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ABSTRACT 

To understand whether a user is satisfied with the current search 

results, implicit behavior is a useful data source, with clicks being 

the best-known implicit signal. However, it is possible for a non-

clicking user to be satisfied and a clicking user to be dissatisfied. 

Here we study additional implicit signals based on the relationship 

between the user’s current query and the next query, such as their 

textual similarity and the inter-query time. Using a large unlabeled 

dataset, a labeled dataset of queries and a labeled dataset of user 

tasks, we analyze the relationship between these signals. We 

identify an easily-implemented rule that indicates dissatisfaction: 

that a similar query issued within a time interval that is short 

enough (such as five minutes) implies dissatisfaction. By 

incorporating additional query-based features in the model, we 

show that a query-based model (with no click information) can 

indicate satisfaction more accurately than click-based models. The 

best model uses both query and click features. In addition, by 

comparing query sequences in successful tasks and unsuccessful 

tasks, we observe that search success is an incremental process for 

successful tasks with multiple queries.  

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval – selection process, search process. 

Keywords 

Re-querying behavior, success prediction, search tasks 

1. INTRODUCTION 

Search is an interactive process that starts with a user submitting a 

query to a search system. Depending on the results returned by the 

system and the user’s information need, the user may click zero or 

more results and may submit zero or more follow-up queries. 

Search log data can provide implicit feedback from which the 

search system can identify which results are relevant for particular 

queries [2]. It can also provide insights into retrieval performance. 

Given search logs, models of searcher satisfaction can be developed 

at the query level or at the session/task level [16]. 

A user’s search activity has one or more queries and zero or more 

clicks on results. Such activity is motivated by one or more higher-

level goals, which we call tasks, although tasks are not our focus of 

study in this paper. Instead, we focus on query-level satisfaction. 

To understand the difference between query-level and task-level 

success, consider the task of booking a holiday. The user might 

enter a query “expedia” with navigational intent. In that case, 

reaching the Expedia site constitutes query-level success without 

necessarily indicating task-level success, since we do not know if 

the user’s task was completed. 

The notion of satisfaction at the query level could have many 

scenarios and aspects relating to the quality and usefulness of 

search results. These include but are not limited to: successful 

navigation to a known item, finding the answer to a question, 

learning about a new topic, finding the required information 

without clicking (i.e. good abandonment) [30], or gathering 

evidence that the required item/information doesn’t exist. Rather 

than studying these separately, or modeling degrees of success, we 

follow state of the art work on search success (e.g. [1],[18]) by 

choosing a simple view that satisfaction is binary: if a user is 

satisfied with the current results then the query is a successful one; 

otherwise, it is not.  

Click-based metrics have been widely used as a way to predict 

whether a given user is satisfied with the search results or not.  

Clicking on a result page does not necessarily indicate that the 

query was successful if taken out of context. To better understand 

this, consider the example in Figure 1. We see an example of a user 

submitting the query “greenfield, mn accident”. Apparently, the 

user is looking for information about an accident that took place in 

Greenfield, MN. The user clicks a result, dwells for 36 seconds, 

then types a second query ”woman dies in a fatal accident in 

greenfield, minnesota" and clicks another result. The first clicked 

result is from 2010, the second is from July 2012, and the 

documents describe different incidents. A likely interpretation of 

this is that the user was looking for the 2012 accident, and failed to 

find it on the first query, especially because the queries were 

submitted just one day after the 2012 accident. The 2012 document 

was not even in the top-20 results of the first query. The 2010 

document does not mention the 2012 accident. 

Had we seen only the first query and click, we might have thought 

the user was satisfied. In this work, we introduce and evaluate 

models of query-level satisfaction that consider the next query 

submitted by the user and not only based on whether a user clicks 

on a result or not. Given a stream of queries submitted by a user, 

we only consider the immediate follow-up query. This means we 
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make minimal use of other queries, but also we are using the query 

that best reflects the user’s reaction to the current query. 

The next query may be a manual reformulation of the current query 

because the user is dissatisfied with the current query results (e.g. 

"greenfield, mn accident"  "woman dies in a fatal accident in 

greenfield, mn"). If the user is satisfied, the next query might be a 

related query on the same topic (e.g., "best gre practice tests"  

"gre powerpre"), or a new query on a different topic. Hence, we 

build models to predict  the current query success using query pair 

information, click information or both. More specifically, we try to 

answer the following research questions:  

Research Question 1: What is the correlation between click 

signals and query pair features such as overlap and inter-query 

time? If both are indicators of satisfaction, there should be some 

correlation. 

Research Question 2: Can we accurately predict user satisfaction 

using query pair data alone? 

Research Question 3: Can we improve query success prediction 

using both click and query pair signals? 

Research Question 4: Using search tasks which may have more 

than two queries, how does our query-level prediction relate to task-

level success? 

The remainder of this paper is structured as follows. Section 2 

describes related work. A formal problem definition is given in 

Section 3. Section 4 motivates this research by conducting a large 

scale exploratory analysis of user behavior logs, considering the 

correlation between click-based and query-based satisfaction 

indicators. In Section 5, we present a method for identifying query 

reformulation behavior, which is used to predict query-level 

satisfaction In Section 6. In Section 7, we present the experiments 

performed to evaluate model effectiveness and discusses query 

reformulation patterns in search tasks. We conclude in Section 8. 

2. RELATED WORK 

There are four areas of work related to the research presented in this 

paper: (i) query document relevance, (ii) search satisfaction, 

success, and frustration, (iii) search tasks boundary identification, 

and (iv) query refinement. We cover each of these areas in turn. 

2.1 Query Document Relevance 

State of the art measurement in information retrieval  uses a test 

collection comprising a document corpus, query topics and 

relevance judgment. These are then used with relevance metrics 

such as MAP and discounted cumulative gain (DCG) [21].  This 

process requires costly manual judgments of the relevance of 

documents in the search result list to individual queries. Previous 

work has also estimated query document relevance using models 

derived from user click behavior [2][8][28]. Other research work 

has used the click patterns to compare different ranking functions, 

i.e. to derive a metric [8][11][24]. 

Even though Click data is very useful for predicting query 

document relevance, it is also very noisy. Some of the reasons 

behind that are document snippets that do not accurately represent 

the content, and the bias resulting from the position of the document 

in the result set [24]. Our work shows that using information about 

the next query submitted by the user can allow us to filter out noisy 

click signals that are not indicative of query success. 

2.2 Search Satisfaction 

Extensive literature exists on deriving indicators of task success or 

failure from online user behavior. Fox et al. [13] used an 

instrumented browser to determine whether there was an 

association between explicit ratings of user satisfaction and implicit 

measures of user interest and identified the measures that were most 

strongly associated with user satisfaction. They found that there 

was a link between user activity and satisfaction ratings, and that 

clickthrough, dwell time, and session termination activity 

combined to make good predictors of satisfaction for Web pages. 

For example, they found out that a short dwell time is an indicator 

of dissatisfaction, while long dwell time is correlated more with 

satisfaction. Behavioral patterns were also used to predict user 

satisfaction for search sessions. Huffman and Hochster [21] found 

a relatively strong correlation with session satisfaction using a 

linear model encompassing the relevance of the first three results 

returned for the first query in a search task, whether the information 

need was navigational, and the number of events in the session. 

Hassan et al. [20] developed models of user behavior to accurately 

estimate search success on a session level, independent of the 

relevance of documents retrieved by the search engine. Ageev et 

al. [1] propose a formalization of different types of success for 

informational search, and presented a scalable game-like 

infrastructure for crowdsourcing search behavior studies, 

specifically targeted towards capturing and evaluating successful 

search strategies on informational tasks with known intent. They 

show that their model can predict search success effectively on their 

data and on a separate set of log data comprising search engine 

sessions. Feild et al. [12] developed methods to predict user 

frustration. They assigned users difficult information seeking tasks 

and monitored their degree of frustration via query logs and 

physical sensors.  

Our work is different from this work in that we focus on query-

level satisfaction. However, we also try to understand the difference 

between query-level and task-level satisfaction and we study the 

patterns of query sequences that form a task. 

2.3 Search Task Boundary Identification 

The problem of classifying the boundaries of the user search tasks 

within sessions in web search logs has been widely addressed 

before. Boldi et al. [7] presented the concept of the query-flow 

graph. A query-flow graph represents chains of related queries in 

query logs. They use this model for finding logical session 

boundaries and query recommendation. Ozmutlu [34] proposes a 

method for identifying new topics in search logs. He demonstrates 

that time interval, search pattern and position of a query in a user 

session, are effective on shifting to a new topic. Radlinski and 

Joachims [35] study sequences of related queries (query chains). 

 

Figure 1. The next query is evidence of dissatisfaction even 

though the original query received a long dwell time click 

(> 30 seconds).  

 



They use that to generate new types of preference judgments from 

search engine logs to learn better ranked retrieval functions.   

Arlitt [3] found session boundaries using a calculated timeout 

threshold. Murray et al. [31] extended this work by using 

hierarchical clustering to find better timeout values to detect 

session boundaries. Jones and Klinkner [26] also addressed the 

problem of classifying the boundaries of the goals and missions in 

search logs. They showed that using features like edit distance and 

common words achieves considerably better results compared to 

timeouts. Lucchese et al. [31] uses a similar set of features as [26], 

but uses clustering to group queries in the same task together as 

opposed to identifying task boundary as in [26]. In this work, we 

present better models for predicting the relation between pairs of 

queries and we use it toward a higher level goal, which is predicting 

query level success. 

2.4 Query Refinement 

Existing research has studied how web search engines can propose 

reformulations, but has given less attention to how people perform 

query reformulations. Most of the research on manual query 

reformulation has focused on building taxonomies of query 

reformulation. These taxonomies are generally constructed by 

examining a small set of query logs.  

Anick [3] classified a random sample of 100 reformulations by 

hand into eleven categories. Jensen et al. [23] identified 6 different 

kinds of reformulation states (New, Assistance, Content Change, 

Generalization, Reformulation, and Specialization) and provides 

heuristics for identifying them. They use them to predict when a 

user is most receptive to automatic query suggestions. The same 

categories were used in several other studies Error! Reference 

source not found.[29]. 

Huang and Efthimis [19] proposed another reformulation 

taxonomy. Their taxonomy was lexical in nature (e.g., word 

reorder, adding words, removing words, etc.). They also proposed 

the use of regular expressions to identify them. While studying re-

finding behavior, Teevan  et al. [36] constructed a taxonomy of 

query re-finding by manually examining query logs, and  

implemented algorithms  identify repeat queries, equal click 

queries and overlapping click queries.  

None has built an automatic classifier distinguishing reformulation 

queries from other. Heuristics and regular expressions have been 

used in [19] and [23] to identify different types of reformulations. 

3. PROBLEM DEFINITION 
We start by defining some terms that will be used through-out the 

paper: 

Definition: A Search Session is group of queries and clicks 

demarcated with a 30-minute inactivity timeout, such as that used 

in previous work [35]. 

Definition: A SAT (Satisfied) Query is a query where the 

information need of the searching user has been successfully 

addressed. 

Definition: A DSAT (disatisfied) Query is a query where the 

information need of the searching user has not been successfully 

addressed.  

Definition: Query Reformulation is the act of submitting a Next 

Query Q2 to modify a previous search query Q1 in hope of 

retrieving better results.  

Assume we have a stream of queries submitted to a search engine. 

In response to each query, the engine returns a search results page. 

The user may decide to click on one or more elements on the page, 

reformulate the query, or end the search. So given a query Q1, 

clicks on Q1’s results, and the next query Q2, our objective is to 

predict whether the user was satisfied with Q1 or not (i.e. Q1 was 

successful, we use the terms satisfied and successful 

interchangeably throughout the paper).  To build toward this goal, 

we start with a large-scale motivating exploratory analysis of search 

logs (Section 4), build methods for predicting query reformulation 

(Section 5), and build methods for query success prediction 

(Section 6). 

4. CLICKS AND NEXT QUERY: A LARGE 

SCALE EXPLORATORY ANALYSIS 

We begin with some motivating exploratory analysis of user 

behavior logs, considering the correlation between click-based and 

query-based satisfaction indicators. With one week of activity from 

a large number of users, we identify all query pairs such that a 

single user entered Q1 then Q2 with no intervening queries.  67% 

of the queries in the dataset had a next query. 

For each pair we are interested in the user’s query-level satisfaction 

with Q1. Since this dataset has no relevance judgments of any kind 

we use clicks as a satisfaction indicator. For a large set of pairs, we 

can calculate a clickthrough rate (CTR) that is the proportion of 

pairs where Q1 has at least one click. Since for some clicks the user 

backs out immediately, we also calculate CTR-30, which is the 

proportion of pairs where Q1 has at least one click with a dwell 

time of 30 seconds or greater (we see no further search activity for 

at least 30 seconds). Previous work has shown that dwell time 

exceeding 30 seconds is highly correlated with satisfaction [13]. 

Clicks are a noisy indicator of relevance, but for a very large set of 

pairs a higher CTR and higher CTR-30 is some indication of greater 

satisfaction with Q1. 

Our query-based satisfaction indicators are based on query 

similarity and time between queries. Here we say that Q1 and Q2 

overlap if, after lowercasing, tokenization, and removing stop-

words, the queries have at least one token in common. Consider the 

query Q1 “la map”, where the user’s intention is to find maps of 

Louisiana (abbreviated as LA). If the results of Q1 consist of maps 

of Los Angeles, then Q2 is more likely to reformulate the query, for 

example “Louisiana map”. Issuing another “map” query would be 

less likely if Q1 returned relevant results. In this case, reformulation 

is an indicator of dissatisfaction. In this section, we use word 

overlap as a proxy for reformulation (i.e. Q2 is considered a 

reformulation of Q1 if they have at least one non-stop-word term 

overlap). Note, we later build on this intuition by considering richer 

notions of Q1-Q2 similarity. 

Table 1. Relative CTR for different subsets of pairs, using 

word overlap and a 5 minute time threshold 

 overall non-overlap overlap 

overall 0% 11% -21% 

non-quick  25% 24% 29% 

quick -29% -17% -39% 

 

Table 2. Relative CTR-30 for different subsets of pairs, 

using word overlap and a 5 minute time threshold   

 overall non-overlap overlap 

overall 0% 6% -12% 

non-quick 6% -1% 40% 

quick -7% 20% -30% 

 



Our other indicator of satisfaction is the time between Q1 and Q2. 

Using our previous example, if Q1 has the wrong maps, Q2 may 

show up sooner as the user searches for the right ones. More 

precisely, we characterize the time between queries as either quick 

(less than or equal to 5 minutes) or non-quick (greater than 5 

minutes). This threshold was tuned using the dataset described in 

Section 5. Note, we later build richer models that do not use any 

hard thresholds on time between queries. Now let us reconsider the 

maps search, if Q1 has the right maps, we have more chance of 

ceasing search activity for 5 minutes or more. In this case, a quick 

Q2 is an indication of dissatisfaction. We note that a low CTR-30 

and a quick Q2 are both associated with quick user interactions, so 

should be correlated in our analysis, though they use quite different 

thresholds (30 seconds and 5 minutes). 

4.1 CTR Analysis of Query Pairs 

We analyze the CTRs of various sets of pairs. We show CTR 

relative to the CTR of all pairs. Reading the first row of Table 1, 

the pairs with Q1-Q2 overlap had CTR that was 21% below average 

(relative), while non-overlapping pairs had 11% above average 

CTR. Quick pairs had 29% below average CTR, with non-quick 

pairs being 25% above average. The remaining cells show 

interactions. Lowest CTR is found in quick overlapping pairs (-

39%). Interestingly, all three values in the non-quick row are 

similar, indicating that for pairs with 5 or more intervening minutes 

overlap is not such a useful indicator of dissatisfaction. 

Table 2 presents the same analysis but for CTR-30. As before, 

although overlap and quick seem like good dissatisfaction 

indicators on their own (-12% and -7%), there are interactions 

between the two, and it is really pairs that are quick and overlapping 

that are the interesting case, with CTR-30 that is 30% below 

average. 

4.2 Query Pair Examples 

Via manual sorting and grouping of the query pairs, we can find 

some illustrative examples of agreement and disagreement between 

our satisfaction indicators. For example, in pairs where Q1 is 

“chicago tribune” we see a high CTR-30, and relatively few cases 

where Q2 is quick and overlapping. These all indicate query-level 

success and we agree, it seems like successful navigational 

behavior.  

By contrast, it is possible for a single user session to confound all 

our indicators. A user searching for “how tall is X” for many 

celebrities named X will be typing many overlapping queries in 

quick succession. If the search engine has the factoid answer on the 

results page, the user also does not need to click (good 

abandonment). To identify that the user is actually satisfied at each 

query, and indeed we think they saw the factoid answer, we will 

need a more nuanced definition of query similarity, as will be 

presented later in the paper. The surprisingly high CTR of 

overlapping non-quick pairs could also be related to our simple 

definition of similarity. We observed high CTR, high overlap rate, 

low quick rate for pairs where Q1 is “christmas crafts for kids”. In 

this case, the user may have query-level SAT but naturally carries 

on and searches for related queries such as “easy snowman 

christmas crafts”.   

Pairs where Q1 is “chiropractor” have a relatively low CTR-30 and 

relatively high chance of being followed by a quick and 

overlapping Q2. The most frequent overlapping Q2 cases are 

“chiropractor directory”, “what is a chiropractor”, “chiropractor 

                                                                 

1 http://web-ngram.research.microsoft.com/info/ 

salary” and “chiropractor school”. Many other Q2 cases add a 

location, for example “chiropractor pittsburgh”. 

If the relevance of Q1 improved, by adding informative results for 

the user to click, we might see higher CTR-30 and fewer quick 

overlapping follow up queries. If Q1 relevance was improved by 

adding an inline answer to the “what is” question, requiring no 

clicks, then CTR-30 would give an incorrect indication that users 

were dissatisfied. However, we note that our click-based analysis 

in Tables 1 and 2 are affected by cases such as good abandonment 

and the general noisiness of click data. This highlights the 

importance of now moving to datasets with explicit success 

judgments. 

In the next sections, we build on the observations, from the large 

scale log analysis described in this section, to build richer models 

of query success prediction using both click data and query 

reformulation data. The analysis is this section highlighted the 

relation between query reformulation and click through rate, where 

click through rate is used as a proxy for success. The analysis also 

emphasized the importance of building more nuance query 

reformulation prediction models (Section 5), richer query success 

prediction models (Section 6), and datasets with explicit success 

judgments (Section 7). 

5. QUERY REFORMULATION 

PREDICTION 

Query Reformulation is the act of submitting a query Q2 to modify 

a previous search query Q1 in hope of retrieving better results. 

Hence, query reformulation is considered an indication of 

dissatisfaction with the previous query. For Q2 to be considered a 

reformulation of Q1, both queries must be intended to satisfy the 

same information need. Note that a related query on the same topic 

addressing a different information need is not considered as query 

reformulation for our purpose (e.g., "best gre practice tests"  "gre 

powerpre"). In this section, we propose methods for automatically 

predicting whether the current query is a reformulation of the 

previous query. 

5.1 Query Normalization 

We perform standard normalization where we replace all letters 

with their corresponding lower case representation. We also replace 

all runs of whitespace characters with a single space and remove 

any leading or trailing spaces. 

In addition to the standard normalization, we also break queries that 

do not respect word boundaries into words. Word breaking is a 

well-studied topic that has proved to be useful for many natural 

language processing applications. This becomes a frequent 

problems with queries when users do not observe the correct word 

boundaries (for example: “southjeseycraigslist” for “south jersey 

craiglist”) or when users are searching for a part of a URL (for 

example “quincycollege” for “quincy college”). We used a freely 

available word breaker Web service available1 that has been 

described at [37]. 

5.2 Queries to Keywords 

Lexical similarity between queries has been often used to identify 

related queries [24]. The problem with lexical similarity is that it 

introduces many false negatives (e.g. synonyms), but this can be 

handled by other features as we will describe later. More seriously, 

it introduces many false positives. Take the following query pair as 

an example Q1: “weather in new york city” and Q2: “hotels in new 



york city”.  80% of the words are shared between Q1 and Q2. 

Hence, any lexical similarity feature would predict the 

user submitted Q2 as a rewrite of Q1. What we would like to do is 

to have a query representation that recognizes that the first query 

has two keywords: “weather” and “new york city” and the second 

has also two keywords “hotels” and “new York city” and that only 

50% of the keywords are shared between the queries. 

To build such a representation, we segment each query into 

keywords. Query segmentation is the process of taking a user’s 

search query and dividing the tokens into individual phrases or 

semantic units [6]. Consider a query 𝑥 =  {𝑥1, 𝑥2, … 𝑥𝑛} consisting 

of 𝑛 tokens. Query segmentation is the process of finding a 

mapping: 𝑥 →  𝑦 ∈ 𝑌𝑛 , where 𝑦 is a segmentation from the set 𝑌𝑛. 

Many approaches to query segmentation have been presented in 

recent research. Some of them pose the problem as a supervised 

learning problem [6] [43]. Many of the supervised methods though 

use expensive features that are difficult to re-implement. 

On the other hand many unsupervised methods for query 

segmentation have also been proposed [14][27]. Most of these 

methods use only raw web n-gram frequencies and are very easy to 

re-implement. Additionally, Hagen et al. [15] have shown that these 

methods can achieve segmentation accuracy comparable to current 

state-of-the-art techniques using supervised learning. We opt for 

the unsupervised techniques to perform query segmentation. More 

specifically, we adopt the mutual information method (MI) used 

throughout the literature. A segmentation 𝑆 for a query 𝑞 is 

obtained by computing the pointwise mutual information score for 

each pair of consecutive words. More formally, for a query 𝑥 =
 {𝑥1, 𝑥2, … 𝑥𝑛}: 

𝑃𝑀𝐼(𝑥𝑖 , 𝑥𝑖+1) = 𝑙𝑜𝑔
𝑝(𝑥𝑖 , 𝑥𝑖+1)

𝑝(𝑥𝑖). 𝑝(𝑥𝑖+1)
 

where 𝑝(𝑥𝑖 , 𝑥𝑖+1) is the joint probability of occurrence of the 

bigram (𝑥𝑖 , 𝑥𝑖+1) and 𝑝(𝑥𝑖) and 𝑝(𝑥𝑖+1)  are the individual 

occurrence probabilities of the two tokens 𝑥𝑖 and 𝑥𝑖+1. 

A segment break is introduced whenever the point wise mutual 

information between two consecutive words drops below a certain 

threshold τ. The threshold we used, τ = 0.895 , was selected to 

maximize the break accuracy [24] on the Bergsma-Wang-

Corpus [6]. In our implementation, the probabilities for all words 

and n-grams have been computed using the freely available 

Microsoft Web N-Gram Service [20]. Table 3 shows different 

examples of queries, and the corresponding phrases. 

5.3 Matching Keywords 

Two keywords may have full term overlap, partial term overlap, or 

no direct overlap yet are semantically similar. To capture phrase 

similarity, we define four different ways of matching phrases 

ranked from the most to the least strict: 

 

1- Exact Match: The two phrases match exactly.  

2- Approximate Match: To capture spelling variants and 

misspelling, we allow two keywords to match if the 

Levenshtein edit distance between them is less than 2. 

3- Semantic Match: We compute the keyword similarity by 

measuring the semantic similarity between the two phrases 

representing the keywords. Let 𝑄 = 𝑞1 … 𝑞𝐽 be one phrase and 

𝑆 = 𝑠1 … 𝑠𝐼 be another, the semantic similarity between these 

two phrases can be measured based on WordNet [32]. 

WordNet is a large lexical database of English. Nouns, verbs, 

adjectives and adverbs are grouped into sets of cognitive 

synonyms (synsets), each expressing a distinct concept [32]. 

Synsets are interlinked by means of conceptual-semantic and 

lexical relations. 

 

To capture semantic variants, we match two terms if their 

similarity according to the WordNet Wu and Palmer measure 

(wup) is greater than 0.5. The Wu and Palmer measure [42] 

calculates relatedness by considering the depths of the two 

synsets in the WordNet taxonomies, along with the depth of 

the Least Common Subsumer (LCS). The measure is 

computed as follows: 

𝑤𝑢𝑝(𝑡𝑖 , 𝑡𝑗) =  
2 ∗ 𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝑆)

𝑑𝑒𝑝𝑡ℎ(𝑡𝑖) + 𝑑𝑒𝑝𝑡ℎ(𝑡𝑗)
 

 
where the depth of any synset in WordNet is the length 

of the path connecting it to the root node plus one. 

 

To measure the similarity between the two phrases, we 

calculate the number of  matched terms between 𝑄 and 

𝑆  and divide it by the sum of the to the of  matched 

terms between 𝑄 and 𝑆, the terms in 𝑄 that did not 

match any terms in 𝑆 and the terms in 𝑆 that did not 

match any terms in 𝑄. This is similar to computing the 

Jaccard distance between the terms in 𝑄  that did not 

match any terms in 𝑄. This is similar to calculated the 

Jaccard distance between 𝑄 and 𝑆 except that terms are 

considered identically if they can be matched using the 

Wu and Palmer measure described earlier. 

5.4 Features 

5.4.1 Textual Features 

Jones and Klinkner [24] showed that word and character edit 

features are very useful for identifying same task queries. The 

intuition behind this is that sequence queries which have many 

words and/or characters in common tend to be related. We 

repurpose those features for detecting satisfaction. The features 

they used are: 

- normalized Levenshtein edit distance 

- 1 if lev > 2, 0 otherwise 

- num. characters in common starting from the left 

- num. characters in common starting from the right 

- num. words in common starting from the left 

- num. words in common starting from the right 

- num. words in common 

- Jaccard distance between sets of words 

Table 3. Examples of queries, and the corresponding 

segmentation into keywords. Different tokens in a keyword are 

separated by “_”  

Query Phrases and Keywords 

hotels in new york city hotels in new_york_city 

hyundai roadside assistance phone 

number 

hyundai roadside_assistance 

phone_number 

kodak easyshare recharger chord kodak_easyshare  echarger_cord 

user reviews for apple iphone user_reviews for apple_iphone 

user reviews for apple ipad user_reviews for apple_ipad 

tommy bhama perfume tommy_bhama perfume 

 



5.4.2 Keyword Features 

As we explained earlier the word and character edit features capture 

similarity between many pairs of queries. However, they also tend 

to misclassify many other pairs especially when the two queries 

share many words yet have different intents. We used the keyword 

representation of queries described in Section 5.2 to compute the 

following set of features: 

- num. of “exact match” keywords in common 

- num. of “approximate match” keywords in common 

- num. of “semantic match” keywords in common 

- num. of keywords in Q1 

- num. of keywords in Q2 

- num. of keywords in Q1 but not in Q2 

- num. of keywords in Q1 but not in Q2 

- 1 if Q1 keywords all Q2’s keywords 

- 1 if Q2 keywords all Q1’s keywords 

5.4.3 Other Features 

Other features, that have been also used in [24], include temporal 

features: 

- time between queries in seconds 

- time between queries as a binary feature (5 mins, 

- 30 mins, 60 mins, 120 mins) 

and search results feature: 

- cosine distance between vectors derived from the first 10 

search results for the query terms. 

6. QUERY SUCCESS PREDICTION 
Now that we can predict whether a query Q2 is a reformulation of 

the previous query Q1 using the methods from the previous section, 

we move on to addressing the main problem of this study. The 

problem we are trying to solve in this section is given a query Q1, 

can we predict whether the user was satisfied with Q1’s results or 

not using information about the next query Q2 and the clicks on 

Q1’s results if any. 

We discussed earlier how search can be viewed as an interactive 

process that involves the user and the search engine. When a user 

submits a query Q, sometimes, the user gets satisfying results and 

ends her search, moves on to another unrelated search, or moves 

on to another related search but with a different information need. 

On the other hand, when the user does not get a satisfying result, 

the user may abandon her search or try to reformulate the query in 

hope of getting better results.  

Previous work often assumes that a click is a strong evidence of 

satisfaction. This has been evident in the use of click through rate 

(CTR), long dwell time clicks and other similar variants as features 

to predict query success and query-URL relevance. However, there 

are many cases where users click on a result and later find out that 

it is not relevant. Previous work has shown that the probability of 

click is influenced by a document’s position in the results page [10] 

which results in more clicks for highly ranked results even if they 

are not relevant. It has also been shown that the “attractiveness” of 

the title and snippet of the result may lead to a user to clicking on 

this result [26], only to later find out that it is not relevant. An 

example of such behavior has been shown earlier in Figure 1.   

Hence, we build models to improve query success prediction using 

both click information and query reformulation. We build and test 

the following prediction systems: 

 

 

System 1. Clicks Only: A query Q is successful if it receives at 

least one click 

System 2. SAT Clicks Only: The dwell time is the time the user 

spends on the results page. It has been shown in previous work that 

longer dwell time is highly correlated with success [11][19]. We 

consider a query Q successful if it received a click with dwell time 

greater than τ. Previous work has often used the threshold of 30 

seconds to identify successful clicks [14]. We experiment with this 

threshold and several other thresholds. 

System 3. Reformulation Only: We completely ignore clicks and 

predict the success of the current query based on the next query 

only. We use all the features from the previous section to predict 

whether a query is successful or not. This method assumes that 

users will always reformulate their queries when not successful. 

System 4. Reformulation + Clicks (2 stages): Even though, 

information about the next query is useful for predicting the user 

satisfaction with the current query, using it alone is problematic 

because some users simply give up and abandon their searches 

without reformulation when not satisfied. Using click information, 

in addition to information about the next query can help us identify 

these cases. In this approach, we classify the query as unsuccessful 

if the user reformulates their queries as predicted by the system in 

the previous section. If the next query was predicted as not being a 

reformulation of the current query, then the click information is 

used. We try both system 1 (Clicks Only) and system 2 (SAT Clicks 

Only) for this purpose. 

System 5. Reformulation + Clicks (classifier): Instead of 

adopting a staged approach as in the previous system, we learn a 

classifier using both the next query information and the click 

information simultaneously. We use all the features from the 

previous section, as well as whether the query received a click or 

not and the max dwell time if it did receive a click as features to 

predict whether the current query has been successful or not. 

7. EXPERIMENTS AND RESULTS 

7.1 Data 

Our data consists of several thousands of query pairs randomly 

sampled from the queries submitted to a commercial search engine 

during a week in mid-2011. Every record in our data consisted of a 

consecutive query pair (𝑄𝑖 , 𝑄𝑖+1) submitted to the search engine by 

the same user and in the same session (i.e. within less than 30 

minutes of idle time, the 30 minutes threshold has been frequently 

used in previous work, e.g. [39]). Identical queries were excluded 

from the data. All data in the session to which the sampled query 

pair belongs were recorded. In addition to queries, the data 

contained a timestamp for each page view, all elements shown in 

response to that query (e.g. Web results, answers, etc.), and visited 

Web page or clicked answers. Intranet and secure  URL visits were 

excluded. Any personally identifiable information was removed 

from the data prior to analysis.  

Table 4. Heuristics vs. Textual vs. Keyword Features for 

Reformulation Prediction 

 Accuracy Reform. F1 No-Reform. F1 

Heuristic 77.10% 75.60% 76.08% 

Textual 82.90% 71.75% 87.75% 

Keywords 85.80% 77.30% 88.15% 

All 87.15% 81.06% 89.86% 

 



A group of annotators were instructed to exhaustively examine 

each session and “re-enact” the user’s experience. The annotators 

inspected the entire search results page for each of 𝑄𝑖  and 𝑄𝑖+1, 

including URLs, page titles, relevant snippets, and other features .. 

They were also shown clicks to aid them in their judgments. 

Additionally, they were also shown queries and clicks before and 

after the query pair of interest. They were asked to then use their 

assessment of the user’s objectives to determine whether the user 

was satisfied with 𝑄𝑖‘s results. Different judges were also asked to 

determine whether 𝑄𝑖+1 is a reformulation of 𝑄𝑖. Each query pair 

was labeled by at least three judges and the majority vote among 

judges was used. Because the number of positive instances is much 

smaller than the number of negative instances, we use all positive 

instances and an equal number of randomly selected negative 

instances leaving us with approximately 6000 query pairs. 

7.2 Predicting Query Reformulation  

In this section we describe the experiments we conducted to 

evaluate the reformulation prediction system. We perform 

experiments using the data described in the previous section. We 

compare the performance of four different systems: 

System 1. Heuristics: The first system is a heuristic that does not 

need any training data. It simply computes the similarity between 

two queries as the percentage of common words to the length of the 

longer query in terms of the number of words. When finding 

common words, it allows two words to be matched if their 

Levenshtein edit distance is less than or equals 2. The second query 

is predicted to be a reformulation of the first if 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥ τ𝑠𝑖𝑚 

and the 𝑡𝑖𝑚𝑒_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ≤ τ𝑡𝑖𝑚𝑒 mins. The two thresholds were 

set to 0.35 and 5 minutes respectively using grid search to 

maximize accuracy over the training data. We present the results of 

this baseline to provide a simple method that is easy to re-

implement and does not need any training data and can be easily 

used in future research. 

System 2. Textual: The second system uses the textual features 

from previous work that have been described in Section 5.4.1 and 

the temporal and results features described in Section 5.4.3.  

System 3. Keywords: The third method uses the keyword features 

that we presented in Section 5.4.2 and the temporal and results 

features described in Section 5.4.3.  

System 4: All: Finally the last system uses both the textual features, 

the keyword features and the temporal and results features.  

All the last three methods use the temporal and search results 

similarity features that have been described in Section 5.4.3. We do 

not report the contribution of temporal and web search results 

features here due to space limitation and because they have already 

been studied in previous work [26].   

The accuracy, positive (reformulation) F1, and negative (non-

reformulation) F1 for the four methods are shown in Table 4. The 

results show that the keyword features outperform the textual 

features. Combining them together results in a small gain over 

using the keyword features only. The keyword features were able 

to achieve higher precision rates while not sacrificing recall 

because they were more effective in eliminating false reformulation 

cases.  

7.3 Predicting Query Success 

Next, we move on to the experiments we conducted to predict query 

success using both click information and information about the next 

query. The results are shown in Table 5. The first row corresponds 

to the “Click Only” method which predicts a query as successful if 

it received one or more clicks. The following three rows correspond 

to systems that use click information only but also takes dwell time 

into consideration to identify satisfied clicks (“SAT Click Only”). 

The three systems require a certain amount of dwell time for a click 

to count (10, 30, and 50 seconds) respectively. Next we move on to 

the “Reformulation Only” method which completely ignores the 

clicks and predicts a query as successful if the next query is not a 

reformulation of the current query. The following 4 rows 

correspond to the “Reformulation + Clicks (2 stages)” methods that 

Table 6: Counts of successful and unsuccessful tasks with 

lengths from 1 to 5. 

 Len. 1 Len. 2 Len. 3 Len. 4 Len. 5 

SAT 4,581 1,163 421 172 97 

DSAT 521 275 129 61 39 

SAT 

Prob. 

89.79

% 

80.88% 76.51

% 

73.82

% 

71.32

% 

 

 

Table 5. Query Success Prediction Performance  

  Accuracy SAT  

Precision 

SAT  

Recall 

DSAT  

Precision 

DSAT  

Recall 

SAT  

F1 

DSAT  

F1 

1  Clicks Only 38.86% 35.88% 64.21% 46.77% 21.51% 46.04% 29.47% 

2  Sat Clicks Only (τ =10s) 51.20% 42.19% 54.34% 61.10% 49.05% 47.50% 54.42% 

3 Sat Click Only (τ =30s) 56.07% 46.22% 49.87% 63.75% 60.31% 47.97% 61.98% 

4 Sat Click Only (τ =50s) 60.61% 51.80% 43.55% 65.18% 72.28% 47.32% 68.54% 

5 Reformulation Only 79.17% 64.79% 97.16% 97.58% 68.41% 77.74% 80.43% 

6 Reformulation + Clicks  (2 

stages) 
73.17% 68.70% 62.37% 75.78% 80.56% 65.38% 78.10% 

7 Reformulation + SAT Click 

 (τ =10s)  (2 stages) 
73.22% 73.85% 52.76% 72.97% 87.22% 61.55% 79.46% 

8 Reformulation + SAT Click  

(τ =30s) (2 stages) 
73.01% 76.51% 48.42% 71.80% 89.83% 59.31% 79.81% 

9 Reformulation + SAT Click  

(τ =50s) (2 stages) 
71.99% 78.92% 42.37% 70.06% 92.26% 55.14% 79.64% 

10 Reformulation + Clicks 

(Classifier) 
84.23% 77.74% 81.19% 88.53% 86.04% 79.43% 87.27% 

 



predict a query as successful if the next query is not a reformulation 

of the current query (as the previous one) and the query received at 

least one click (with different thresholds on dwell time as before). 

Finally, the last system (“Reformulation + Clicks (classifier)”) 

learns a classifier where the reformulation features, from 

Section 5.4, and click features to predict query success. 

We evaluate the methods using the following metrics accuracy, 

precision, recall and F1 measure of the “Satisfied Queries” class 

(SAT Precision, SAT Recall and SAT F1), and precision, recall and 

F1 measure of the “Dissatisfied Queries” class (DSAT Precision, 

DSAT Recall and DSAT F1). 

We notice from the results in Table 5 that the “Clicks Only” method 

performs poorly with low accuracy and very low SAT precision and 

DSAT recall. This confirms our hypothesis that many queries that 

receive a click still end up being unsuccessful. As we introduce a 

threshold on the dwell time of the clicks for them to be considered, 

the performance improves (rows 2 – 4). As we increase the dwell 

time threshold, we see an improved accuracy and precision but at 

the expense of recall. This is expected since the higher the threshold 

the more likely that a click becomes a true successful click. 

However as we increase this threshold, we also miss many 

successful clicks with shorter dwell time. Using dwell time 

thresholds of less than 10 seconds or more than 50 seconds did not 

result in any performance improvement. 

Interestingly, when we only use the reformulation signal to predict 

success (“Reformulation Only”), we achieve better performance 

than using clicks only. Notice however that this is limited to the 

cases where a next query exists. As shown in Section 4, these 

correspond to two thirds of the queries as estimated using millions 

of queries submitted to a commercial search engine. Because we 

predict any query that has no reformulation as successful, we end 

up getting very high SAT recall and DSAT precision. The SAT 

precision and DSAT recall are much lower though. 

In rows 6-9, we combine the reformulation signal and the click 

signal by a simple rule that assumes that successful queries should 

receive a click (with certain dwell time) and should not be 

reformulated. This improves the SAT precision and DSAT recall 

compared to using reformulation only because some DSAT queries 

are not followed by reformulation. This comes at the expense of the 

SAT recall and DSAT precision as expected. Like the clicks only 

cases, increasing the threshold on the dwell time improves most 

metrics except for the SAT recall. Finally, when we allow the 

learner to learn a classifier using both the reformulation and the 

click features, we get the best performance in terms of accuracy 

SAT F1 and DSAT F1. 

7.4 Query Sequences and Search Tasks 
In this section, we investigate how the user reformulation behavior 

is related to the success of the entire search task. We obtained 

labeled search tasks from the authors of the study described in [17]. 

Each task is labeled as either satisfied or not by the user performing 

the search. To gather this data, they deployed a plugin that detected 

when a user submits a query to any of the three major search 

engines (Google, Bing, and Yahoo). Users were instructed to 

submit a satisfaction rating at the end of their search task, where a 

search task is defined as a single information need that may result 

in one or more queries [26].The data gathered during that study 

provided in-situ judgments of satisfaction direct from searchers at 

the point of task termination. In this dataset, we have 7,628 tasks 

that were labeled by 218 users. Among these tasks, 98% are tasks 

with fewer or equal to 5 queries. Table 6 shows the counts of tasks 

that are successful or unsuccessful with lengths (i.e. the numbers of 

queries) from 1 to 5. 

From Table 6, we see that not only the number of tasks is skewly 

distributed with regard to the task length, the probability of being 

successful is not uniformly distributed for tasks with different 

lengths either: the probability for a task to be successful decreases 

as its length increases. This fact tells us that, in a search task, having 

more reformulations does not increase the probability of being 

successful. But rather, having more reformulations is a strong 

indictation of a possibly difficult task and thus the task has a higher 

probability of failure. 

After examining the relationship between the number of re-queries 

and the probability for a task to be successful, we control the length 

of tasks and further examine the different patterns presented by 

query sequences in successful tasks and unsuccessful tasks of the 

same length. We compute the similarity between pairs of 

consecutive queries and compare these similarities for both 

succesful and unsucesful tasks. The result of this experiment is 

shown in Figure 2. The figure shows the textual similarity and 

keyword similarity between consecutive queries in tasks of 

different lengths with 2 queries, 3 queries, 4 queries and 5 queries. 

From Figure 2, we see that  the  relationships  between  consecutive  

queries in successful tasks and unsuccessful tasks are showing 

different patterns. Especially, we notice that the last pair of queries 

in a successful task is much less similar to each other than an 

unsuccessful task, using both text and keyword similarity. This is 

also the case for tasks as short as having a length if 2 (i.e. having 

two queries only ). We also see that the textual and keyword 

similarity between the only two queries are significantly higher for 

unsuccessful tasks than successful tasks. This observation tells us 

that there is significant difference between re-query behavior in a 

successful task and in an unsuccessful task. 

In order to get a better understanding on why successful tasks and 

unsuccessful tasks are showing such distinct patterns as shown in 

Figure 2, we examine a few individual examples. We find that it is 

often the case that, in a successful task, the user adopts some 

completely new term(s) or novel information from the landing 

page(s) of URL(s) she clicks after issuing the previous queries in 

the same task. Figure 3(a) shows an example of a sequence of 

queries in a successful task. The term “powerprep” in the last query 

is from the landing page the user clicks after issuing the second last 

query, and it doesn’t appear in any of the previous queries in the 

same task. On the other hand, we observe that for most unsuccessful 

tasks, the users are not able to get much information from their 

previous queries, and thus the terms used for the entire tasks are 

very similar to each other. Figure 3(b) gives an example of an 

unsuccessful task, in which although the user has a few clicks, she 

does not get much useful information from those clicks to 

reformulate the query and achieve success. We also observe that 

the average time gap between consecutive queries of successful 

tasks is significantly longer than unsuccessful tasks (i.e. 91.10 

seconds vs.  73.07 seconds with p-value < 0.05). This fact further 

supports our hypothesis that in a successful task, a user tends to 

spend more time to gather useful information in each intermediate 

step before reaching full success eventually. 

In summary, in this part we investigate the relationship between 

query reformulation patterns in search tasks. We have the following 

two major observations regarding users’ different re-query 

behavior in successful tasks and unsuccessful tasks. The first 

observation is that unsuccessful tasks tend to have more re-queries 

than successful tasks. Which means, having more re-queries in a 

task doesn’t infer a higher probability of success instead, it is a 

strong indictation of a possibly difficult task and the probability of 

failure is higher. 



The second observation is more interesting, as we see the pairwise 

query similarity of successful tasks and unsuccessful tasks are 

showing very different patterns. In particular, queries of an 

unsuccessful task tend to be more similar to each other than queries 

of a successful task. This suggest that queries in a successful task 

are more likely to be intended to cover different aspects of the 

information need while queries in an unsuccessful tasks are more 

likely to be trying to express the same information in different 

ways. 

By investigating individual examples, we find that in successful 

tasks users are more likely to reformulate their queries with the 

novel information gained from the results of previous queries. This 

suggests that users are learning useful information from the results 

of previous queries and using it to formulate the following queries. 

However, in unsuccessful tasks, users usually don’t gain much 

novel or useful information from the previous queries and thus the 

re-queries tend to be similar to each other. This fact suggests that 

for a task with multiple queries, search success is an incremental 

process. This also agrees with a similar assumption used in  

previous work [11], where session utility model was presented that 

is based on the assumption that users reach partial satisfaction at 

the intermediate steps of a successful task.  

8. CONCLUSIONS 

Previous models of query-level satisfaction have focused on 

clickthrough data as the main signal for predicting query success or 

query document relevance. Clickthrough information has also been 

shown to be noisy due to snippet bias and result presentation bias. 

This bias leads users to clicking on results because they think they 

are relevant (perceived relevance) only to find out later that some 

of these clicks are not relevant (Actual relevance). In this work, we 

addressed this shortcoming by introducing models of query-level 

success that draw conclusions on query success based on 

information about the next query submitted by the user in addition 

to click information. The following query submitted by a user in a 

search session reveals information about the user’s intent as well as 

the user’s satisfaction with the current search results. 

Through experimentation via labeled query pairs drawn from logs 

of a commercial search engine, we show that our proposed models 

can accurately identify query reformulations by users dissatisfied 

with the results of their current query. We also showed that our 

proposed models can predict query-level satisfaction more 

accurately than baselines that use clickthrough features only. 

Additionally, we studied the relation between sequences of queries 

in satisfied vs. dissatisfied search tasks. We observe that search 

success is an incremental process for most multi-query tasks. That 

is, in a successful task, a user is more likely to gain some novel 

information from the search results of intermediate queries before 

they reach final success.   

We used three datasets through this paper: a dataset of 

reformulation pairs, one-week worth of query logs to conduct the 

exploratory motivating study, and search tasks data for the task 

analysis. To reproduce these experiments, the reader may use any 

search engine log data, such as the AOL data, to conduct the 

exploratory analysis. For the query success experiments, query 

pairs sampled from the same log data should be judged by 

annotators to label satisfaction and reformulation. Finally, for task-

level data, the reader may use the data in [1], or collect similar data 

using human annotators on in-situ judgments. 

 

 

(a) Example: a successful task with 4 queries (queries are 

shown on the left side and clicks on the right side).  

The last query has a new term that comes from a landing 

page of a URL the user clicks after issuing the third query. 

 

 

(b) Example: an unsuccessful task with 4 queries (queries are 

shown on the left side and clicks on the right side). 

Although the user has a few clicks after some of the 

queries, the terms used in all queries are very similar. 

 

Figure 3: Examples of query sequences of a successful 

task and an unsuccessful task.  

 

(a) Textual similarity between pairs of consecutive queries 

of tasks with different lengths. 

 

(b) Keyword similarity between pairs of consecutive queries 

of tasks with different lengths. 

Figure 2: Different patterns of text similarity and keyword 

similarity of successful tasks versus unsuccessful tasks. 
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