
Beyond Clicks: Query Reformulation as a Predictor of
Search Satisfaction

ABSTRACT

To understand whether a user is satisfied with the current search

results, implicit behavior is a useful data source, with clicks being

the best-known implicit signal. However, it is possible for a non-

clicking user to be satisfied and a clicking user to be dissatisfied.

Here we study additional implicit signals based on the relationship

between the user’s current query and the next query, such as their

textual similarity and the inter-query time. Using a large unlabeled

dataset, a labeled dataset of queries and a labeled dataset of user

tasks, we analyze the relationship between these signals. We

identify an easily-implemented rule that indicates dissatisfaction:

that a similar query issued within a time interval that is short

enough (such as five minutes) implies dissatisfaction. By

incorporating additional query-based features in the model, we

show that a query-based model (with no click information) can

indicate satisfaction more accurately than click-based models. The

best model uses both query and click features. In addition, by

comparing query sequences in successful tasks and unsuccessful

tasks, we observe that search success is an incremental process for

successful tasks with multiple queries.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Information Search

and Retrieval – selection process, search process.

Keywords

Re-querying behavior, success prediction, search tasks

1. INTRODUCTION

Search is an interactive process that starts with a user submitting a

query to a search system. Depending on the results returned by the

system and the user’s information need, the user may click zero or

more results and may submit zero or more follow-up queries.

Search log data can provide implicit feedback from which the

search system can identify which results are relevant for particular

queries [2]. It can also provide insights into retrieval performance.

Given search logs, models of searcher satisfaction can be developed

at the query level or at the session/task level [16].

A user’s search activity has one or more queries and zero or more

clicks on results. Such activity is motivated by one or more higher-

level goals, which we call tasks, although tasks are not our focus of

study in this paper. Instead, we focus on query-level satisfaction.

To understand the difference between query-level and task-level

success, consider the task of booking a holiday. The user might

enter a query “expedia” with navigational intent. In that case,

reaching the Expedia site constitutes query-level success without

necessarily indicating task-level success, since we do not know if

the user’s task was completed.

The notion of satisfaction at the query level could have many

scenarios and aspects relating to the quality and usefulness of

search results. These include but are not limited to: successful

navigation to a known item, finding the answer to a question,

learning about a new topic, finding the required information

without clicking (i.e. good abandonment) [30], or gathering

evidence that the required item/information doesn’t exist. Rather

than studying these separately, or modeling degrees of success, we

follow state of the art work on search success (e.g. [1],[18]) by

choosing a simple view that satisfaction is binary: if a user is

satisfied with the current results then the query is a successful one;

otherwise, it is not.

Click-based metrics have been widely used as a way to predict

whether a given user is satisfied with the search results or not.

Clicking on a result page does not necessarily indicate that the

query was successful if taken out of context. To better understand

this, consider the example in Figure 1. We see an example of a user

submitting the query “greenfield, mn accident”. Apparently, the

user is looking for information about an accident that took place in

Greenfield, MN. The user clicks a result, dwells for 36 seconds,

then types a second query ”woman dies in a fatal accident in

greenfield, minnesota" and clicks another result. The first clicked

result is from 2010, the second is from July 2012, and the

documents describe different incidents. A likely interpretation of

this is that the user was looking for the 2012 accident, and failed to

find it on the first query, especially because the queries were

submitted just one day after the 2012 accident. The 2012 document

was not even in the top-20 results of the first query. The 2010

document does not mention the 2012 accident.

Had we seen only the first query and click, we might have thought

the user was satisfied. In this work, we introduce and evaluate

models of query-level satisfaction that consider the next query

submitted by the user and not only based on whether a user clicks

on a result or not. Given a stream of queries submitted by a user,

we only consider the immediate follow-up query. This means we

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.
CIKM’13, Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.

Copyright © 2013 ACM 978-1-4503-2263-8/13/10…$15.00.

Ahmed Hassan
Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA

hassanam@microsoft.com

Xiaolin Shi, Nick Craswell, Bill Ramsey
Microsoft Bing

One Microsoft Way
Redmond, WA 98052, USA

xishi,nickcr,brams@microsoft.com

make minimal use of other queries, but also we are using the query

that best reflects the user’s reaction to the current query.

The next query may be a manual reformulation of the current query

because the user is dissatisfied with the current query results (e.g.

"greenfield, mn accident"  "woman dies in a fatal accident in

greenfield, mn"). If the user is satisfied, the next query might be a

related query on the same topic (e.g., "best gre practice tests" 

"gre powerpre"), or a new query on a different topic. Hence, we

build models to predict the current query success using query pair

information, click information or both. More specifically, we try to

answer the following research questions:

Research Question 1: What is the correlation between click

signals and query pair features such as overlap and inter-query

time? If both are indicators of satisfaction, there should be some

correlation.

Research Question 2: Can we accurately predict user satisfaction

using query pair data alone?

Research Question 3: Can we improve query success prediction

using both click and query pair signals?

Research Question 4: Using search tasks which may have more

than two queries, how does our query-level prediction relate to task-

level success?

The remainder of this paper is structured as follows. Section 2

describes related work. A formal problem definition is given in

Section 3. Section 4 motivates this research by conducting a large

scale exploratory analysis of user behavior logs, considering the

correlation between click-based and query-based satisfaction

indicators. In Section 5, we present a method for identifying query

reformulation behavior, which is used to predict query-level

satisfaction In Section 6. In Section 7, we present the experiments

performed to evaluate model effectiveness and discusses query

reformulation patterns in search tasks. We conclude in Section 8.

2. RELATED WORK

There are four areas of work related to the research presented in this

paper: (i) query document relevance, (ii) search satisfaction,

success, and frustration, (iii) search tasks boundary identification,

and (iv) query refinement. We cover each of these areas in turn.

2.1 Query Document Relevance

State of the art measurement in information retrieval uses a test

collection comprising a document corpus, query topics and

relevance judgment. These are then used with relevance metrics

such as MAP and discounted cumulative gain (DCG) [21]. This

process requires costly manual judgments of the relevance of

documents in the search result list to individual queries. Previous

work has also estimated query document relevance using models

derived from user click behavior [2][8][28]. Other research work

has used the click patterns to compare different ranking functions,

i.e. to derive a metric [8][11][24].

Even though Click data is very useful for predicting query

document relevance, it is also very noisy. Some of the reasons

behind that are document snippets that do not accurately represent

the content, and the bias resulting from the position of the document

in the result set [24]. Our work shows that using information about

the next query submitted by the user can allow us to filter out noisy

click signals that are not indicative of query success.

2.2 Search Satisfaction

Extensive literature exists on deriving indicators of task success or

failure from online user behavior. Fox et al. [13] used an

instrumented browser to determine whether there was an

association between explicit ratings of user satisfaction and implicit

measures of user interest and identified the measures that were most

strongly associated with user satisfaction. They found that there

was a link between user activity and satisfaction ratings, and that

clickthrough, dwell time, and session termination activity

combined to make good predictors of satisfaction for Web pages.

For example, they found out that a short dwell time is an indicator

of dissatisfaction, while long dwell time is correlated more with

satisfaction. Behavioral patterns were also used to predict user

satisfaction for search sessions. Huffman and Hochster [21] found

a relatively strong correlation with session satisfaction using a

linear model encompassing the relevance of the first three results

returned for the first query in a search task, whether the information

need was navigational, and the number of events in the session.

Hassan et al. [20] developed models of user behavior to accurately

estimate search success on a session level, independent of the

relevance of documents retrieved by the search engine. Ageev et

al. [1] propose a formalization of different types of success for

informational search, and presented a scalable game-like

infrastructure for crowdsourcing search behavior studies,

specifically targeted towards capturing and evaluating successful

search strategies on informational tasks with known intent. They

show that their model can predict search success effectively on their

data and on a separate set of log data comprising search engine

sessions. Feild et al. [12] developed methods to predict user

frustration. They assigned users difficult information seeking tasks

and monitored their degree of frustration via query logs and

physical sensors.

Our work is different from this work in that we focus on query-

level satisfaction. However, we also try to understand the difference

between query-level and task-level satisfaction and we study the

patterns of query sequences that form a task.

2.3 Search Task Boundary Identification

The problem of classifying the boundaries of the user search tasks

within sessions in web search logs has been widely addressed

before. Boldi et al. [7] presented the concept of the query-flow

graph. A query-flow graph represents chains of related queries in

query logs. They use this model for finding logical session

boundaries and query recommendation. Ozmutlu [34] proposes a

method for identifying new topics in search logs. He demonstrates

that time interval, search pattern and position of a query in a user

session, are effective on shifting to a new topic. Radlinski and

Joachims [35] study sequences of related queries (query chains).

Figure 1. The next query is evidence of dissatisfaction even

though the original query received a long dwell time click

(> 30 seconds).

They use that to generate new types of preference judgments from

search engine logs to learn better ranked retrieval functions.

Arlitt [3] found session boundaries using a calculated timeout

threshold. Murray et al. [31] extended this work by using

hierarchical clustering to find better timeout values to detect

session boundaries. Jones and Klinkner [26] also addressed the

problem of classifying the boundaries of the goals and missions in

search logs. They showed that using features like edit distance and

common words achieves considerably better results compared to

timeouts. Lucchese et al. [31] uses a similar set of features as [26],

but uses clustering to group queries in the same task together as

opposed to identifying task boundary as in [26]. In this work, we

present better models for predicting the relation between pairs of

queries and we use it toward a higher level goal, which is predicting

query level success.

2.4 Query Refinement

Existing research has studied how web search engines can propose

reformulations, but has given less attention to how people perform

query reformulations. Most of the research on manual query

reformulation has focused on building taxonomies of query

reformulation. These taxonomies are generally constructed by

examining a small set of query logs.

Anick [3] classified a random sample of 100 reformulations by

hand into eleven categories. Jensen et al. [23] identified 6 different

kinds of reformulation states (New, Assistance, Content Change,

Generalization, Reformulation, and Specialization) and provides

heuristics for identifying them. They use them to predict when a

user is most receptive to automatic query suggestions. The same

categories were used in several other studies Error! Reference

source not found.[29].

Huang and Efthimis [19] proposed another reformulation

taxonomy. Their taxonomy was lexical in nature (e.g., word

reorder, adding words, removing words, etc.). They also proposed

the use of regular expressions to identify them. While studying re-

finding behavior, Teevan et al. [36] constructed a taxonomy of

query re-finding by manually examining query logs, and

implemented algorithms identify repeat queries, equal click

queries and overlapping click queries.

None has built an automatic classifier distinguishing reformulation

queries from other. Heuristics and regular expressions have been

used in [19] and [23] to identify different types of reformulations.

3. PROBLEM DEFINITION
We start by defining some terms that will be used through-out the

paper:

Definition: A Search Session is group of queries and clicks

demarcated with a 30-minute inactivity timeout, such as that used

in previous work [35].

Definition: A SAT (Satisfied) Query is a query where the

information need of the searching user has been successfully

addressed.

Definition: A DSAT (disatisfied) Query is a query where the

information need of the searching user has not been successfully

addressed.

Definition: Query Reformulation is the act of submitting a Next

Query Q2 to modify a previous search query Q1 in hope of

retrieving better results.

Assume we have a stream of queries submitted to a search engine.

In response to each query, the engine returns a search results page.

The user may decide to click on one or more elements on the page,

reformulate the query, or end the search. So given a query Q1,

clicks on Q1’s results, and the next query Q2, our objective is to

predict whether the user was satisfied with Q1 or not (i.e. Q1 was

successful, we use the terms satisfied and successful

interchangeably throughout the paper). To build toward this goal,

we start with a large-scale motivating exploratory analysis of search

logs (Section 4), build methods for predicting query reformulation

(Section 5), and build methods for query success prediction

(Section 6).

4. CLICKS AND NEXT QUERY: A LARGE

SCALE EXPLORATORY ANALYSIS

We begin with some motivating exploratory analysis of user

behavior logs, considering the correlation between click-based and

query-based satisfaction indicators. With one week of activity from

a large number of users, we identify all query pairs such that a

single user entered Q1 then Q2 with no intervening queries. 67%

of the queries in the dataset had a next query.

For each pair we are interested in the user’s query-level satisfaction

with Q1. Since this dataset has no relevance judgments of any kind

we use clicks as a satisfaction indicator. For a large set of pairs, we

can calculate a clickthrough rate (CTR) that is the proportion of

pairs where Q1 has at least one click. Since for some clicks the user

backs out immediately, we also calculate CTR-30, which is the

proportion of pairs where Q1 has at least one click with a dwell

time of 30 seconds or greater (we see no further search activity for

at least 30 seconds). Previous work has shown that dwell time

exceeding 30 seconds is highly correlated with satisfaction [13].

Clicks are a noisy indicator of relevance, but for a very large set of

pairs a higher CTR and higher CTR-30 is some indication of greater

satisfaction with Q1.

Our query-based satisfaction indicators are based on query

similarity and time between queries. Here we say that Q1 and Q2

overlap if, after lowercasing, tokenization, and removing stop-

words, the queries have at least one token in common. Consider the

query Q1 “la map”, where the user’s intention is to find maps of

Louisiana (abbreviated as LA). If the results of Q1 consist of maps

of Los Angeles, then Q2 is more likely to reformulate the query, for

example “Louisiana map”. Issuing another “map” query would be

less likely if Q1 returned relevant results. In this case, reformulation

is an indicator of dissatisfaction. In this section, we use word

overlap as a proxy for reformulation (i.e. Q2 is considered a

reformulation of Q1 if they have at least one non-stop-word term

overlap). Note, we later build on this intuition by considering richer

notions of Q1-Q2 similarity.

Table 1. Relative CTR for different subsets of pairs, using

word overlap and a 5 minute time threshold

 overall non-overlap overlap

overall 0% 11% -21%

non-quick 25% 24% 29%

quick -29% -17% -39%

Table 2. Relative CTR-30 for different subsets of pairs,

using word overlap and a 5 minute time threshold

 overall non-overlap overlap

overall 0% 6% -12%

non-quick 6% -1% 40%

quick -7% 20% -30%

Our other indicator of satisfaction is the time between Q1 and Q2.

Using our previous example, if Q1 has the wrong maps, Q2 may

show up sooner as the user searches for the right ones. More

precisely, we characterize the time between queries as either quick

(less than or equal to 5 minutes) or non-quick (greater than 5

minutes). This threshold was tuned using the dataset described in

Section 5. Note, we later build richer models that do not use any

hard thresholds on time between queries. Now let us reconsider the

maps search, if Q1 has the right maps, we have more chance of

ceasing search activity for 5 minutes or more. In this case, a quick

Q2 is an indication of dissatisfaction. We note that a low CTR-30

and a quick Q2 are both associated with quick user interactions, so

should be correlated in our analysis, though they use quite different

thresholds (30 seconds and 5 minutes).

4.1 CTR Analysis of Query Pairs

We analyze the CTRs of various sets of pairs. We show CTR

relative to the CTR of all pairs. Reading the first row of Table 1,

the pairs with Q1-Q2 overlap had CTR that was 21% below average

(relative), while non-overlapping pairs had 11% above average

CTR. Quick pairs had 29% below average CTR, with non-quick

pairs being 25% above average. The remaining cells show

interactions. Lowest CTR is found in quick overlapping pairs (-

39%). Interestingly, all three values in the non-quick row are

similar, indicating that for pairs with 5 or more intervening minutes

overlap is not such a useful indicator of dissatisfaction.

Table 2 presents the same analysis but for CTR-30. As before,

although overlap and quick seem like good dissatisfaction

indicators on their own (-12% and -7%), there are interactions

between the two, and it is really pairs that are quick and overlapping

that are the interesting case, with CTR-30 that is 30% below

average.

4.2 Query Pair Examples

Via manual sorting and grouping of the query pairs, we can find

some illustrative examples of agreement and disagreement between

our satisfaction indicators. For example, in pairs where Q1 is

“chicago tribune” we see a high CTR-30, and relatively few cases

where Q2 is quick and overlapping. These all indicate query-level

success and we agree, it seems like successful navigational

behavior.

By contrast, it is possible for a single user session to confound all

our indicators. A user searching for “how tall is X” for many

celebrities named X will be typing many overlapping queries in

quick succession. If the search engine has the factoid answer on the

results page, the user also does not need to click (good

abandonment). To identify that the user is actually satisfied at each

query, and indeed we think they saw the factoid answer, we will

need a more nuanced definition of query similarity, as will be

presented later in the paper. The surprisingly high CTR of

overlapping non-quick pairs could also be related to our simple

definition of similarity. We observed high CTR, high overlap rate,

low quick rate for pairs where Q1 is “christmas crafts for kids”. In

this case, the user may have query-level SAT but naturally carries

on and searches for related queries such as “easy snowman

christmas crafts”.

Pairs where Q1 is “chiropractor” have a relatively low CTR-30 and

relatively high chance of being followed by a quick and

overlapping Q2. The most frequent overlapping Q2 cases are

“chiropractor directory”, “what is a chiropractor”, “chiropractor

1 http://web-ngram.research.microsoft.com/info/

salary” and “chiropractor school”. Many other Q2 cases add a

location, for example “chiropractor pittsburgh”.

If the relevance of Q1 improved, by adding informative results for

the user to click, we might see higher CTR-30 and fewer quick

overlapping follow up queries. If Q1 relevance was improved by

adding an inline answer to the “what is” question, requiring no

clicks, then CTR-30 would give an incorrect indication that users

were dissatisfied. However, we note that our click-based analysis

in Tables 1 and 2 are affected by cases such as good abandonment

and the general noisiness of click data. This highlights the

importance of now moving to datasets with explicit success

judgments.

In the next sections, we build on the observations, from the large

scale log analysis described in this section, to build richer models

of query success prediction using both click data and query

reformulation data. The analysis is this section highlighted the

relation between query reformulation and click through rate, where

click through rate is used as a proxy for success. The analysis also

emphasized the importance of building more nuance query

reformulation prediction models (Section 5), richer query success

prediction models (Section 6), and datasets with explicit success

judgments (Section 7).

5. QUERY REFORMULATION

PREDICTION

Query Reformulation is the act of submitting a query Q2 to modify

a previous search query Q1 in hope of retrieving better results.

Hence, query reformulation is considered an indication of

dissatisfaction with the previous query. For Q2 to be considered a

reformulation of Q1, both queries must be intended to satisfy the

same information need. Note that a related query on the same topic

addressing a different information need is not considered as query

reformulation for our purpose (e.g., "best gre practice tests"  "gre

powerpre"). In this section, we propose methods for automatically

predicting whether the current query is a reformulation of the

previous query.

5.1 Query Normalization

We perform standard normalization where we replace all letters

with their corresponding lower case representation. We also replace

all runs of whitespace characters with a single space and remove

any leading or trailing spaces.

In addition to the standard normalization, we also break queries that

do not respect word boundaries into words. Word breaking is a

well-studied topic that has proved to be useful for many natural

language processing applications. This becomes a frequent

problems with queries when users do not observe the correct word

boundaries (for example: “southjeseycraigslist” for “south jersey

craiglist”) or when users are searching for a part of a URL (for

example “quincycollege” for “quincy college”). We used a freely

available word breaker Web service available1 that has been

described at [37].

5.2 Queries to Keywords

Lexical similarity between queries has been often used to identify

related queries [24]. The problem with lexical similarity is that it

introduces many false negatives (e.g. synonyms), but this can be

handled by other features as we will describe later. More seriously,

it introduces many false positives. Take the following query pair as

an example Q1: “weather in new york city” and Q2: “hotels in new

york city”. 80% of the words are shared between Q1 and Q2.

Hence, any lexical similarity feature would predict the

user submitted Q2 as a rewrite of Q1. What we would like to do is

to have a query representation that recognizes that the first query

has two keywords: “weather” and “new york city” and the second

has also two keywords “hotels” and “new York city” and that only

50% of the keywords are shared between the queries.

To build such a representation, we segment each query into

keywords. Query segmentation is the process of taking a user’s

search query and dividing the tokens into individual phrases or

semantic units [6]. Consider a query 𝑥 = {𝑥1, 𝑥2, … 𝑥𝑛} consisting

of 𝑛 tokens. Query segmentation is the process of finding a

mapping: 𝑥 → 𝑦 ∈ 𝑌𝑛 , where 𝑦 is a segmentation from the set 𝑌𝑛.

Many approaches to query segmentation have been presented in

recent research. Some of them pose the problem as a supervised

learning problem [6] [43]. Many of the supervised methods though

use expensive features that are difficult to re-implement.

On the other hand many unsupervised methods for query

segmentation have also been proposed [14][27]. Most of these

methods use only raw web n-gram frequencies and are very easy to

re-implement. Additionally, Hagen et al. [15] have shown that these

methods can achieve segmentation accuracy comparable to current

state-of-the-art techniques using supervised learning. We opt for

the unsupervised techniques to perform query segmentation. More

specifically, we adopt the mutual information method (MI) used

throughout the literature. A segmentation 𝑆 for a query 𝑞 is

obtained by computing the pointwise mutual information score for

each pair of consecutive words. More formally, for a query 𝑥 =
 {𝑥1, 𝑥2, … 𝑥𝑛}:

𝑃𝑀𝐼(𝑥𝑖 , 𝑥𝑖+1) = 𝑙𝑜𝑔
𝑝(𝑥𝑖 , 𝑥𝑖+1)

𝑝(𝑥𝑖). 𝑝(𝑥𝑖+1)

where 𝑝(𝑥𝑖 , 𝑥𝑖+1) is the joint probability of occurrence of the

bigram (𝑥𝑖 , 𝑥𝑖+1) and 𝑝(𝑥𝑖) and 𝑝(𝑥𝑖+1) are the individual

occurrence probabilities of the two tokens 𝑥𝑖 and 𝑥𝑖+1.

A segment break is introduced whenever the point wise mutual

information between two consecutive words drops below a certain

threshold τ. The threshold we used, τ = 0.895 , was selected to

maximize the break accuracy [24] on the Bergsma-Wang-

Corpus [6]. In our implementation, the probabilities for all words

and n-grams have been computed using the freely available

Microsoft Web N-Gram Service [20]. Table 3 shows different

examples of queries, and the corresponding phrases.

5.3 Matching Keywords

Two keywords may have full term overlap, partial term overlap, or

no direct overlap yet are semantically similar. To capture phrase

similarity, we define four different ways of matching phrases

ranked from the most to the least strict:

1- Exact Match: The two phrases match exactly.

2- Approximate Match: To capture spelling variants and

misspelling, we allow two keywords to match if the

Levenshtein edit distance between them is less than 2.

3- Semantic Match: We compute the keyword similarity by

measuring the semantic similarity between the two phrases

representing the keywords. Let 𝑄 = 𝑞1 … 𝑞𝐽 be one phrase and

𝑆 = 𝑠1 … 𝑠𝐼 be another, the semantic similarity between these

two phrases can be measured based on WordNet [32].

WordNet is a large lexical database of English. Nouns, verbs,

adjectives and adverbs are grouped into sets of cognitive

synonyms (synsets), each expressing a distinct concept [32].

Synsets are interlinked by means of conceptual-semantic and

lexical relations.

To capture semantic variants, we match two terms if their

similarity according to the WordNet Wu and Palmer measure

(wup) is greater than 0.5. The Wu and Palmer measure [42]

calculates relatedness by considering the depths of the two

synsets in the WordNet taxonomies, along with the depth of

the Least Common Subsumer (LCS). The measure is

computed as follows:

𝑤𝑢𝑝(𝑡𝑖 , 𝑡𝑗) =
2 ∗ 𝑑𝑒𝑝𝑡ℎ(𝐿𝐶𝑆)

𝑑𝑒𝑝𝑡ℎ(𝑡𝑖) + 𝑑𝑒𝑝𝑡ℎ(𝑡𝑗)

where the depth of any synset in WordNet is the length

of the path connecting it to the root node plus one.

To measure the similarity between the two phrases, we

calculate the number of matched terms between 𝑄 and

𝑆 and divide it by the sum of the to the of matched

terms between 𝑄 and 𝑆, the terms in 𝑄 that did not

match any terms in 𝑆 and the terms in 𝑆 that did not

match any terms in 𝑄. This is similar to computing the

Jaccard distance between the terms in 𝑄 that did not

match any terms in 𝑄. This is similar to calculated the

Jaccard distance between 𝑄 and 𝑆 except that terms are

considered identically if they can be matched using the

Wu and Palmer measure described earlier.

5.4 Features

5.4.1 Textual Features

Jones and Klinkner [24] showed that word and character edit

features are very useful for identifying same task queries. The

intuition behind this is that sequence queries which have many

words and/or characters in common tend to be related. We

repurpose those features for detecting satisfaction. The features

they used are:

- normalized Levenshtein edit distance

- 1 if lev > 2, 0 otherwise

- num. characters in common starting from the left

- num. characters in common starting from the right

- num. words in common starting from the left

- num. words in common starting from the right

- num. words in common

- Jaccard distance between sets of words

Table 3. Examples of queries, and the corresponding

segmentation into keywords. Different tokens in a keyword are

separated by “_”

Query Phrases and Keywords

hotels in new york city hotels in new_york_city

hyundai roadside assistance phone

number

hyundai roadside_assistance

phone_number

kodak easyshare recharger chord kodak_easyshare echarger_cord

user reviews for apple iphone user_reviews for apple_iphone

user reviews for apple ipad user_reviews for apple_ipad

tommy bhama perfume tommy_bhama perfume

5.4.2 Keyword Features

As we explained earlier the word and character edit features capture

similarity between many pairs of queries. However, they also tend

to misclassify many other pairs especially when the two queries

share many words yet have different intents. We used the keyword

representation of queries described in Section 5.2 to compute the

following set of features:

- num. of “exact match” keywords in common

- num. of “approximate match” keywords in common

- num. of “semantic match” keywords in common

- num. of keywords in Q1

- num. of keywords in Q2

- num. of keywords in Q1 but not in Q2

- num. of keywords in Q1 but not in Q2

- 1 if Q1 keywords all Q2’s keywords

- 1 if Q2 keywords all Q1’s keywords

5.4.3 Other Features

Other features, that have been also used in [24], include temporal

features:

- time between queries in seconds

- time between queries as a binary feature (5 mins,

- 30 mins, 60 mins, 120 mins)

and search results feature:

- cosine distance between vectors derived from the first 10

search results for the query terms.

6. QUERY SUCCESS PREDICTION
Now that we can predict whether a query Q2 is a reformulation of

the previous query Q1 using the methods from the previous section,

we move on to addressing the main problem of this study. The

problem we are trying to solve in this section is given a query Q1,

can we predict whether the user was satisfied with Q1’s results or

not using information about the next query Q2 and the clicks on

Q1’s results if any.

We discussed earlier how search can be viewed as an interactive

process that involves the user and the search engine. When a user

submits a query Q, sometimes, the user gets satisfying results and

ends her search, moves on to another unrelated search, or moves

on to another related search but with a different information need.

On the other hand, when the user does not get a satisfying result,

the user may abandon her search or try to reformulate the query in

hope of getting better results.

Previous work often assumes that a click is a strong evidence of

satisfaction. This has been evident in the use of click through rate

(CTR), long dwell time clicks and other similar variants as features

to predict query success and query-URL relevance. However, there

are many cases where users click on a result and later find out that

it is not relevant. Previous work has shown that the probability of

click is influenced by a document’s position in the results page [10]

which results in more clicks for highly ranked results even if they

are not relevant. It has also been shown that the “attractiveness” of

the title and snippet of the result may lead to a user to clicking on

this result [26], only to later find out that it is not relevant. An

example of such behavior has been shown earlier in Figure 1.

Hence, we build models to improve query success prediction using

both click information and query reformulation. We build and test

the following prediction systems:

System 1. Clicks Only: A query Q is successful if it receives at

least one click

System 2. SAT Clicks Only: The dwell time is the time the user

spends on the results page. It has been shown in previous work that

longer dwell time is highly correlated with success [11][19]. We

consider a query Q successful if it received a click with dwell time

greater than τ. Previous work has often used the threshold of 30

seconds to identify successful clicks [14]. We experiment with this

threshold and several other thresholds.

System 3. Reformulation Only: We completely ignore clicks and

predict the success of the current query based on the next query

only. We use all the features from the previous section to predict

whether a query is successful or not. This method assumes that

users will always reformulate their queries when not successful.

System 4. Reformulation + Clicks (2 stages): Even though,

information about the next query is useful for predicting the user

satisfaction with the current query, using it alone is problematic

because some users simply give up and abandon their searches

without reformulation when not satisfied. Using click information,

in addition to information about the next query can help us identify

these cases. In this approach, we classify the query as unsuccessful

if the user reformulates their queries as predicted by the system in

the previous section. If the next query was predicted as not being a

reformulation of the current query, then the click information is

used. We try both system 1 (Clicks Only) and system 2 (SAT Clicks

Only) for this purpose.

System 5. Reformulation + Clicks (classifier): Instead of

adopting a staged approach as in the previous system, we learn a

classifier using both the next query information and the click

information simultaneously. We use all the features from the

previous section, as well as whether the query received a click or

not and the max dwell time if it did receive a click as features to

predict whether the current query has been successful or not.

7. EXPERIMENTS AND RESULTS

7.1 Data

Our data consists of several thousands of query pairs randomly

sampled from the queries submitted to a commercial search engine

during a week in mid-2011. Every record in our data consisted of a

consecutive query pair (𝑄𝑖 , 𝑄𝑖+1) submitted to the search engine by

the same user and in the same session (i.e. within less than 30

minutes of idle time, the 30 minutes threshold has been frequently

used in previous work, e.g. [39]). Identical queries were excluded

from the data. All data in the session to which the sampled query

pair belongs were recorded. In addition to queries, the data

contained a timestamp for each page view, all elements shown in

response to that query (e.g. Web results, answers, etc.), and visited

Web page or clicked answers. Intranet and secure URL visits were

excluded. Any personally identifiable information was removed

from the data prior to analysis.

Table 4. Heuristics vs. Textual vs. Keyword Features for

Reformulation Prediction

 Accuracy Reform. F1 No-Reform. F1

Heuristic 77.10% 75.60% 76.08%

Textual 82.90% 71.75% 87.75%

Keywords 85.80% 77.30% 88.15%

All 87.15% 81.06% 89.86%

A group of annotators were instructed to exhaustively examine

each session and “re-enact” the user’s experience. The annotators

inspected the entire search results page for each of 𝑄𝑖 and 𝑄𝑖+1,

including URLs, page titles, relevant snippets, and other features ..

They were also shown clicks to aid them in their judgments.

Additionally, they were also shown queries and clicks before and

after the query pair of interest. They were asked to then use their

assessment of the user’s objectives to determine whether the user

was satisfied with 𝑄𝑖‘s results. Different judges were also asked to

determine whether 𝑄𝑖+1 is a reformulation of 𝑄𝑖. Each query pair

was labeled by at least three judges and the majority vote among

judges was used. Because the number of positive instances is much

smaller than the number of negative instances, we use all positive

instances and an equal number of randomly selected negative

instances leaving us with approximately 6000 query pairs.

7.2 Predicting Query Reformulation

In this section we describe the experiments we conducted to

evaluate the reformulation prediction system. We perform

experiments using the data described in the previous section. We

compare the performance of four different systems:

System 1. Heuristics: The first system is a heuristic that does not

need any training data. It simply computes the similarity between

two queries as the percentage of common words to the length of the

longer query in terms of the number of words. When finding

common words, it allows two words to be matched if their

Levenshtein edit distance is less than or equals 2. The second query

is predicted to be a reformulation of the first if 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ≥ τ𝑠𝑖𝑚

and the 𝑡𝑖𝑚𝑒_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ≤ τ𝑡𝑖𝑚𝑒 mins. The two thresholds were

set to 0.35 and 5 minutes respectively using grid search to

maximize accuracy over the training data. We present the results of

this baseline to provide a simple method that is easy to re-

implement and does not need any training data and can be easily

used in future research.

System 2. Textual: The second system uses the textual features

from previous work that have been described in Section 5.4.1 and

the temporal and results features described in Section 5.4.3.

System 3. Keywords: The third method uses the keyword features

that we presented in Section 5.4.2 and the temporal and results

features described in Section 5.4.3.

System 4: All: Finally the last system uses both the textual features,

the keyword features and the temporal and results features.

All the last three methods use the temporal and search results

similarity features that have been described in Section 5.4.3. We do

not report the contribution of temporal and web search results

features here due to space limitation and because they have already

been studied in previous work [26].

The accuracy, positive (reformulation) F1, and negative (non-

reformulation) F1 for the four methods are shown in Table 4. The

results show that the keyword features outperform the textual

features. Combining them together results in a small gain over

using the keyword features only. The keyword features were able

to achieve higher precision rates while not sacrificing recall

because they were more effective in eliminating false reformulation

cases.

7.3 Predicting Query Success

Next, we move on to the experiments we conducted to predict query

success using both click information and information about the next

query. The results are shown in Table 5. The first row corresponds

to the “Click Only” method which predicts a query as successful if

it received one or more clicks. The following three rows correspond

to systems that use click information only but also takes dwell time

into consideration to identify satisfied clicks (“SAT Click Only”).

The three systems require a certain amount of dwell time for a click

to count (10, 30, and 50 seconds) respectively. Next we move on to

the “Reformulation Only” method which completely ignores the

clicks and predicts a query as successful if the next query is not a

reformulation of the current query. The following 4 rows

correspond to the “Reformulation + Clicks (2 stages)” methods that

Table 6: Counts of successful and unsuccessful tasks with

lengths from 1 to 5.

 Len. 1 Len. 2 Len. 3 Len. 4 Len. 5

SAT 4,581 1,163 421 172 97

DSAT 521 275 129 61 39

SAT

Prob.

89.79

%

80.88% 76.51

%

73.82

%

71.32

%

Table 5. Query Success Prediction Performance

 Accuracy SAT

Precision

SAT

Recall

DSAT

Precision

DSAT

Recall

SAT

F1

DSAT

F1

1 Clicks Only 38.86% 35.88% 64.21% 46.77% 21.51% 46.04% 29.47%

2 Sat Clicks Only (τ =10s) 51.20% 42.19% 54.34% 61.10% 49.05% 47.50% 54.42%

3 Sat Click Only (τ =30s) 56.07% 46.22% 49.87% 63.75% 60.31% 47.97% 61.98%

4 Sat Click Only (τ =50s) 60.61% 51.80% 43.55% 65.18% 72.28% 47.32% 68.54%

5 Reformulation Only 79.17% 64.79% 97.16% 97.58% 68.41% 77.74% 80.43%

6 Reformulation + Clicks (2

stages)
73.17% 68.70% 62.37% 75.78% 80.56% 65.38% 78.10%

7 Reformulation + SAT Click

 (τ =10s) (2 stages)
73.22% 73.85% 52.76% 72.97% 87.22% 61.55% 79.46%

8 Reformulation + SAT Click

(τ =30s) (2 stages)
73.01% 76.51% 48.42% 71.80% 89.83% 59.31% 79.81%

9 Reformulation + SAT Click

(τ =50s) (2 stages)
71.99% 78.92% 42.37% 70.06% 92.26% 55.14% 79.64%

10 Reformulation + Clicks

(Classifier)
84.23% 77.74% 81.19% 88.53% 86.04% 79.43% 87.27%

predict a query as successful if the next query is not a reformulation

of the current query (as the previous one) and the query received at

least one click (with different thresholds on dwell time as before).

Finally, the last system (“Reformulation + Clicks (classifier)”)

learns a classifier where the reformulation features, from

Section 5.4, and click features to predict query success.

We evaluate the methods using the following metrics accuracy,

precision, recall and F1 measure of the “Satisfied Queries” class

(SAT Precision, SAT Recall and SAT F1), and precision, recall and

F1 measure of the “Dissatisfied Queries” class (DSAT Precision,

DSAT Recall and DSAT F1).

We notice from the results in Table 5 that the “Clicks Only” method

performs poorly with low accuracy and very low SAT precision and

DSAT recall. This confirms our hypothesis that many queries that

receive a click still end up being unsuccessful. As we introduce a

threshold on the dwell time of the clicks for them to be considered,

the performance improves (rows 2 – 4). As we increase the dwell

time threshold, we see an improved accuracy and precision but at

the expense of recall. This is expected since the higher the threshold

the more likely that a click becomes a true successful click.

However as we increase this threshold, we also miss many

successful clicks with shorter dwell time. Using dwell time

thresholds of less than 10 seconds or more than 50 seconds did not

result in any performance improvement.

Interestingly, when we only use the reformulation signal to predict

success (“Reformulation Only”), we achieve better performance

than using clicks only. Notice however that this is limited to the

cases where a next query exists. As shown in Section 4, these

correspond to two thirds of the queries as estimated using millions

of queries submitted to a commercial search engine. Because we

predict any query that has no reformulation as successful, we end

up getting very high SAT recall and DSAT precision. The SAT

precision and DSAT recall are much lower though.

In rows 6-9, we combine the reformulation signal and the click

signal by a simple rule that assumes that successful queries should

receive a click (with certain dwell time) and should not be

reformulated. This improves the SAT precision and DSAT recall

compared to using reformulation only because some DSAT queries

are not followed by reformulation. This comes at the expense of the

SAT recall and DSAT precision as expected. Like the clicks only

cases, increasing the threshold on the dwell time improves most

metrics except for the SAT recall. Finally, when we allow the

learner to learn a classifier using both the reformulation and the

click features, we get the best performance in terms of accuracy

SAT F1 and DSAT F1.

7.4 Query Sequences and Search Tasks
In this section, we investigate how the user reformulation behavior

is related to the success of the entire search task. We obtained

labeled search tasks from the authors of the study described in [17].

Each task is labeled as either satisfied or not by the user performing

the search. To gather this data, they deployed a plugin that detected

when a user submits a query to any of the three major search

engines (Google, Bing, and Yahoo). Users were instructed to

submit a satisfaction rating at the end of their search task, where a

search task is defined as a single information need that may result

in one or more queries [26].The data gathered during that study

provided in-situ judgments of satisfaction direct from searchers at

the point of task termination. In this dataset, we have 7,628 tasks

that were labeled by 218 users. Among these tasks, 98% are tasks

with fewer or equal to 5 queries. Table 6 shows the counts of tasks

that are successful or unsuccessful with lengths (i.e. the numbers of

queries) from 1 to 5.

From Table 6, we see that not only the number of tasks is skewly

distributed with regard to the task length, the probability of being

successful is not uniformly distributed for tasks with different

lengths either: the probability for a task to be successful decreases

as its length increases. This fact tells us that, in a search task, having

more reformulations does not increase the probability of being

successful. But rather, having more reformulations is a strong

indictation of a possibly difficult task and thus the task has a higher

probability of failure.

After examining the relationship between the number of re-queries

and the probability for a task to be successful, we control the length

of tasks and further examine the different patterns presented by

query sequences in successful tasks and unsuccessful tasks of the

same length. We compute the similarity between pairs of

consecutive queries and compare these similarities for both

succesful and unsucesful tasks. The result of this experiment is

shown in Figure 2. The figure shows the textual similarity and

keyword similarity between consecutive queries in tasks of

different lengths with 2 queries, 3 queries, 4 queries and 5 queries.

From Figure 2, we see that the relationships between consecutive

queries in successful tasks and unsuccessful tasks are showing

different patterns. Especially, we notice that the last pair of queries

in a successful task is much less similar to each other than an

unsuccessful task, using both text and keyword similarity. This is

also the case for tasks as short as having a length if 2 (i.e. having

two queries only). We also see that the textual and keyword

similarity between the only two queries are significantly higher for

unsuccessful tasks than successful tasks. This observation tells us

that there is significant difference between re-query behavior in a

successful task and in an unsuccessful task.

In order to get a better understanding on why successful tasks and

unsuccessful tasks are showing such distinct patterns as shown in

Figure 2, we examine a few individual examples. We find that it is

often the case that, in a successful task, the user adopts some

completely new term(s) or novel information from the landing

page(s) of URL(s) she clicks after issuing the previous queries in

the same task. Figure 3(a) shows an example of a sequence of

queries in a successful task. The term “powerprep” in the last query

is from the landing page the user clicks after issuing the second last

query, and it doesn’t appear in any of the previous queries in the

same task. On the other hand, we observe that for most unsuccessful

tasks, the users are not able to get much information from their

previous queries, and thus the terms used for the entire tasks are

very similar to each other. Figure 3(b) gives an example of an

unsuccessful task, in which although the user has a few clicks, she

does not get much useful information from those clicks to

reformulate the query and achieve success. We also observe that

the average time gap between consecutive queries of successful

tasks is significantly longer than unsuccessful tasks (i.e. 91.10

seconds vs. 73.07 seconds with p-value < 0.05). This fact further

supports our hypothesis that in a successful task, a user tends to

spend more time to gather useful information in each intermediate

step before reaching full success eventually.

In summary, in this part we investigate the relationship between

query reformulation patterns in search tasks. We have the following

two major observations regarding users’ different re-query

behavior in successful tasks and unsuccessful tasks. The first

observation is that unsuccessful tasks tend to have more re-queries

than successful tasks. Which means, having more re-queries in a

task doesn’t infer a higher probability of success instead, it is a

strong indictation of a possibly difficult task and the probability of

failure is higher.

The second observation is more interesting, as we see the pairwise

query similarity of successful tasks and unsuccessful tasks are

showing very different patterns. In particular, queries of an

unsuccessful task tend to be more similar to each other than queries

of a successful task. This suggest that queries in a successful task

are more likely to be intended to cover different aspects of the

information need while queries in an unsuccessful tasks are more

likely to be trying to express the same information in different

ways.

By investigating individual examples, we find that in successful

tasks users are more likely to reformulate their queries with the

novel information gained from the results of previous queries. This

suggests that users are learning useful information from the results

of previous queries and using it to formulate the following queries.

However, in unsuccessful tasks, users usually don’t gain much

novel or useful information from the previous queries and thus the

re-queries tend to be similar to each other. This fact suggests that

for a task with multiple queries, search success is an incremental

process. This also agrees with a similar assumption used in

previous work [11], where session utility model was presented that

is based on the assumption that users reach partial satisfaction at

the intermediate steps of a successful task.

8. CONCLUSIONS

Previous models of query-level satisfaction have focused on

clickthrough data as the main signal for predicting query success or

query document relevance. Clickthrough information has also been

shown to be noisy due to snippet bias and result presentation bias.

This bias leads users to clicking on results because they think they

are relevant (perceived relevance) only to find out later that some

of these clicks are not relevant (Actual relevance). In this work, we

addressed this shortcoming by introducing models of query-level

success that draw conclusions on query success based on

information about the next query submitted by the user in addition

to click information. The following query submitted by a user in a

search session reveals information about the user’s intent as well as

the user’s satisfaction with the current search results.

Through experimentation via labeled query pairs drawn from logs

of a commercial search engine, we show that our proposed models

can accurately identify query reformulations by users dissatisfied

with the results of their current query. We also showed that our

proposed models can predict query-level satisfaction more

accurately than baselines that use clickthrough features only.

Additionally, we studied the relation between sequences of queries

in satisfied vs. dissatisfied search tasks. We observe that search

success is an incremental process for most multi-query tasks. That

is, in a successful task, a user is more likely to gain some novel

information from the search results of intermediate queries before

they reach final success.

We used three datasets through this paper: a dataset of

reformulation pairs, one-week worth of query logs to conduct the

exploratory motivating study, and search tasks data for the task

analysis. To reproduce these experiments, the reader may use any

search engine log data, such as the AOL data, to conduct the

exploratory analysis. For the query success experiments, query

pairs sampled from the same log data should be judged by

annotators to label satisfaction and reformulation. Finally, for task-

level data, the reader may use the data in [1], or collect similar data

using human annotators on in-situ judgments.

(a) Example: a successful task with 4 queries (queries are

shown on the left side and clicks on the right side).

The last query has a new term that comes from a landing

page of a URL the user clicks after issuing the third query.

(b) Example: an unsuccessful task with 4 queries (queries are

shown on the left side and clicks on the right side).

Although the user has a few clicks after some of the

queries, the terms used in all queries are very similar.

Figure 3: Examples of query sequences of a successful

task and an unsuccessful task.

(a) Textual similarity between pairs of consecutive queries

of tasks with different lengths.

(b) Keyword similarity between pairs of consecutive queries

of tasks with different lengths.

Figure 2: Different patterns of text similarity and keyword

similarity of successful tasks versus unsuccessful tasks.

REFERENCES

[1] Ageev., M., Guo, Q., Lagun, D., and Agichtein, E. (2011).

Find it if you can: a game for modeling different types of

web search success using interaction data. In Proc. SIGIR,

345–354.

[2] E. Agichtein, E., Brill, E., and S. T. Dumais, S.T.. (2006).

Improving web search ranking by incorporating user

behavior information. In Proc. SIGIR, 19–26.

[3] Anick, P. (2003). Using terminological feedback for web

search refinement: a log-based study. In Proc. SIGIR, 88–95.

[4] Arlitt, M. (2000). Characterizing Web user sessions. ACM

SIGMETRICS Performance Eval Review, 28(2), 50–63.

[5] Berger, A.L. and Lafferty, J. (1999). Information retrieval as

statistical translation. In Proc. SIGIR, 222–229.

[6] Bergsma, S., and Wang Q. I. (2007). Learning Noun Phrase

Query Segmentation. In Proc. EMNLP, 819–826

[7] P. Boldi, F. Bonchi, C. Castillo, D. Donato, A. Gionis, and S.

Vigna. (2008). The query-flow graph: model and applications.

In Proc. CIKM, 609-618.

[8] Carterette, B. and Jones, R. (2007). Evaluating search

engines by modeling the relationship between relevance and

clicks. In Proc. NIPS, 217–224.

[9] N. Craswell, O. Zoeter, M. Taylor, and B. Ramsey. (2008).

An experimental comparison of click position-bias models.

In Proc. WSDM.

[10] Dupret, G., and Liao, C. (2010). A model to estimate

intrinsic document relevance from the clickthrough logs of a

web search engine. In Proc. WSDM, 181-190.

[11] G. Dupret, V. Murdock, and B. Piwowarski. (2007). Web

search engine evaluation using clickthrough data and a user

model. In WWW workshop on Query Log Analysis: Social

and Technological Challenges.

[12] Feild, H., Allan, J., and Jones, R. (2010). Predicting searcher

frustration. In Proc. SIGIR, 34−41.

[13] Fox, S., Karnawat, K., Mydland, M., Dumais, S.T., and

White, T. (2005). Evaluating implicit measures to improve

the search experience. ACM TOIS, 23(2), 147−168.

[14] Hagen, M., Potthast, M. Stein, B, and Bräutigam, C. (2011).

Query segmentation revisited. In Proc. WWW, 97−106.

[15] Hagen, M., Potthast, M. Stein, B, and Bräutigam, C. (2010).

The Power of Naïve Query Segmentation. In Proc. SIGIR,

797–798.

[16] Hassan, A., Jones, R., and Klinkner, K.L. (2010). Beyond

DCG: user behavior as a predictor of a successful search. In

Proc. WSDM, 221–230

[17] Hassan, A., Song, Y., and He, L. (2011). A task level user

satisfaction model and its application on improving relevance

estimation. In Proc. CIKM, 125–134.

[18] Hassan, A. (2012). A semi-supervised approach to modeling

web search satisfaction. . In Proc. SIGIR, 275–284.

[19] Huang, J. and Efthimis N. (2009). Analyzing and evaluating

query reformulation strategies in web search logs. In Proc. of

CIKM, 77−86.

[20] Huang, J., Gao, J., Miao, J., Li, X., Wang, K. and Behr, F..

(2010). Exploring Web Scale Language Models for Search

Query Processing. In Proc. WWW, 451–460.

[21] Huffman, S. and M. Hochster, M. (2007). How well does

result relevance predict session satisfaction? In Proc. SIGIR,

567−-574.

[22] K. Jarvelin and J. Kekalainen. (2002). Cumulated gain-based

evaluation of IR techniques. ACM TOIS, 20(4), 422–446.

[23] Jansen, B.J., Zhang, M., and Spink, A. (2007). Patterns and

transitions of query reformulation during web searching.

[24] Joachims, T. (2002). Evaluating search engines using

clickthrough data. Department of Computer Science, Cornell

University.

[25] T. Joachims, T., Granka, L,. Pan, B., Hembrooke, H. and

Gay, G. (2005). Accurately interpreting clickthrough data as

implicit feedback. In Proc. SIGIR , 154–161.

[26] Jones, R. and Klinkner, K.L. (2008) . Beyond the session

timeout: automatic hierarchical segmentation of search topics

in query logs. In Proc. CIKM.

[27] R. Jones, B. Rey, O. Madani, and W. Greiner. (2006).

Generating Query Substitutions. In Proc. WWW, 387–396

[28] S. Jung, J. L. Herlocker, and J. Webster. Click data as

implicit relevance feedback in web search. Information

Processing and Management (IPM), 43(3):791-807,2007.

[29] Lau, T. and Horvitz, E. (1999). Patterns of search: analyzing

and modeling Web query refinement. In User Modeling ‘99,

119-128.

[30] J. Li, S.B. Huffman, and A. Tokuda (2009). Good

abandonment in mobile and PC internet search. In Proc.

SIGIR, 43–50

[31] C. Lucchese, S. Orlando, R. Perego, F. Silvestri and G.

Tolomei. (2011). Identifying Task-based Sessions in Search

Engine Query Logs. In Proc. WSDM 2011.

[32] G. A. Miller. 1995. Wordnet: a lexical database for English.

Commun. ACM, 38(11):39–41.

[33] Murray, G.C., J. Lin, and A. Chowdhury,. (2006).

Identification of User Sessions with Hierarchical

Agglomerative Clustering. In ASIS&T ‘06, 43(1), 1-5.

[34] S. Ozmutlu. Automatic new topic identification using

multiple linear regression. Information Processing and

Management, 42(4):934-950, 2006

[35] F. Radlinski and T. Joachims. Query chains: learning to rank

from implicit feedback. In R. Grossman, R. Bayardo, and K.

P. Bennett, editors, KDD, pages 239-248. ACM, 2005.

[36] Teevan, J., Adar, E., Jones, R., and Potts, M. (2007)

Information Re-Retrieval: Repeat Queries in Yahoo's Logs.

In Proc. SIGIR.

[37] Toutanova, K., Klein, D., Manning, C., and Singer, Y. 2003.

Feature-Rich Part-of-Speech Tagging with a Cyclic

Dependency Network. In Proc. HLT-NAACL, 252-259.

[38] Wang, K., Thrasher, C., Hsu, B. (2011). Web Scale NLP: A

Case Study on URL Word Breaking. In Proc.WWW, 357–

366.

[39] Weber, I. and Castillo, C. (2010). The demographics of Web

search. In Proc. SIGIR, 523–530.

[40] White, R.W. and Drucker, S.M. (2007). Investigating

behavioral variability in Web search. In Proc. WWW, 21−30.

[41] White, R.W. and Dumais, S. (2009). Characterizing and

predicting search engine switching behaviour. In Proc.

CIKM, 87−96.

[42] Wu, Z. and Palmer, M. (1994). Verb semantics and lexical

selection. Proc. ACL, 133–138.

[43] Yu., X. and Shi., H. (2009). Query Segmentation Using

Conditional Random Fields. Proceedings of the Workshop on

Keyword Search on Structured Data (KEYS), 21–26.

[44] Zhang, X., Anghelescu, H.G.B., and Yuan, X. (2005).

Domain knowledge, search behavior, and search

effectiveness of engineering and science students. Inf. Res.,

10(2), 217.

