision, 4 (2): p. 127-139, 1990.

5. Dementhon, D., Davis, L.S., "Model-based object pose
in 25 lines of code," International Journal of Computer
Vision, 15 (112): p. 123-141, 1995.

6. Fitzmaurice, G., Balakrishnan, R., Kurtenbach, G.,
Buxton, B., "An Exploration into Supporting Artwork
Orientation in the User Interface," CHI'99.

7. Fitzmaurice, G., Ishii, H., Buxton, W., "Bricks: Laying
the Foundations for Graspable User Interfaces,"
CHI'95, 442-449.

8. Fryer, J., Brown, D., "Lens Distortion for Close-Range
Photogrammetry," Photogrammetric and Remote
Sensing, 52 (1): p. 51-58, 1986.

9. Harrison, Fishkin, Gujar, Mochon, & Want, "Squeeze
Me, Hold Me, Tilt Me! An Exploration of
Manipulative User Interfaces," CHI'98, 1998, 17-24.

10. Hinckley, K., Pausch, R., Proffitt, D., Kassell, N.,
Two-Handed Virtual Manipulation, TOCHI 5 (3) 1998.

11. Hinckley, K., Sinclair, M., "Touch-Sensing Input
Devices," To appear in CHI'99.

12. Hinckley, K., Tullio, J., Pausch, R., Proffitt, D.,
Kassell, N., "Usability Analysis of 3D Rotation
Techniques," UIST'97, 1-10.

13. Jacob, R., Sibert, L., McFarlane, D., Mullen, M., Jr.,
"Integrality and Separability of Input Devices," ACM
TOCHI, 1 (1): p. 3-26, 1994.

14. Johnson, W., Jellinek, H., Klotz, L., Rao, R., Card, S.,
"Bridging the paper and electronic worlds: the paper
user interface," INTERCHI'93, 1993, 507-12.

15. Kurtenbach, G., Fitzmaurice, G., Baudel, T., Buxton,
B., "The Design of a GUI Paradigm based on Tablets,
Two-hands, and Transparency," CHI'97, 35-42.

16. Lyon, R., Haeberli, M., "Designing and testing the
optical mouse," VLSI Design, Jan.: p. 20-30, 1982.

17. MacKenzie, I.S., Soukoreff, R.W., Pal, C., "A Two-
Ball Mouse Affords Three Degrees of Freedom,"
CHI'97 Conference Companion, 1997, 303-304.

18. Microsoft IntelliMouse Explorer, www.microsoft.
com/presspass/features/1999/04-19mouse.htm , 1999

19. Perlin, K., Fox, D., "Pad: An Alternative Approach to
the Computer Interface," SIGGRAPH `93, 1993.

20. Rao, R., Card, S., Johnson, W., Klotz, L., Trigg, R.,
"Protofoil: Storing and Finding the Information
Worker's Paper Documents in an Electronic File
Cabinet," CHI'94, 1994, 180-185, 477.

21. Rekimoto, J., "Tilting Operations for Small Screen
Interfaces," UIST'96, 167-168.

22. Szeliski, R., Shum, H.-Y., "Creating full view
panoramic image mosaics and texture-mapped
models," SIGGRAPH'97, 251-258.

23. Wacom Intuos tablet, http://www.wacom.com/
productinfo/ intuos9x12.html, 1999.

24. Zhai, S., "Human Performance Evaluation of
Manipulation Schemes in Virtual Environments," Proc.
IEEE VRAIS'93, 155-161.

25. Zhai, S., Milgram, P., "Quantifying Coordination in
Multiple DOF Movement and Its Application to
Evaluating 6 DOF Input Devices," CHI'98, 320-327.

26. Zhai, S., Milgram, P., Buxton, W., "The Effects of
Using Fine Muscle Groups in Multiple Degree-of-
Freedom Input," CHI'96, 308-315.

27. Zhai, S., Smith, B.A., Selker, T., "Improving Browsing
Performance: A study of four input devices for
scrolling and pointing tasks," INTERACT'97, 286-292.

28. Zhang, Z., A Flexible New Technique for Camera
Calibration. Microsoft Research Technical Report
MSR-TR-98-71, 1998.

29. Zimmerman, T., Smith, J. R., Paradiso, J., Allport, D.,
Gershenfeld, N., "Applying Electric Field Sensing to
Human-Computer Interfaces," CHI'95, 280-287.

CHI Letters vol 1, 1 112

