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Abstract

A novel speaker-adaptive learning algorithm is developed and evaluated for a hidden trajectory model of speech coar-
ticulation and reduction. Central to this model is the process of bi-directional (forward and backward) filtering of the vocal
tract resonance (VITR) target sequence. The VTR targets are key parameters of the model that control the hidden VIR’s
dynamic behavior and the subsequent acoustic properties (those of the cepstral vector sequence). We describe two tech-
niques for training these target parameters: (1) speaker-independent training that averages out the target variability over
all speakers in the training set; and (2) speaker-adaptive training that takes into account the variability in the target values
among individual speakers. The adaptive learning is applied also to adjust each unknown test speaker’s target values
towards their true values. All the learning algorithms make use of the results of accurate VIR tracking as developed in
our earlier work. In this paper, we present details of the learning algorithms and the analysis results comparing
speaker-independent and speaker-adaptive learning. We also describe TIMIT phone recognition experiments and results,
demonstrating consistent superiority of speaker adaptive learning over speaker-independent one measured by the phonetic
recognition performance.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, much research in spoken language technology has been devoted to incorporating structures
of human speech and language into statistical speech recognition systems, and a growing body of literature on
this theme is emerging (e.g., Bakis, 1991; Chelba and Jelinek, 2000; Bilmes, 2004; Deng and Braam, 1994; Bri-
dle et al., 1998; Deng, 1998; Deng et al., 2004a; Holmes and Russell, 1999; Rose et al., 1996; Ostendorf et al.,
1996; Sun and Deng, 2002; Gao et al., 2000; Wang et al., 2004; Wegmann et al., 1996; Zhou et al., 2003).
Researchers have explored the approaches of using the hidden structure of speech in the human speech gen-
eration process, either implicitly or explicitly (Bakis, 1991; Bridle et al., 1998; Deng et al., 2004b; Deng, 1998,
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2004; Ma and Deng, 2003). One key component of these hidden dynamic modeling approaches is a target-fil-
tering operation in some non-observable (i.e., hidden) domain (Deng, 1998, 2004; Zhou et al., 2003).

Recently, we developed a bi-directional target filtering approach to modeling speech coarticulation and
context assimilated reduction (Deng et al., 2004b, 2006b). This hidden trajectory model functionally achieves
both anticipatory and regressive coarticulation, while leaving the phonological units as the linear phonemic
sequence and bypassing the use of more elaborate nonlinear phonological constructs as described in Deng
(1998). The work reported in this paper extends the work in Deng et al. (2004b, 2006b) by providing an adap-
tive mechanism for learning the essential target parameters. Compared with the models in Bridle et al. (1998),
Deng (1998) which proposed the use of infinite-impulse-response (IIR) filters for characterizing the hidden
speech dynamics, our current model gives a significantly simpler finite-impulse-response (FIR) filter implemen-
tation in the specific domain of hidden vocal tract resonances (VTRs). The hidden resonances are mapped to
observable cepstra as the acoustic parameters using a parameter-free analytical function [in contrast to neural
networks as proposed in Bridle et al. (1998) and Deng (1998)], offering clear advantages in model implemen-
tation and in constructing automatic recognition systems that incorporate the speech structure. Both compu-
tation saving and model parameter saving are significant due to the elimination of neural networks and their
learning.

One key set of parameters in the hidden trajectory model is the VTR targets, which are specific to each
phone but are context independent. How to determine the values of these parameters is critical to the success
of applying the model to speech recognition. The simplest way is to train a single set of VTR targets for all
the speakers; i.e., in a speaker-independent manner. In this case, the training averages out the VTR targets’
variability over all speakers in the training set. However, VTRs and their targets are related to the vocal tract
length of the speaker, and hence they vary among speakers. A single set of VIR targets can produce the
VTR trajectories that typically match well with data for some speakers, but not for other speakers. In
the work reported in this paper, we have successfully developed a novel speaker-adaptive training algorithm
that takes into account the VTR target variability among speakers. In essence, the algorithm makes use of
the results of a high-accuracy VTR tracking technique that provides the information about the relative vocal
tract lengths between a generic speaker (averaged over all speakers in the training set) and a specific speaker
in either the training or test data. This philosophy is similar to the vocal tract length normalization (VTLN)
techniques developed in the past for normalizing acoustic variabilities among speakers (Eide and Gish, 1996;
Lee and Rose, 1998; Zhan and Westphal, 1997). The novelty of our algorithm is to apply such relative vocal
tract length estimates directly to achieve accurate estimates of the VTR targets in hidden trajectory
modeling.

The organization of this paper is as follows. In Section 2, we provide an overview of the hidden trajectory
model formulated in the bi-directional FIR-based target filtering framework. In Section 3, the basic, speaker-
independent training technique for VTR target parameter estimation is derived and described. The more effec-
tive, speaker-adaptive learning algorithm that adjusts the VTR target parameters for each individual speaker
is presented in Section 4, where the issues of how to obtain the normalization factor and how to use the nor-
malization factor are addressed. In Section 5, analysis and phone recognition experiments and results based on
TIMIT database are shown, providing evidence for the effectiveness of the speaker-adaptive learning
technique.

2. Hidden trajectory model: an overview

The hidden trajectory model presented in this paper consists of two stages. In Stage I, the model converts
the VTR target sequence to the VTR trajectory by using the phone sequence hypothesis and the boundaries. In
Stage 11, the model converts the VTR trajectory into the cepstral trajectory with sub-phone dependent bias
parameters. We now describe these two stages in more detail.

Stage I of the model is a bi-directional filtering process on the VTR target sequence, where each phone is
associated with a unique target vector and timing. This gives rise to both forward and backward coarticula-
tion, since it makes the VTR value at each time dependent on not only the current phone’s VTR target but also
on the VTR targets of the adjacent phones. This filtering process has been shown to give quantitative predic-
tion of the magnitude of contextually assimilated reduction and coarticulation (Deng et al., 2004b).
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The filtering operation is implemented by a slowly time-varying, FIR filter characterized by the following
non-causal, vector-valued, impulse response function:

iy, —D <k <0,
k)= e k=0, 1)
Vi 0<k<D,

where k represents time frame, typically with a length of 10 ms each, y, is the stiffiess parameter vector, one
component for each VTR order. Each component of the stiffness vector is a positive real value between zero
and one. The subscript s(k) in y,y indicates that the stiffness vector is dependent on the segment state s(k)
which varies over time. D in (1) is the uni-directional length of the impulse response, representing the temporal
extent of coarticulation in the temporal direction, assumed for simplicity to be equal in length for the forward
direction (anticipatory coarticulation) and the backward direction (regressive coarticulation).

In (1), ¢ is the normalization constant to ensure that the filter weights add up to one. This is essential for the
model to produce target undershooting, instead of overshooting. To determine ¢, we require that the filter
coefficients sum to one:

D D
hy(k) = ko~ 2
s(k) =c ) . (2)
k=-D k=-D

For simplicity, we make the assumption that over the temporal span —D < k < D, the stiffness parameter’s
value stays approximately constant

Vsk) = Vs(0)-

That is, the adjacent segments within the temporal span 2D + 1 in length which contribute to the coartic-
ulated home segment have the same stiffness parameter value as that of the home segment. Under this assump-
tion, we simplify (2) to
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The input to the above FIR filter is the target sequence, which is a function of discrete time and jumps at the
segments’ boundaries. Mathematically, the input is represented as a sequence of step-wise constant functions
with variable durations and heights:

T (k) :Z [u(k —k.) —u(k — k)] T, (4)

i=1

where u(k) is the unit step function, &, s = s1,52,...,5p the right boundary sequence of the segments in the
utterance, and ki, s =s81,5,...,5p are the left boundary sequence. In general, kim = kﬁ for 1 < i< P. The dif-
ference of the two gives the duration sequence. T, s = 51,55, ...,5p are the target vectors for segment s.

In the work presented in this paper, we assume that both left and right boundaries (and hence the dura-
tions) of all the segments in an utterance are known. For the training set, the boundaries are provided in
TIMIT database. For the test set, where the current model is used to predict the VTR frequency trajectories,
the boundaries in the target sequence input to the filter come from a recognizer’s forced alignment results, on
which our experimental results described in this paper are based.

Given the filter’s impulse response and the input to the filter, the filter’s output as the model’s prediction for
the VTR trajectories is the convolution between these two signals. The result of the convolution within the
boundaries of the home segment s is
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&) = hi @ T = ¢ ) Ty (5)
where the input target vector and the filter’s stiffness vector may take not only values associated with the cur-
rent home segment, but also those associated with the adjacent segments since the time 7 in (5) can go beyond
the home segment’s boundaries.

A sequential concatenation of all outputs g,(k), s = s1,5,...,5p constitutes the model prediction of VTR
trajectories for the entire utterance:

gwy:Z:@@—a)—wk—@ﬂgm) (6)

Note that the convolution operation above carried out by the filter in the model guarantees continuity of
the trajectories at each junction of two adjacent segments, contrasting the discontinuous jump in the input to
the filter at the same junction. This continuity is applied to all classes of speech sounds including consonantal
closure. This provides the mechanism for coarticulation and VTR target undershooting in the current hidden
trajectory model. Examples of the step-wise constant function of target sequence 7(k) and its smoothed, fil-
tered function g(k) will be given for real speech data in Section 5 (Figs. 5 and 6).

The Stage II of the hidden trajectory model is responsible for converting the VTR vector g(k) at each time
frame k into a corresponding vector of LPC cepstra o(k). The mapping, as has been implemented, is in a
memoryless fashion (i.e., no temporal smoothing), and is statistical rather than deterministic. To describe this
mapping function, we decompose the VTR vector g into a set of K resonant frequencies f and bandwidths b.
That is, let

()

where
N by
/2 by
f=1 . and b=
Jx by
Then the statistical mapping from VTRs to cepstra is represented by
o(k) = ¥(&s(k)) + py + vs(k), ()

where vy is a segment-dependent, zero-mean Gaussian random vector following the Gaussian distribution of
N(v;0, %), and y, is a subsegment-dependent bias vector for the nonlinear predictive function ¥P(g;).

In (7), the output of the mapping function ¥(g) has the following parameter-free, analytical form for its nth
vector component (i.e., nth order cepstrum):

2 & k
0, == Z e Jsamp COS <2TU/I N > (8)
S J
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where the speech signal sampling frequency feump = 16,000 Hz is used for the TIMIT data in our experiments.
A detailed derivation of this analytical form can be found in Deng et al. (2006a).

3. Speaker-independent learning of VIR target parameters

In this section, we describe speaker-independent training of the VTR target vectors T, which is a function
of the phone segment s but is context independent. Given the results of VTR tracking z(k), which we devel-
oped in the earlier work of Deng et al. (2006a), the training is aimed to maximize the likelihood of such
tracked VTR ““data”. Assuming the tracked VTR data obey a Gaussian distribution, where the mean vector
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is the VTR trajectory g(k) generated from the Stage I of the hidden trajectory model, and the covariance

matrix is denoted by Q,. (Note that g(k) contains the VTR target parameters 7, which are to be optimized.)
Then the objective function for the training becomes

K
logP = ~0.50." ) [z(k) — &(k)]",
k=1
whose gradient is

Uk )

Using (5), we compute the gradient on the right-hand side of Eq. (9) as
agb (k) min(k+D,bd;)

D D (10)

t=max(k—D,bd))

where bd,, and bd, are the left and right boundaries for the current phone segment s. Note that this gradient is
not a function of the target parameters T for the optimization; i.e., it is a constant with respect to Ty. Choos-
ing this constant to be the inverse of the total frames of all tokens of segment s in the training data, we have
the following gradient descent estimate for T:

Klok

2ok Z {2 (k) — & (kI T}

tok :
ZlokK s

where the trajectory function g (k) is determined by the FIR filter’s output, and K§°k is the duration of token
‘tok’ of segment s. Superscript #n above denotes iteration number. In our implementation, the learning rate o in
Eq. (11) is set to be one.

Note that in Eq. (11), the “data” l"“(l’c) is computed from an existing VIR tracker, and g'°* (k|T”) is com-
puted using the target T” from the previous iteration n. Initialization of the target parameters T0 is based on
modified target values of Klatt synthesizer (Klatt, 1980). The full set of these modified values are tabulated in
Deng and O’Shaughnessy (2003). Note that the estimate of 7', upon convergence of the iterations, is assumed
to be the same for all speakers.

(11)

4. Speaker-adaptive learning of VTR target parameters
4.1. Introduction

In previous sections, we presented the hidden trajectory model where the unobserved VTR trajectory is
predicted (in model Stage I) with only the sequence of phones and their boundaries by filtering the VTR
targets using the bi-directional FIR filters. We assumed that the targets are the same for all the speakers.
However, due to the difference in the vocal tract length as well as in the geometry for different speakers
(e.g., Naito et al., 2002; Zhan and Waibel, 1997; McDonough et al., 1998), the VIR targets for different
speakers would differ. To incorporate this speaker-specific target parameters in the hidden trajectory model,
we have developed an iterative speaker-adaptive training technique to estimate the generic and adapted
speaker’s VTR target parameters Tfe“eric. During the training, the difference in each speaker’s VIR targets
is taken into account by scaling the generic VTR targets T eeneric (computed from the immediately previous
iteration):

T&yspk — ﬂspk . i—vfeneric7 (12)
where f°P¥ is the speaker-dependent normalization or scaling factor inversely proportional to the vocal tract
length of speaker ‘spk’. The dot operation above denotes an element-by-element multiplication. In our current
implementation, °°* is a vector, with each component for each corresponding VTR frequency component.
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(Bandwidth components of the VTR are not scaled.) The same scaling is applied to each of separate test speak-
ers in the recognition task to be described in Section 5. This strategy of adapting the target parameters to indi-
vidual speakers is motivated by the popular technique of vocal tract length normalization for the acoustic data
as published in Eide and Gish (1996), Kamm et al. (1995), McDonough et al. (1998), Pye and Woodland
(1997), Wegmann et al. (1996), Welling et al. (1998), Zhan and Westphal (1997), Zhan and Waibel (1997),
and Naito et al. (2002).

4.2. Computation of the normalization factor

We now describe how the normalization factor f*P* is computed in our adaptive training algorithm. Again,
we make use of the results of our existing VTR tracker (Deng et al., 2006a), and follow the same assumption as
in the work of vocal tract length normalization that the ratio of average formant values of two speakers is a

good estimate of the two speakers’ vocal tract lengths. Thus, the normalization factor can be simply computed
by

ﬁspk _ <Zspk> (13)

<Etrain> ?

where (zP*) denotes the sample average of VTR frequencies over all frames in the utterance from a specific
speaker ‘spk’ (the specific speaker either in the training or in the test data), and (") is the sample average
of VTR frequencies over all frames in the full training set corresponding to the generic speaker. During our
experiments, we found that the estimates of VTR frequencies of many consonants are less reliable than those
of vowels. We thus limit our VTR frequency estimates to only those frames corresponding to the vowels in
computing the normalization vector:

spk <Eipk>

= (14)

<ELrain> ?

where for the training data of TIMIT (as in our experiments), the vowel regions are labeled in the database,
and for the test data, we use the vowel regions hypothesized for each item in the N-best list.

In our experiments, we discovered further that the wide range of vowel VTR or formant values creates
undesirable biases in the estimate of the normalization factor in Eq. (14). To illustrate this problem, the aver-
age VTR frequency for an utterance that contains vowel tokens of only /aa/ will be significantly different
than that with vowel tokens of only /iy/, even though both utterances are generated by the same speaker.
This causes the estimates of the normalization factor according to (14) to be vastly different, even if they
should ideally be the same for the same speaker. To solve this problem, we further refine the estimate of
the normalization factor in (14) to the one using normalized vowel VIR frequencies (z,) averaged over
all tokens:

(# ),

()

pr = ; (15)

The numerator and denominator in Eq. (15) are the normalized average VTR frequencies for individual
speaker (denoted by ‘spk’) and for all speakers in the training set (denoted by ‘train’), respectively. They
are computed by

(52), = (16)

where V' is the number of different vowels in all utterances in the training set, and N,, is the number of frames
of vowel v;. That is, the averages are carried out over all frames of all vowels in the training set. The division in
Eq. (16) by (z'"") accomplishes the normalization. After the normalization, the utterances from the same
speaker that contain different vowels (such as only /aa/ and only /iy/ in separate utterances) will produce
approximately the same (zP%), and hence the same normalization factor BPX. Note that according to Eq.
(16), (z'7in) = 1. Therefore, Eq. (15) is simplified to



78 D. Yu et al. | Computer Speech and Language 21 (2007) 72-87

14 <21:[>
Zi:lei <g§{ain>

ﬁSpk = <?pk> = v
! ! ZiZINUi

(17)

4.3. Algorithm summary and discussion

With Eq. (17), the normalization factor for each individual speaker in either training data or in test data are
determined. For the test utterance, the use of Eq. (12) (after T generic j5 obtained as outlined in the next para-
graph) effectively adapts the target parameters in the hidden trajectory model to that test speaker. And these
adapted target parameters are used for recognition.

T generic jg Jearned from the training data in an iterative, speaker-adaptive manner. Initial VTR target vec-
tors, T eeneric(()) - are provided by the speaker-independent training as described in the preceding section.
Then, the normalization factor for each speaker in the training set is computed by Eq. (17) and the same
value is used in each iteration for updating the generic target parameters. The speaker-adapted VTR target
parameters are then obtained according to Eq. (12). These adapted target parameters are in turn used to
predict the speaker-specific VTR trajectory using Stage I of the hidden trajectory model, giving rise to
the quantity of

g&spk (k|ﬁ5pk . Tfeneric (I’l)) .

This is then compared with the tracked VTR ““data” and the difference is averaged over all frames, all tokens,
and all speakers. The final iterative training formula is

K

tok " .
S Do e T {2108, (k) — @ik (kI - Temerie()) |
E spk ZtokK;‘.}sl;k

which can be shown to be a maximum likelihood estimate in a similar way to the derivation of the speaker-
independent training of Eq. (11).

The intuition of Eq. (18) is clear. The second term is the adjustment of the VTR targets by the amount that
is equal to the per-frame difference between model-predicted VTR trajectory and the tracked VTR “data”.
The amount of adjustment diminishes as the model-predicted trajectory closely matches the data. We found
in experiments that the likelihood for the tracked VTR “data” is always monotonically increasing over the
iterations of the training according to Eq. (18). In practice, we use four iterations of the algorithm of Eq.
(18) for the 462 speakers in TIMIT training data. Beyond four iterations, the increase of the likelihood
becomes much less than the earlier iterations.

After Tfe“eric is learned from the training data, the process of adaptation/normalization is carried out on a
sentence-by-sentence basis for each test sentence. First, Eq. (17) is used to determine the normalization factor.
Then, Eq. (12) is used to determine the adapted target values for the sentence.

Tfeneric(n + 1) _ Tbgeneric(n) + (18)

5. Experiments and results

In this section, we present the results of analysis and phone recognition experiments using the TIMIT data-
base. These results provide evidence for the effectiveness of the speaker-adaptive learning technique just
described. In particular, we compare the hidden trajectory models with the VTR target parameters trained
using speaker-independent and speaker-adaptive algorithms, as detailed in Sections 3 and 4, respectively.
We first show the distributional results of the normalization factors for all the 462 speakers in TIMIT’s train-
ing set. We then use a typical speech utterance to demonstrate that with the adaptively learned target param-
eters, both the VTR trajectory prediction (as the output of model Stage I) and the cepstral trajectory
prediction (as the output of model Stage II) match real speech data much better than using speaker-indepen-
dent training. We finally show the phonetic recognition results with N-best rescoring, further demonstrating
the superiority of the speaker-adaptive learning.
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5.1. Distributional results on the estimate of the normalization factor

Here, we show the distributional results on the estimate of the normalization factor vector, ¥, component
by component (F1 to F4), using the estimation formula of Eq. (17) described in Section 4. The results are
obtained from a total of 462 speakers in the TIMIT training set. These distributional results are plotted in
Figs. 1-4, respectively, for the four components of *P* in terms of histograms. The results are plotted sepa-
rately for the male and female populations of the data.

According to Eq. (12), the normalization factor measures the ratio of the VIR targets of the specific
speaker to the “generic’ speaker. This ratio is approximately the ratio of the two speakers’ vocal tract lengths.
Since the generic speaker’s targets are computed from the full pool of speakers including both males and
females (according to Eq. (18)), its VTR target values are in between those of a typical female and a typical
male speaker. The distributional results, shown consistently in Figs. 1-4, illustrate that the estimates of the
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Fig. 1. Histograms of the estimate of the normalization factor for the F1 component. Data are from the 462 speakers in the TIMIT
training set. Histograms for male and female speakers are plotted separately.
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Fig. 2. Histograms of the estimate of the normalization factor for the F2 component. Data are from the 462 speakers in the TIMIT
training set. Histograms for male and female speakers are plotted separately.
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Fig. 3. Histograms of the estimate of the normalization factor for the F3 component. Data are from the 462 speakers in the TIMTT
training set. Histograms for male and female speakers are plotted separately.
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Fig. 4. Histograms of the estimate of the normalization factor for the F4 component. Data are from the 462 speakers in the TIMIT
training set. Histograms for male and female speakers are plotted separately.

normalization factors for most of the female speakers are greater than one and those for most of the male
speakers are lower than one. These are qualitatively consistent with the estimates of the relative vocal tract
lengths using a completely different technique on the same TIMIT database (Zhan and Waibel, 1997). This
consistency suggests that the estimation technique presented in Section 4 is effective.

The results in Figs. 1-4 illustrate that different speakers in the TIMIT database may have their VIR targets
differ as much as 40% (ratio of two extreme values in the estimate of the normalization factor, 1.17/0.86). Male
speakers tend to have higher normalization factors (or longer vocal tract lengths) while female speakers tend
to have lower normalization factors (or shorter vocal tract lengths). If such significant differences are not taken
into account, as in speaker-independent training, the VTR trajectory prediction based on the VTR targets (as
inputs to the FIR filter) would be less accurate for those speakers that have the normalization factors substan-
tially different from one. Inaccurate VTR trajectory prediction will lead to inaccurate cepstral sequence pre-
diction, leading to greater error rates by the hidden trajectory model used as a speech recognizer. We will
provide direct evidence for these points in the remainder of this section.
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5.2. Results on prediction of VTR trajectories and cepstral sequences

We now demonstrate the effects of speaker-adaptive learning on the prediction accuracies of the VIR fre-
quency trajectories (as the output of the hidden trajectory model Stage I) and of the cepstral sequences (as the
output of the hidden trajectory model Stage II). In doing the predictions, the phone identities and their bound-
aries provided in the TIMIT database are used as the input to model Stage 1. Since the hidden trajectory model
assumes constant targets for each phone, we first decompose all compound phones (affricates and diphthongs)
into their constituent sounds.

The model prediction incorporating VIR target adaptation proceeds as follows. The VTR targets for the
generic speaker are trained using all training data according to Eq. (18), and for each individual speaker, we
apply Eq. (17) to obtain the estimate of the normalization factor. The new adapted set of VTR targets for this
speaker are then computed as the scaled version of the generic speaker’s targets according to Eq. (12). These
target values are then fed into the model Stage I for the VTR trajectory prediction. And the output of the
predicted VTR trajectory is fed to model Stage II for the cepstral sequence prediction.

Fig. 5 shows the VTR prediction results for a female speaker, using the VTR targets obtained from the
above speaker-adaptive learning. (Utterance SI487 by Speaker FKSRO in dialect region 7: “Cable confirma-
tion, it said translated”.) The prediction results, shown as four smooth lines (from F1 to F4), are superimposed
on the spectrogram which shows true VTR trajectories (for the vocalic regions) as the spectral prominences or
dark bands. These lines are the outputs of the FIR filter in model Stage I, and to illustrate the filter operation,
the input to the filter is also plotted as the step-wise dashed lines representing the corresponding four VTR
target sequences. For the majority of the frames, the filter’s output either coincides or is close to the true
VTR frequencies.

As a contrast, in Fig. 6, we show the same kind of VTR prediction results for the same speaker and utter-
ance, but using the VTR targets obtained from speaker-independent training. The predicted VTR frequency
values are now almost always lower than the true values as identified from the vocalic regions of the spectro-
gram. This comparison demonstrates the effectiveness of the target adaptation.

Further evidence for the effectiveness of speaker-adaptive target estimation is provided from the compar-
ative results of cepstral sequence predictions as the output of model Stage II; i.e., using the nonlinear mapping
from VTRs to cepstra in Eq. (8) on a frame-by-frame basis. Figs. 7 and 8 show such prediction (solid lines for
C1, C2, and C3) with and without the speaker-adaptive learning, respectively. The inputs to the mapping func-
tion are the predicted VTR trajectories (by model Stage I) in Figs. 5 and 6, respectively. The dotted lines in
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Fig. 5. VTR trajectory prediction using the bi-directional FIR filter and the VTR targets estimated with speaker-adaptive learning. The
step-wise dashed lines are the target sequences (F1-4) as inputs to the FIR filter, and the continuous lines are the outputs (F1-4) of the
filter as the predicted VTR frequency trajectories.
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Fig. 6. VIR trajectory prediction using the bi-directional FIR filter, where the VTR targets are obtained from speaker-independent
training. The step-wise dashed lines are the target sequences (F1-4) as inputs to the FIR filter, and the continuous lines are the outputs
(F1-4) of the filter as the predicted VTR frequency trajectories.
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Fig. 7. Cepstral sequence prediction (solid lines) as the output of model Stage II (nonlinear mapping from VTRs to cepstra). The input to
the mapping function is the VTR trajectory prediction of Fig. 5 with speaker-adapted VTR targets. The dotted lines are the LPC cepstra
C1-C3 calculated from the acoustic signal waveform directly.

Figs. 7 and 8 are the LPC cepstral data C1-C3 calculated from the acoustic signal waveform directly. It is clear
that the predicted cepstra in Fig. 7 with target adaptation fit the data more closely than those in Fig. 8. Since
the model-to-data match at the acoustic level, calculated as the likelihood of the model evaluated on the
observed acoustic data, is the criterion by which the speech recognition decision is made, the above compar-
ative results on cepstral fitting between the speaker-adaptive and speaker-independent training suggest that
better recognition performance can be achieved by the former than the latter. This is confirmed by the pho-
netic recognition experiment presented in Section 5.

The above results gave qualitative evidence that speaker adaptation improves both the VTR estimates and
LPC cepstral prediction. We now present quantitative results based on a sample size of 192 TIMIT utterances
in the core test set. We desire to show how much better, quantified in terms of the root mean square (RMS)
error, speaker adaptation reduces the errors to the true VTR values averaged over these utterances. However,
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Fig. 8. Cepstral sequence prediction (solid lines) as the output of model Stage II (nonlinear mapping from VTRs to cepstra). The input to
the mapping function is the VTR trajectory prediction of Fig. 6 with speaker-independently trained VTR targets. The dotted lines are the
LPC cepstra C1-C3 calculated from the acoustic signal waveform directly.

since there is no such a reference database available, we use the results of the high-quality VTR tracking algo-
rithm (Deng et al., 2004a) to approximate the reference VIR values for computing the RMS errors. (This is
the same tracking algorithm used in the training phase.) In Table 1, we show the comparative results of the
averaged RMS errors before and after speaker adaptation of the resonance targets. Four components of the
VTR frequencies are listed separately. We observe a dramatic decrease of the RMS errors, especially for high-
order VTR components. The greater errors when no adaptation is performed are due to the use of generic,
speaker-independent targets as the input for the filtering. The error reduction after target adaptation to the
individual speakers demonstrates the effectiveness of the adaptation algorithm we have developed.

Similar comparative results (also averaged over the 192 utterances) for LPC cepstra are obtained and
shown in Table 2. Here, the reference LPC cepstra are computed directly from the acoustic waveforms,
and are not approximated. Again, we observe the reduction of errors, mainly for low-order cepstra, due to
the adaptation.

Table 1
Comparison of root mean square errors for VTR trajectories before and after speaker adaptation of the resonance targets

F1 (Hz) F2 (Hz) F3 (Hz) F4 (Hz)
RMS error with no adaptation 49 569 1024 1626
RMS error after adaptation 41 108 115 114

VTR references are approximated by a high-quality automatic VTR tracking algorithm. Results are averaged over 192 TIMIT utterances.

Table 2
Comparison of root mean square errors for LPC cepstral prediction before and after speaker adaptation of the resonance targets

C2 C4 C6 C38 C10 C12
RMS error with no adaptation 0.51 0.18 0.14 0.12 0.08 0.07
RMS error after adaptation 0.20 0.15 0.13 0.10 0.08 0.07

Cepstral references are computed from the speech waveforms. Results are averaged over 192 TIMIT utterances.
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5.3. Results on phonetic recognition

The experimental results of phonetic recognition on TIMIT with the standard core test set (192 utterances)
are presented in this section to compare the relative effectiveness of the speaker-adaptive and speaker-indepen-
dent training. In all the experiments reported in this section, we used the VTR tracker developed and reported
in Deng et al. (2004a). Three states per segment are used for cepstral residual modeling. The coarticulation
temporal extent parameter is set at D = 7. Variance parameters are estimated from sample variances from
the data. The results are scored based on the standard mapping of the TIMIT phone set.

Due to the high computational cost of direct decoding using the long-span, wide-context hidden trajectory
model, we limit our experiments to the N-best rescoring paradigm. For each of the N-best lists consisting of
the hypothesized phone sequence and the constituent phone boundaries, the VTR trajectory g(k) is generated
using the targets learned in the training or adaptation phase presented earlier in this paper. Then, the likeli-
hood of the acoustics in terms of cepstral sequence corresponding to the hypothesized phone sequence and to
the generated VTR trajectory is computed using Eq. (7).

We use a large-scale N-best list in the rescoring experiments in order to obtain meaningful results. In our
experiments, the N-best list with N = 1000 is used, which is generated by a conventional, high-quality tri-
phone HMM with phone bigram as the “language model”. We found that even with the size of N to be as
large as 1000, the oracle phone error rate (PER) is still over 18%. And increasing N to 2000 only reduces
the oracle PER to 17%, while substantially increasing the computational cost of our N-best rescoring exper-
iments. Such a high oracle error rate is not favorable to our long-span contextual hidden trajectory model,
since any local error in the hypothesized phone(s) tends to propagate to its neighbors due to the continuity
constraint across phones on the VTR trajectory represented in model Stage 1. (This kind of “error propaga-
tion” effect is minimal for the short-span contextual models such as HMMs.) One simple way to artificially
remove the error propagation effect is to manually add the reference hypothesis into the N-best list to form
anew N+ 1=1001 candidate list. A good model should be able to rank the reference hypothesis higher to
the top among all the 1001 hypotheses than a poor model, reducing the “sentence” error rate (SER). This
SER can serve a meaningful performance measure for the quality of a long-span wide-context model such
as our hidden trajectory model.

We use this SER as the performance measure on the TIMIT core test set to compare the hidden trajectory
model whose VTR targets are adapted to each speaker (Section 4) versus the same model but with the VTR
targets trained speaker independently (Section 3). The results are shown in Fig. 9, where the oracle SER is
plotted as a function of top number of choices in the overall 1001 hypotheses. The reference is always within
the total 1001 candidates, no matter how they are re-scored. Hence, when the top number of candidates is
increased to 1001, the (oracle) SER naturally becomes zero. However, when the top number of candidates var-
ies below 1001, the hidden trajectory model with speaker adapted VTR targets is shown to consistently out-
perform the counterpart with no such adaptation. For example, within the top 50 candidates (among 1001 in
total) after rescoring by the model with speaker adaptive learning, 40% of the utterances (among 192 in total)
have the respective references included, whereas with the rescoring done by the model with speaker indepen-
dent targets, the inclusion rate drops to 21% (i.e., 79% SER).

Similar results are obtained when the oracle PER, instead of oracle SER, is plotted in Fig. 10 for the two
ways of determining the VTR targets. Again, consistently over all top numbers of candidates, the oracle PER
is significantly lower for the speaker-adaptive model than for the speaker-independent model. Take the same
data point at the top 50 candidates after rescoring by the model with speaker adaptive learning. Now the 40%
of the reference inclusion rate (60% SER) gives 13% oracle PER. This is significantly lower than the 17% PER
obtained by the model with the VTR targets trained speaker independently. For the top one candidate, the
PER is dropped from 24% to 21% by speaker adaptive learning of targets, giving a 14% relative phone error
reduction.

We emphasize that the above experiments were carried out by rescoring on the augmented N = 1001 best
list with correct references included. The oracle errors for different depths of the single N = 1001 list are
shown, which are generally not the top-best results. The main point of this paper is to compare the relative
results with and without speaker adaptation, and not to achieve the best possible results; our follow-up work
has been focused on this latter goal.
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Fig. 9. Oracle sentence error rate (SER) on the TIMIT core test set (192 utterances) using the bi-directional target-filtering hidden
trajectory model with its VTR targets determined in two ways: speaker adaptive learning vs. speaker independent learning. The result is
from rescoring of 1000-best lists generated from a conventional tri-phone HMM, and with the correct hypothesis added. No language
model is used in rescoring.
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Fig. 10. Oracle phone error rate (PER) on the TIMIT core test set. Conditions are the same as in Fig. 9.

It is of interest to note that when un-augmented N = 1000 lists are used for the rescoring experiment, the
effectiveness of the resonance target algorithm is reduced by about half. Shown in Table 3 are comparative
PERs before and after applying the speaker adaptation algorithm (vertical), and also before and after aug-

Table 3

Phone error rate comparison: before and after speaker target adaptation, and with and without augmenting N-best lists by references
Un-augmented N-best lists Augmented N-best lists

PER with no adaptation 29.4% 24.1%

PER after adaptation 28.2% 21.0%

Results are obtained by rescoring using the N-best lists generated from an HMM system.
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menting the N-best lists by adding references (horizontal). (No language model scores are used in the rescoring
since we are concerned mainly with acoustic modeling.) The N-best lists are generated by a high-quality HMM
system with a bi-phone language model, which gives the top-one PER of 27.5% (and SER of 100%). We note
that while the speaker adaptation algorithm reduces the PER in the experiments involving un-augmented N-
lists, the overall accuracy is low also. This is likely due to the “error propagation” effects that we discussed
earlier in this subsection. Our future work is aimed to overcome such effects and the work presented in this
paper has been limited to demonstrating the effectiveness of the speaker-adaptive algorithm.

6. Summary and conclusions

In this paper, we present a quantitative, two-stage model for predicting the VTR trajectories and then the
subsequent cepstrum trajectories. This hidden trajectory model is based on a bi-directional filtering of phone-
dependent, VTR target sequences implemented with a temporally symmetric FIR digital filter. The output of
the filter is mapped to the LPC cepstrum via a parameter-free, analytical nonlinear prediction function. Given
the LPC cepstral data computed from the input speech waveform, the likelihood that such acoustic data are
generated from the model can be computed as the basis for speech recognition.

One most important set of parameters in the hidden trajectory model is the VTR targets, which drive the
entire generative process of the VIR and acoustic trajectories. The main contribution of the work reported in
this paper is the development of learning algorithms to automatically determine these target values from the
observation data. Two algorithms are described in the paper. First, speaker-independent training is presented
in Section 3, which is based on the simplifying assumption that a single set of VTR targets are associated with
all the speakers. Second, speaker-adaptive learning is presented in Section 4, resulting in a speaker specific set
of VTR target parameters.

Experiments are conducted and reported in this paper to demonstrate the critical role of the VIR target
parameters in the model construction and its operation, and the superior performance of speaker adaptive
learning. The distributional results of the normalization factors computed in the adaptive learning algorithm
for all the 462 training speakers in TIMIT database are shown to demonstrate the wide variation of the VTR
targets over speaker, both within and across genders. Typical speech utterances are then used to demonstrate
that with the adaptively learned target parameters, both the VTR trajectory prediction and the cepstral tra-
jectory prediction match real speech data much better than using speaker-independent training. The results
show visually how the accuracy of the VTR and cepstral trajectory predictions depends upon the accuracy
of the VTR targets. Further, a phonetic recognizer is constructed using the hidden trajectory model with
two ways of determining the VTR target parameters. The recognizer is evaluated in a TIMIT phonetic recog-
nition task and large-scale N-best rescoring paradigm is used for the evaluation. The results demonstrate a
14% phone error rate reduction using the model with speaker adaptation of targets compared with without
such adaptation.

The future direction of the research in this area involves further expansion of the capability of the hidden
trajectory model by developing parametric forms of the target distribution as related to speaker variation and
speaking style variation. Our goal is to develop novel acoustic models of speech, exemplified by the hidden
trajectory model presented in this paper, to jointly account for variations of speech due to context, speaker,
speaking rate and style. This is to form a basis for building new types of conversational speech recognizers
more effective than the conventional HMM technology.
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