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ABSTRACT

Hierarchical transforms are widely used in image and video coding
to produce multilevel decomposition of signals. After applying these
transforms, same level signals are typically uncorrelated. However,
there is often still significant cross level information. Traditionally,
this cross-level information is exploited at the entropy coding step,
but not at the transform step. The main contribution of this work
is an energy compaction technique/transform that can also exploit
these cross-resolution-level structural similarities. The core idea
of the technique is to include in the hierarchical transform a num-
ber of adaptive basis functions derived from the lower resolution
of the signal. A full image codec was developed in order to mea-
sure the performance of the new transform. Results are presented in
terms of transform coding gain, energy concentration and distortion
versus rate curves compared with standard JPEG, JPEG 2000 and
JPEG XR.

Index Terms— Signal dependent transform, Hierarchical
block-based transform, Image coding

1. INTRODUCTION

Linear transforms are a key tool in signal compression. They re-
move correlation between adjacent samples, concentrating the signal
energy in a few coefficients, with associated gains in compression
efficiency. Most modern codecs use hierarchical transforms, which
allow to capture image correlation at different resolution levels, with
reasonable complexity. One of the characteristics of these hierarchi-
cal transforms is that after its application, although the dependency
among the subbands in the same level is highly reduced, there is still
dependency among the subbands across different levels. This depen-
dency has been successfully exploited at the entropy coding codec
stage since the zerotrees concept was introduced by the Embedded
Zerotrees Wavelet (EZW) algorithm [1]. However, this dependency
has not yet been effectively exploited at the transform codec stage.
Some recent work makes great progress in exploiting some of the
cross-band, cross-region, or cross-color similarities [2, 3, 4]. How-
ever, they are tipically target at exploiting one particular aspect of
these similarities, and it is hard to group them, or extend to other
types of similarities.

In this paper we propose a framework that allows any type of
similarity to be exploited in an unified way. The new transform pre-
sented here is hierarchical, adaptive and signal dependent. Based on
these features, it was named HSDT (Hierarchical Signal Dependent

Transform). The characteristics of the HSDT provide several advan-
tages. As it is hierarchical, both spatial and quality scalability are
naturally provided.

Additionally, the framework is flexible enough that to allow both
overlapping or block transforms to be designed. In this paper we dis-
cuss mostly the block-based HSDT construction, which is simpler.
Unlike other hierarchical transforms, the block-based HDST can be
designed to allow unrestricted data access to previous hierarchical
level or other regions of the current level. Yet, it does not signif-
icantly increase complexity, because it is applied in a block-based
fashion with blocks of fixed size 8x8. The common blocking arti-
facts resulting from the applications of block transforms, specially
at low bit-rates, are less perceptible as they are spread among the
several hierarchical levels. As the bit-rate decreases, the distortion
takes the form of a gradually increasing blurriness or loss of details.
Additionally, the adaptation scheme exploits the signal dependency
between levels by taking advantage of both directionality and neigh-
borhood correlation properties of most images.

As expected by the adaptation process, each block in each level
will be coded with a different and optimized basis. The results of a
set of adaptive functions applied to the lower resolution signal will
compose this optimized basis. These results are ordered as basis
vectors in a way that the results of the best functions, i.e., the func-
tions that give the maximum projections, are placed in the initial
basis positions. To order the functions appropriately, several statis-
tical measures, such as standard deviation and local correlation, are
initially computed for the block itself and its neighborhood. These
measures define block classes, e.g., uniform blocks in directional
neighborhoods. The classes are then associated with the best func-
tions to represent blocks with the specific characteristics described
by the classes. This association between classes and best functions is
defined by a previous extensive machine learning process employing
several blocks from several images.

Like the basis pursuit coding scheme [5], the set of adaptive
functions in the HSDT can be seen as a dictionary formed and or-
dered by a learning process. However, the results of the adaptive
functions are the basis vectors, not the functions. Unlike the basis
pursuit scheme, all basis vectors are orthonormalized, resulting in a
complete basis, not in an overcomplete basis. Additionally, all coef-
ficients resulting from the application of the basis to each block are
scanned and entropy coded. Therefore, there is no sparse coding.

The transform process generation will be detailed in Section 2.
Sections 3 discusses the results in terms of transform coding gain,
as well as details of the associated image codec. Finally, Section 4
makes concluding remarks, and plots future directions.



S x S 

original 

image

S/2 x S/2 
4

4

8

8

4

4

8

8

...

...

...

......

...

...

...
S/4 x S/4

8 x 8

16 x 16

32 x 32

..
.

Level 1

Level 2

Level 3

..
.

Level max

Level max-1

Level max-2

Fig. 1. 8x8 HSDT application process arranged in the form of a
max-level pyramid.

2. THE HIERARCHICAL BLOCK-BASED SIGNAL
DEPENDENT TRANSFORM

Coefficients of hierarchical transforms (e.g., wavelets) are often di-
vided into two groups, and called “approximation” and “detail” co-
efficients. After each stage in the hierarchy, the transform is then ap-
plied again to the “approximation” coefficients, generating the multi-
resolution versions of the image we are used to see. Thus, the role
of the approximation coefficients is to produce a lower resolution
image, while the role of the ”detail” coefficients is to represent the
fine details removed while producing such lower resolution image.
It is important to our discussion to note that - because traditional
transforms are linear and fixed - it does not matter in which order
we compute the coefficients. Thus, for simplicity, traditional hier-
archical decompositions are computed level by level, typically from
highest resolution to lowest. In contrast (and similar to some lifting
approaches), the HSDT is computed in two cycles: first, all levels
of the “approximation” coefficients are computed, and only then are
the detail coefficients computed, starting at the lowest resolution. We
now give some details of the construction of the HSDT.

The HSDT is applied in this work in a block-based fashion with
blocks of fixed size 8x8. Furthermore, we adopt the 2-D DCT basis
for the lowest 4x4 coefficients. More elaborate designs are certainly
possible, and will produce additional gains. However, we chose the
8x8 block design based on the DCT because it is simple, flexible,
and able to show most properties of the proposed framework by con-
trasting to one of the most widely used transforms.

More specifically, at each level the lowest 4x4 coefficients of
an 8x8 2-D DCT are computed. An 4x4 inverse DCT is then ap-
plied to these coefficients, thus producing an reduced resolution (4x4
pixels) version of the original (8x8 pixels) block. These procedure
will be repeated hierarchically until the lowest desired resolution is
achieved. This imply that, at the next level, four of these 4x4 recon-
structed blocks will be concatenated, producing an 8x8 pixel block,
which undergoes the same computation. This procedure is graphi-
cally illustrated in the form of a pyramid in Fig. 1.

The objective of this first step is simply to produce a multires-
olution image pyramid. Any scaling function could be used, with
the only constrain that the lower resolution image preserve enough

information to avoid dimensionality expansion. The choice of the
two-dimensional DCT allow us to obey this constrain for each 8x8
block. The same would also apply to any other non-overlapping
block transform. Overlapping transforms could equally be used, but
would require independence and orthogonality considerations over
the whole image, which would make the analysis on this paper un-
necessarily complex.

After the scaling functions of the hierarchical transform are ap-
plied in each decomposition level, next step is to compute the detail
coefficients. In the end, the approximation coefficients can be seen
as an intermediate computation level, since (except for the lowest
level) the detail coefficients are the only ones actually transmitted.
The adaptation process of the HSDT starts at the highest decompo-
sition level. For each block, at each level, we will design an or-
thogonal basis to code the residual information down the pyramid
structure as efficiently as possible. We will do this by designing
an orthonormal basis using all information available at that point.
This includes the full lower resolution image, as well as all previous
blocks at the current resolution level. A set of adaptive functions,
which will detailed in Section 2.1, is applied to each 4x4 full block,
i.e. the block with dimensionality 64, of the lower resolution image.
These functions should produce 8x8 full blocks as similar as possi-
ble to each 8x8 full block of the current level. If this similarity is
successfully achieved, the representation of these computed 8x8 full
blocks with dimensionality 48 will match the residual block being
coded. Therefore, an optimized basis for this residual block can be
obtained by including these 8x8 computed blocks as basis vectors in
the transform.

As all basis vectors in the transform are applied to the whole
residual 8x8 block, the HSDT is not separable and must be arranged
in its 64x64 matrix form. Since the adaptive basis is generated only
to code the residual blocks, the first 16 rows of the transform matrix
are never modified, while the other 48 rows are adapted. There-
fore, the first 16 rows of the HSDT transform matrix are exactly the
scaling functions of the multilevel DCT which are already linearly
independent. However, each basis vector resulting from the adap-
tive functions that is included in the matrix is linearly dependent
and must be orthonormalized with respect to the first 16 rows and to
the other basis vectors previously included into the matrix. This or-
thonormalization process is performed row-by-row until the basis is
complete. Consequently, at the end of the HSDT matrix generation
process, a complete orthonormal optimized basis is obtained.

It is important to note that the same basis can be generated both
at the encoding and decoding processes, once the adaptation depends
only on the lower resolution image computed at the previous decom-
position level. So, there is no overhead.

In the linear algebra view of the HSDT application, the residual
block is initially read by columns in order to form a block vector.
Then, the inner product of this block vector and the basis vectors
is computed to obtain the resulting coefficients. The approximation
coefficients (first 16) will be null, once the residual block has di-
mensionality 48, and the first residual coefficient (17th coefficient)
will concentrate most of the residual block energy, if the adaptive
functions are successfully designed.

2.1. Adaptive Functions

The performance of the HSDT is highly dependent on the perfor-
mance of the adaptive functions. If the adaptive functions can pro-
duce basis vectors that, after the orthonormalization process, are
similar to the residual block, the transform will achieve its goal of
high energy concentration. In this initial study, two natural image



Fig. 2. Application of a directional adaptive function to an expanded
8x8 lower resolution block (to reduce blocking artifacts) in order to
produce a basis vector.

properties are exploited by the adaptive functions: directionality and
correlation. We believe many higher level aspects of image can be
exploited in the framework introduced in this paper. For example, by
looking at similar blocks at the current level in relation to previous
level, the sharpness of the image at current level can be predicted
and incorporated in the adaptive basis. Similar more can be done in
this respect, and will significantly improve performance.

2.1.1. Directional Adaptive Functions

For most images, correlation changes locally and is typically
stronger along a certain direction, not necessarily being horizontal
or vertical. Based on these considerations, several directional trans-
forms have been proposed [6, 7, 8, 9]. These transforms can be clas-
sified into two categories. In the first category, new transforms are
introduced to incorporate directional bases, like curvelets [6]. The
transforms of the second category are modified from existing trans-
forms, such as the directional wavelet transform [7], the directional
DCT transform [8] and the directional lapped transform [9].

The scheme proposed to design directional adaptive functions in
this work is from the first category and consists of two steps. All
adaptive functions are applied to the 4x4 full blocks of the lower
resolution image and must produce 8x8 full blocks. Therefore, in
the first step, the dominant direction of the 4x4 block is identified,
provided that the block has a strong correlation along a certain di-
rection. This step is referred to as direction detection. In the second
step, the block is interpolated in the dominant direction to generate
the 8x8 block from the 4x4 block. This step is, then, referred to as
directional interpolation. An example of the results obtained with
these techniques is shown in Fig. 2.

The combination of direction detection and directional interpo-
lation techniques is suitable to produce directional adaptive func-
tions for the HSDT based on the assumption that lower resolution
blocks with strong directional patterns show the same strong direc-
tional patterns in the corresponding residual block.

Several direction detection techniques are employed by HSDT
and can be separated into three categories:

1) Hough transform using the principle of template match-
ing [10];

2) Texture descriptors that compute spatial activity in specific
directions, such as LAS (Local Activity Spectrum) [11] and
SASI (Statistical Analysis of Structural Information) [12];

3) Orthogonal regression using principal components analysis.

The dominant direction of the block is determined by one of
the direction detection techniques and the interpolation is performed
employing directional and Euclidean weights enclosing a 12-point or
16-point neighborhood. Each combination of the techniques forms a

Fig. 3. Application of a block matching adaptive function to a 4x4
lower resolution block in order to produce a basis vector.

directional adaptive function, resulting in a set of 30 different func-
tions.

2.1.2. Block Matching Adaptive Functions

While the directional adaptive functions exploit the natural blocks
directionality, the block matching adaptive functions exploit the nat-
ural local and non-local blocks correlations. It is well recognized
that pixels in images usually have a strong correlation to their neigh-
boring pixels, known as local correlation. In addition, across an im-
age, there are potentially similar structures and repeated patterns,
exhibiting strong non-local correlations.

The scheme proposed to design block matching adaptive func-
tions in this work takes advantage of the correlation among the 4x4
full blocks of the lower resolution image to obtain the basis vector
to be included in the transform matrix. As indicated by Fig. 3, the
block matching algorithm is applied only to the full blocks of the
lower resolution image. Initially, the corresponding lower resolu-
tion block of the current block being encoded/decoded is localized.
Then, the most similar block to the lower resolution block is identi-
fied. Finally, the corresponding full 8x8 block of this most similar
block is localized and read by columns to form the basis vector. It is
important to note that, unlike performed by the directional adaptive
functions, the blocks read as columns to form the basis vectors are
not produced by directional interpolation. These blocks are directly
extracted from the already encoded/decoded blocks of the current
full image.

The block matching algorithms in this work employ a small win-
dow search of 3x5 blocks, i.e., 12x20 values and the matching com-
putations can be performed in two stages using SAD (Sum of Abso-
lute Differences) as the distance metric. In the first stage, only the
central 4x4 areas of connected blocks, are compared with the current
block. In the second stage, only the best match area is expanded to
a 8x8 area and new comparisons are performed pixel-by-pixel in a
full search procedure. A variation of this technique is to not only se-
lect the best match block, but compute the mean of the 5 best match
blocks.

Like described for the directional adaptive functions, the block
matching adaptive functions also employ texture descriptors. The
difference is that, unlike the directional functions, here all the val-
ues computed for each descriptor, not only the largest autocorrela-
tion coefficient considered for the direction detection, are taken into
account. The descriptors are composed of a set of values and sev-
eral distance metrics are employed in order to measure the similar-
ity among the descriptors computed for each block. Another dif-
ference is that not only descriptors that detect directional features
in the blocks are computed, such as LAS and SASI. Texture descrip-
tors that describe the neighborhood of each value inside the block are
also employed, such as the LBP (Local Binary Pattern) [13]. Consid-
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Fig. 4. Performance evaluation for adaptive and DCT functions in
terms of average energy percentage per function.

ering all the possible combinations, a total of 18 different blocking
matching adaptive functions arises.

2.1.3. Performance Evaluation of Basis Functions

As 30 directional functions and 18 blocking matching functions re-
sulted from the combination of the techniques previously described,
an initial experiment was conducted to evaluate the average perfor-
mance of the functions over several images from a large database
of perceptually diverse content [14]. The evaluation was performed
with several QPs (Quantization Parameters) and also included the 48
residual wavelet functions of the multilevel two-dimensional DCT.
The results obtained with QP 60 are shown in Fig. 4. The metric em-
ployed to evaluate the functions was the average energy percentage
represented only by the first residual coefficient with respect to the
total residual block energy.

Several conclusions can be taken from the graph in Fig. 4. The
performance of the block matching adaptive functions in the initial
18 positions is better, in general, than the performance of the direc-
tional adaptive functions in the following 30 positions. The adap-
tive functions indeed achieve, in the average, higher energy concen-
trations than the DCT functions. Besides, the adaptive functions
achieve more energy concentration in higher decomposition levels
(3 and 4), while the DCT functions achieve their best energy con-
centration results in lower levels (1 and 2).

An additional important result is a best-in-the-average scanning
order for the two-dimensional DCT functions. An interesting aspect
of this result is that the first 10 functions read according to the best-
in-the-average order are exactly the lower-frequency functions of the
residual two-dimensional DCT subbands. This order is referred to as
adaptive order in Fig. 5, while the traditional zig-zag scanning order
is referred to as fixed order. It can be seen that the adaptive order
compacts more energy in the first residual coefficients and provides
a smoother decay curve. Readers are directed to the thesis in [15]
for more details.

2.2. Basis Vectors Ordering

It is important to note that the performance of the adaptive functions
in Fig. 4 is the average performance across several images. Individ-
ual performances per block can achieve much better results, such as
78% of the total block energy represented only by the first residual
coefficient. The considerable variance in the functions performance
raised the need to identify the “goodness” of each adaptive function
with respect to the specific characteristics of each residual block. For
instance, an uniform residual block localized in a correlated image
area could be successfully coded with a block matching adaptive
function. On the other hand, a directional residual block localized
in a non-correlated area probably would be better coded with a di-
rectional adaptive function. And finally, a non-directional residual
block in a non-uniform area would not benefit much from adaptive
functions and should be coded with the standard two-dimensional
DCT.

Therefore, it is clear that the characteristics of each residual
block must be measured and the best adaptive or DCT functions to
code each type of residual block must be identified. This process was
performed in three steps in this work. In the first step, the following
statistical measures considering not only the residual block itself but
also its neighborhood were computed:

1) Standard deviation;
2) Spatial activity to measure block correlation;
3) Standard deviation of the spatial activities to differentiate uni-

form blocks from directional blocks;
4) SAD to measure neighborhood correlation;
5) Standard deviation of the SADs to differentiate uniform

neighborhoods from directional neighborhoods.

In the second step, the best 15 adaptive functions and the best
10 DCT functions were selected according to the average perfor-
mance results shown in Fig. 4. And finally, in the third step, the
relation between the energy concentration performance of each se-
lected adaptive/DCT function and the statistical measures per block
is found through an extensive training process employing multiple
linear regression. For all blocks of the several images in [14], the five
statistical measures were stored and the performance of the adap-
tive/DCT functions was also stored. At the end of the training pro-
cess, multiple linear regression was applied to minimize the sum of
the squares of the distances between the hyperplanes and the sta-
tistical measures. One hyperplane is determined for each of the 10
selected DCT functions and each of the 15 selected adaptive func-
tions. The equation of the hyperplane is:

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 (1)

where x1−5 are the 5 statistical measures, y gives the approximate
energy concentration achieved by each function for a block with
characteristics defined by the statistical measures x1−5 and β1−5 are
the coefficient regressors. The coefficient regressors are the main re-
sult of the training process and are stored to be used on-the-fly in the
encoding/decoding processes of each block. The function chosen to
encode/decode the block on-the-fly is the function which returns the
highest y value.

Not only the best function for the first transform matrix position
must be given through Eq. (1), but also the best functions for all
other matrix positions. If the first basis vector represents 50% of
the total residual energy, but the other 50% of the energy is spread
across the remaining 47 basis vectors or even concentrated in the last



basis vectors, the overall performance of the transform will not be
satisfactory. It is important not to place functions that exploit similar
characteristics of the blocks together. For instance, if the first and the
second basis vectors are very similar, after the orthonormalization,
the second basis vectors will become too randomized and most of
the energy it could represent would have already been represented
by the first basis vector.

This method of ordering the basis vectors is referred to as re-
gression hyperplanes order in Fig. 5. The other method applied in
this work to order the basis vectors employs the Karhunen-Love
transform (KLT) and is referred to as KLT order in Fig. 5. The
KLT is applied to the selected adaptive functions and decomposes
them as a linear combination of the principal components of the
functions. Therefore, the functions are uncorrelated and the com-
mon good characteristics of the best functions are reinforced, while
the uncommon undesirable characteristics are weakened. After the
eigendecomposition, the eigenvalues are sorted in descending order
and only the initial corresponding eigenvectors are kept in order to
form the final basis. The remaining positions of the transform matrix
are filled with the functions of the default two-dimensional DCT or-
dered according to the best-in-the-average scanning order presented
in Section 2.1.3.

Palm Leaf image

Fig. 5. Residual coefficients average energy concentration for the
Palm leaf image.

3. RESULTS

We evaluate the results of our HSDT by using two methods: compar-
ing transform coding gain (TCG), and implementing a simple image
codec.

3.1. Transform coding gain

The transform coding gain (TCG) is a measure developed for com-
paring energy concentration performance of various transforms. It
is defined as the ratio between the arithmetic and geometric means
of the coefficients energy, and gives an approximation of the coding
gain of a transform, when followed by an appropriate entropy coder.
As expected, the coding gain of the HSDT was significantly superior
to the baseline (hierarchical DCT). For example, for the Palm Leaf
image in the right upper corner of Fig. 5, the HSDT outperforms the
DCT by 4.1 dB. For the other 16 images on the Kodak database, the

HSDT TCG gains over DCT vary from 0.9 dB to 5.2 dB, with an
average of 2.2 dB.

Besides providing high energy concentration in few coefficients,
it is desirable that the transform coefficients be ordered in a “decreas-
ing in the average” order. The average percentage energy per coef-
ficient is shown in Fig. 5 for the 48 residual coefficients of the Palm
leaf image. It can be seen that approximately 55% of the energy is
concentrated only in the first residual coefficient. Results for other
images presenting different contents also shown that the HSDT out-
performs the DCT providing both smoother decay curves and higher
energy concentrations in the initial residual coefficients.

3.2. A simple codec

The structure of the HSDT does not easily fit into that of traditional
codecs, and developing a full blown codec that matches the level of
efficiency and tuning of existing commercial codecs would be too
time consuming. Yet, it would be important to evaluate performance
on a full codec, even given the caveats mentioned above. Thus, as a
proof of concept, a simple image codec was implemented to evaluate
the potential gain from the HSDT. At each stage, the transform coef-
ficients are quantized by a uniform scalar quantizer with a deadzone.
The quantizer is not tuned to the application, and the quantization
step (QP) is pre-defined and used to code all residual coefficients
from blocks in all decomposition levels. The scanning of the quan-
tized coefficients can be done sequentially or progressively and the
entropy coding stage employs an arithmetic coder. The coder statis-
tical model for the residual coefficients was not optimized, and starts
with an uniform distribution for each decomposition level. This ini-
tial (uniform) statistical model is then updated only on-the-fly after
each symbol encoding/decoding. After all decomposition levels are
entropy coded, the final bitstream is produced, written in the coded
file and the coding process is completed. As the main purpose of the
full image codec is to evaluate the HSDT, the entropy coding stage,
as well as the quantization stage, were kept as simple as possible.

The distortion versus bit-rate performance comparisons are per-
formed among JPEG, JPEG XR, JPEG 2000 and the HSDT codec
using the two basis vector ordering methods described in Section 2.2:
regression hyperplanes and KLT. The HSDT codec has more compa-
rable characteristics with JPEG XR than with JPEG and JPEG 2000.
Among other comparable features, JPEG XR also employs a block
transform and its frequency mode enables quality and spatial scal-
ability functions. The Y-PSNR versus bit-rate curves are shown in
Fig. 6 for the Palm leaf image. Even with the HSDT codec con-
straints (quantization and entropy coding stages were not optimized),
it outperforms JPEG XR by approximately 1dB on average. As ex-
pected, JPEG 2000 outperforms all other image codecs. We believe
that by extending the HSDT to an overlapping transform (as used in
JPEG 2000), similar gains can be expected.

Note in Fig. 7 that, while JPEG XR introduces more visible
blocking artifacts, HSDT produces more blurred images for com-
parable bit-rate scenarios. This is an interesting result obtained for
the HSDT because, although it also employs a block transform as
the JPEG XR, the blocking artifacts are weakened through the vari-
ous decomposition levels. It is important to note here that JPEG XR
has as an optional second transform lapped stage to reduce blocking
artifacts at low bit-rates.

4. CONCLUSIONS

In this paper we proposed a new framework to design adaptive trans-
forms. The framework allows one to exploit intra- and inter-level



Fig. 6. Y-PSNR versus bit-rate curves for the Palm leaf image.

a) b)

Fig. 7. Reconstructed Palm leaf image previously encoded with: a)
HSDT at 0.25 bpp (achieving Y-PSNR of 32.5 dB) and b) JPEG XR
at 0.22 bpp (achieving Y-PSNR of 31 dB).

similarities of an image. Yet it avoids overcomplete or other dimen-
sionality expanding approaches: at each stage of each block, the re-
sulting transform forms an orthornormal basis.

Although we believe most of the gain is still to be explored,
initial results already show an average coding gain of 2.2 dB over
the underlying transform (the hierarchical DCT). We implemented
a simple codec to verify how these gains reflect into a more com-
plete codec, and compared results to standard codecs. Experiments
showed that HSDT is comparable with JPEG XR. Furthermore, for
images with high directional content, results were up to 3 dB better
than the equivalent results with JPEG XR. Recent research [2, 4] has
shown that local image similarities can be used to increase the energy
compaction of local transforms by making them adaptive to the sig-
nal. The HSDT significantly extends the recent research by creating
a framework that allows other types of similarities to be exploited.

We have shown the HSDT effectively exploits image similarity,
and direction content in images. We believe that even better results
will be achieved with the development of new basis functions, and
after tuning of the quantization and entropy coding stages.

In summary, this work shows that there is still room for further
improvement in image coding exploiting cross-level structural simi-
larities, and creates a framework in which this can be exploited.
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