Green: A System for Supporting Energy-Conscious Programming
using Principled Approximation

Woongki Baek
Stanford University
wkbaek@stanford.edu

Abstract

Energy-efficient computing is important in sev-
eral systems ranging from embedded devices to large
scale data centers. Several application domains
offer the opportunity to tradeoff quality of ser-
vice/solution (QoS) for improvements in perfor-
mance and reduction in energy consumption. Pro-
grammers sometimes take advantage of such oppor-
tunities, albeit in an ad-hoc manner and often with-
out providing any QoS guarantees.

We propose a system called Green that provides a
simple and flexible framework that allows program-
mers to take advantage of such approrimation op-
portunities in a systematic manner while providing
statistical QoS guarantees. Green enables program-
mers to approximate expensive functions and loops
and operates in two phases. In the calibration phase,
it builds a model of the QoS loss produced by the ap-
proximation. This model is used in the operational
phase to make approximation decisions based on the
QoS constraints specified by the programmer. The
operational phase also includes an adaptation func-
tion that occasionally monitors the runtime behavior
and changes the approzimation decisions and QoS
model to provide strong QoS guarantees.

To evaluate the effectiveness of Green, we im-
plemented our system and language extensions us-
ing the Phoeniz compiler framework. Our exper-
iments using benchmarks from domains such as
graphics, machine learning, and signal processing,
and a real-world web search application, indicate
that Green can produce significant improvements
in performance and energy consumption with small
and statistically guaranteed QoS degradation.

Trishul M. Chilimbi
Microsoft Research
trishulc@microsoft.com

1 Introduction

Companies such as Amazon, Google, Microsoft,
and Yahoo are building several large data centers
containing tens of thousands of machines to pro-
vide the processing capability necessary to support
web services such as search, email, online shopping,
etc. [3]. Not surprisingly, power is a large compo-
nent of the monthly operational costs of running
these facilities and companies have attempted to ad-
dress this by locating them in places where power
is cheap [10]. In addition, energy is often a key de-
sign constraint in the mobile and embedded devices
space given the current limitations of battery tech-
nology.

There are several application domains where it is
acceptable to provide an approximate answer when
the cost and resources required to provide a pre-
cise answer are unavailable or not justified. For ex-
ample, real-time ray tracing is infeasible on current
PCs so games employ a variety of techniques to pro-
duce realistic looking lighting and shadows while
still rendering at 60 frames per second. Content
such as images, music, and movies are compressed
and encoded to various degrees that provide a trade-
off between size requirements and fidelity. Such ap-
proximations typically result in the program per-
forming a smaller amount of processing and conse-
quently consuming less energy while still producing
acceptable output.

Programmers often take advantage of such Qual-
ity of Service (QoS) tradeoffs by making use of
domain-specific characteristics and employing a va-
riety of heuristics. Unfortunately, these techniques
are often used in an ad-hoc manner and program-
mers rarely quantify the impact of these approxi-
mations on the application. Even in cases where
they attempt to quantify the impact of the heuris-
tics used, these are hard to maintain and keep up-
to-date as programs evolve and add new features

and functionality.

To address these issues, this paper proposes
Green, which is a system for supporting energy-
conscious programming using loop and function ap-
proximation. Green provides a simple, yet flexible
framework and programming support for approxi-
mating expensive loops and functions in programs.
It allows programmers to specify a maximal QoS
loss that will be tolerated and provides statisti-
cal guarantees that the application will meet this
QoS target. Programmers must provide (possibly
multiple) approximate versions of the function for
function approximation. Unless directed otherwise,
Green uses the function return value as the QoS
measure and computes loss in QoS by comparing
against the value returned by the precise function
version given the same input. Loops are approx-
imated by running fewer loop iterations. In this
case, a programmer must provide a function that
computes QoS to enable Green to calculate the loss
in QoS that arises from early loop termination.

Green uses this information to construct a “cal-
ibration” program version. Green runs this appli-
cation version with a programmer-provided set of
calibration inputs to construct a QoS model that
quantifies the loss in QoS that results from using the
approximate version of the function or loop and the
corresponding improvement in application perfor-
mance and energy consumption. Green then gener-
ates an “approximate” version of the program that
uses this QoS model in conjunction with the pro-
grammer supplied QoS target to determine when to
use the approximate version of the function or ter-
minate the loop early while still meeting the QoS
requirement. Since the QoS degradation on actual
program inputs may differ from that observed dur-
ing calibration, Green also samples the QoS loss
observed at runtime and updates the approxima-
tion decision logic to meet the specified QoS tar-
get. In this way, Green attempts to provide statis-
tical guarantees that the specified QoS will be met.
Such statistical guarantees are becoming important
as cloud-based companies provide web services with
Service Level Agreements (SLAs) that typically take
the form: “the service will provide a response within
300ms for 99.9% of its requests for a peak client load
of 500 requests per second” [7].

Our experimental results indicate that Green can
significantly improve performance and reduce en-
ergy consumption of several applications with only
a small degradation in QoS. In particular, we im-
proved the performance and reduced the energy con-
sumption of Live Search, a back-end implementa-
tion of a commercial web-search engine by 22.0%

and 14.0% respectively with 0.27% of QoS degra-
dation (three queries out of a thousand returned
a search result that included at least one differ-
ent document or the same documents in a differ-
ent rank order). We also empirically demonstrate
that Green can generate a robust QoS model with a
relatively small training data-set and that runtime
re-calibration can enable applications to meet their
QoS targets even if they use imperfect QoS models.

This paper makes the following main contribu-
tions.

e Describes the design and implementation of the
Green system, which provides simple, yet flexi-
ble support for energy-conscious programming
using function and loop approximations.

e Experimental evaluation of the Green system
that shows significant improvements in perfor-
mance and energy consumption with little QoS
degradation.

e Experimental evidence that indicates that
Green’s QoS modeling is robust and that its
adaptation supports meeting target QoS re-
quirements.

The rest of the paper is organized as follows. Sec-
tion 2 describes the design of the Green system.
Section 3 discusses our implementation of Green.
Experimental evaluation of Green is described in
Section 4. Section 5 provides a brief overview of
related work.

2 Green Design

Figure 1 provides a high-level overview of the
Green system that we introduce and discuss in more
detail in this section.

2.1 Principled Program Approximation

Expensive functions and loops present attractive
targets for program approximation because they are
modular and time-consuming portions of programs.
We consider function approximations that use an
alternative, programmer-supplied approximate ver-
sion of the function and loop approximations that
terminate the loop earlier than the base (precise)
version. But we would like to quantify the impact
these approximations have on the QoS of the pro-
gram. First, the programmer must supply code to
compute a QoS metric for the application. Next,
we require a calibration phase where the program

Calibration

Training data -sets

- Build a QoS model

- Monitor execution using training data-sets

QoS model

v

Approximation

Re-calibration

and QoS SLA

- Decide whether to approximate using QoS model <

A

- Occasionally monitor execution
- 1f QoS is low, recalibrate the model

?

#

Input data-sets ,
QoSSLA

Figure 1. Overview of the Green system.

is run with a collection of training inputs. Dur-
ing these training runs, we monitor and record the
impact function or loop approximation has on the
program’s QoS and its performance and energy con-
sumption. This data is used to build a QoS model
that is subsequently used by Green to decide when
to approximate and when to use the precise ver-
sion in order to guarantee user-specified QoS Service
Level Agreements (SLAs). Figure 2 illustrates at a
high-level how Green approximates loops or func-
tion while still attempting to meet required QoS
SLAs. The QoS model constructed in the cali-
bration phase is used by QoS_Approx() to decide
whether approximation is appropriate in the cur-
rent situation as determined by the function input
or loop iteration count. Since the QoS degrada-
tion on the actual program inputs may differ from
that observed during the calibration phase, Green
provides a mechanism to occasionally measure the
program’s QoS and update the QoS approximation
decisions at runtime.

2.2 Green Mechanisms

As described, Green requires a QoS_Compute()
function for computing the program’s QoS,
a QoS_Approx() function for determining
whether to perform an approximation, and a
QoS_ReCalibrate() function for revisiting approx-
imation decisions at runtime. In addition, it
requires a set of training inputs to construct the
QoS model and a QoS_SLA value that must be

met. We provide a high-level description of these
mechanisms here and leave a detailed discussion to
the next section.

2.2.1 QoS Calibration and Modeling

Green’s calibration phase collects the data re-
quired to build the QoS model. It requires
QoS_Compute(), which is application dependent
and can range from trivial as in the case of using the
approximated function’s return value to a complex
computation involving pixel values rendered on the
screen. Green uses this function along with the set
of training inputs to construct a QoS model that
relates function inputs in the case of function ap-
proximation and loop iteration count in the case of
loop approximation to loss in QoS and performance
and energy consumption improvements. This QoS
model is used in conjunction with a provided target
QoS SLA to make approximation decisions.

2.2.2 QoS Approximation

QoS_Approx() comes in two main flavors for loop
approximations. In the static variety, the approxi-
mation is solely determined by the QoS model con-
structed in the calibration phase. Here the loop
iteration count threshold is determined by the QoS
model and the user-specified QoS SLA. Once the
loop iteration count exceeds this threshold, the ap-
proximation breaks out of the loop. The adaptive
variety is based on the law of diminishing returns.
Here the approximation uses the QoS model in con-

Expensive functions

Expensive loops

Figure 2. High-level overview of code gen-
eration.

junction with the QoS SLA to determine appropri-
ate intervals at which to measure change in QoS and
the amount of QoS improvement needed to continue
iterating the loop. For function approximation, the
QoS model is used in conjunction with the QoS SLA
and an optional function input parameter range to
determine which approximate version of the func-
tion should be used.

2.2.3 QoS Re-Calibration

The program’s behavior may occasionally differ
from that observed on its training inputs and
QoS_ReCalibration() provides a mechanism to de-
tect and correct for this effect. In the case of loop
approximation, when used with static approxima-
tion re-calibration can update the QoS model and
increase the loop iteration count threshold to com-
pensate for higher than expected QoS degradation
or decrease this threshold to improve performance
and energy consumption when QoS degradation is
lower than expected. Similarly, when used with
adaptive approximation re-calibration can appropri-
ately change the interval used to measure change
in QoS and/or QoS improvement required to con-
tinue. For function approximation, re-calibration
allows Green to switch the approximate version of
the function used to one that is more or less precise
as determined by the observed QoS loss.

2.2.4 Discussion

Since, as shown in Section 4, Green’s re-calibration
mechanism is quite effective, one might underesti-

mate the importance of the calibration phase and
attempt to solely rely on the re-calibration mech-
anism. However, the calibration phase is still im-
portant and necessary because it provides (1) faster
convergence to a good state, (2) reliable operation
even when users choose to avoid or minimize re-
calibration to lower overhead, and (3) programmer
insight into the application’s QoS tradeoff through
the QoS model.

3 Green Implementation

This section describes our implementation of the
Green system that provides a simple and flexible
framework for constructing a wide variety of ap-
proximation policies (see Figure 3 for overview).
Our goal is to provide a minimal and simple in-
terface that satisfies the requirements of the major-
ity of programmers while providing the hooks that
allow expert programmers to craft and implement
custom, complex policies. To achieve this, Green
comes with a couple of simple, default policies that
meet the needs of many applications and enables
them to benefit from using principled QoS approxi-
mation with minimal effort. At the same time, it al-
lows programmers to override these default policies
and supply their own by writing custom versions
of QoS_Approx() and QoS_ReCalibrate. We discuss
Green’s interface and default policies and provide
an instance of a customized policy.

3.1 Green Programming Support

3.1.1 Loop Approximation

Green supports loop approximation with a new
keyword approx_loop as shown in Figure 4. The
programmer uses approx_loop just before the tar-
get loop and supplies a pointer to a user-defined
QoS_Compute() function, the calibration granular-
ity (calibrate_QoS) for building the loop QoS model,
the value of the desired QoS_SLA and indicates
whether they want to use static or adaptive ap-
proximation. In addition, if the programmer wants
to avail of runtime re-calibration he/she must pro-
vide the sampling rate (sample_QoS) to perform re-
calibration. If a programmer wishes to construct
a custom policy, they must also supply pointers
to custom QoS_Approx() and/or QoS_ReCalibrate()

routines.

3.1.2 Function Approximation

For function approximation, Green introduces an
approx_function keyword as shown in Figure 6. The

Precise "QoS

Green Calibration”

compiler *

Program

with Green ;| Program
extensions i #
i | Calibration
: Inputs
1

i Calibration Phase

U

Execute

- QoS - Green: - Green_
i QoS_maodel compiler

Data

“Approximate”

Program

[}

Figure 3. Green implementation overview.

programmer uses approx_function just before the
target function implementation and supplies a func-
tion pointer array that contains pointers to user-
defined approximate versions of that function in in-
creasing order of precision, along with the value of
the desired QoS_SLA and a sampling rate (sam-
ple_QoS) if re-calibration is required. If the func-
tion return value does not provide the desired QoS
metric, the programmer must also supply a pointer
to a custom QoS_Compute() function. A custom in-
put range for function argument values can also be
provided to override the default of <-Inf,+Inf>. If
the function takes multiple arguments, Green re-
quires the parameter positions of the arguments
that should be used while building the QoS model.
As with approx_loop, the rest of the arguments are
optional and only needed for custom policies.

3.2 Green System Implementation

Figure 3 provides a high-level overview of the
Green system implementation. The Green compiler
first generates a “calibration” version of the pro-
gram that is run with user-provided calibration in-
puts to generate QoS data needed to build the QoS
model. Then the compiler uses this constructed QoS
model to generate an “approximate” version of the
program that can be run in place of the original. It
synthesizes code to implement QoS_Approx() and
QoS_ReCalibrate().

3.2.1 Loop Approximation

Figure 4 shows pseudo-code generated by the
Green compiler from the original code with the
approx_loop keyword. The programmer-supplied
QoS_Compute() function is used in the calibration
phase to tabulate the loss in QoS resulting from
early loop termination at loop iteration counts spec-

ified by Calibrate_QoS. The QoS-Compute() func-
tion has the following interface: QoS_Compute (re-
turn_QoS, loop_count, calibrate, Calibrate_QoS, ...)
and the search application’s version is shown in Fig-
ure 5. Note that when QoS_Compute() is called
with return_QoS unset it stores the QoS computed
at that point and only returns QoS_loss when this
flag is set. Then, it compares the current QoS
against the stored QoS to return the QoS loss.
When it is called with the calibrate flag set at the
end of the loop in calibration mode, it computes
and stores the % QoS loss when the loop termi-
nates early at loop iteration counts specified by Cal-
ibrate_QoS.

This calibration data is then used by Green’s QoS
modeling routine that is implemented as a MAT-
LAB program and supports the following interface
for loops:

M = QoS_Model_Loop(QoS_SLA, static) (1)
< Period, Target_Delta >=
QoS_Model_Loop(QoS_SLA, adaptive) (2)

For static approximation the QoS model sup-
plies the loop iteration count that is used by
QoS_Approx() for early loop termination. In the
adaptive approximation case, the QoS model de-
termines the period and target QoS improvement
required to continue iterating the loop.

The synthesized QoS-Approx() code shown uses
the parameters generated by the QoS model to per-
form approximation. When the approximation is
being re-calibrated, QoS_Approx() stores the QoS
value that would have been generated with early
loop termination and continues running the loop as
many times as the original (precise) program ver-
sion would have in order to compute the QoS loss.

The QoS_ReCalibrate() code generated by Green
compares this QoS loss against the target QoS SLA

Original code:
#approx_loop (*QoS_Compute(), Calibrate_QoS,
QoS _SLA, Sample QoS, static/adaptive)

loop {
loop_body;
}

Approximation code:

count++;

recalib=false;

if (count%Sample QoS==0) {
recalib=true;

}

loop {

loop_count++;

loop_body;

if (QoS_Approx(loopicount, QoS _SLA, static, recalib)) {
// Terminate the loop early
break;

}

}

if (recalib) {

Qos_loss=QoS Compute(l, loop count, 0, ..);
QoS_ReCalibrate (QoS_loss, QoS_SLA);

}

Default QoS ReCalibrate:
QoS _ReCalibrate(QoS_loss, QoS _SLA) {
if (QoS_loss>QoS_SLA) {
// low QoS case
increase_accuracy();
} else if (QoS_loss<0.9*QoS_SLA) {
// high QoS case
decrease_accuracy () ;
} else {
;// do nothing
}
1

Calibration code:
loop |
loop_count++;
loop_body;
if ((loop_count%Calibrate QoS)==0) {
QoS_Compute (0, loop count, 0, ..);

}
}
QoS_Compute (0, loop count, 1, ..);

Default QoS Approx:
QoS Approx(foop count, QoS SLA, static, recalib) {
if(recalib) { -
// To perform recalibration we log QoS value
// and run loop to completion
if (!stored approx QoS) {
QoS_CompuEe(O, iaop_count, 0, ..);
stored approx QoS = 1;
}
return false;
} else {
if (static) {
if (loop_count>M) {
return true;
} else {
return false;
}
} else {
if (loop_count%Period==0)
{
QoS improve=QoS Compute(l, loop count, 0, ..);
if YQOS improve;Target delta) { N
return false; B
} else {
return true;
} else {
return false;
}
}
}

Figure 4. Code generation for loop approximation

and either decreases/increases the approximation
by either increasing/decreasing the value M of the
early termination loop iteration count (static ap-
proximation) or decreasing/increasing the value of
Target_Delta (adaptive approximation).

3.2.2 Function Approximation

Figure 6 shows pseudo-code generated by the Green
compiler for function approximation specified using
the approx_func keyword. By default, Green uses
the function return value to compute QoS unless
the programmer defines a separate QoS_Compute()
function. In the default case, Green also assumes
the function is pure without any side-effects. For
calibration, Green generates code shown that com-
putes and stores the loss in precision that results
from using the family of approximation functions
at each call site of the function selected for approxi-
mation. We do not currently approximate call sites
that use function pointers.

Green’s modeling routine uses this data and sup-

ports the following interface for functions:

< M, approx_func >=
QoS _Model_Func(QoS_SLA, opt_input_arg_range)

where it returns the most approximate function ver-
sion whose worst-case QoS loss satisfies the specified
target QoS SLA (within the optional function input
argument range, if specified). In the event that none
of the approximate function versions meet the QoS
requirement, approx_func is set to false.

The generated QoS_Approx() function for the de-
fault case is trivial and returns the value of ap-
prox_func. Green’s QoS_ReCalibrate() function re-
places the current approximate function version
with a more precise one, if available, to address low
QoS, and uses a more approximate version to ad-
dress higher than necessary QoS.

3.3 Custom Approximation

Green allows programmers to override its default
synthesis of QoS_Approx() and QoS_ReCalibrate()

Original code:

Calibration code:

#approx_function (..(*F.pprox[nl]) (..), QoS_SLA, Sample QoS)
L FOG) o

i

}

Approximation code:

if (++count%Sample QoS==0) {
recalib=true;

}

if (QoS_Approx()) {
v = (FFapprox[M]) ()7
if (recalib) {
QoS_funcM = ..;
QoS _precise = F(.);
QoS_loss = 100* (abs (QoS_precise-QoS_funcM)) /QoS_precise);
QoS_ReCalibrate (QoS_loss, QoS_SLA);
}

} else {

}

foreach approx func {

QoS_funcli] = (FFapprox[1]) ()7
}
QoS_precise = F(..);
for i = 0..(n-1) {
store(.., 1, 100*(QoS_precise-QoS_func[i])/QoS_precise);

}

}

Default QoS ReCalibrate:

Default QoS Approx:
QoS_Approx() f{
return approx_func;

}

QoS_ReCalibrate (QoS_loss, QoS_SLA) {
if (QoS_loss>QoS_SILA) {
// low QoS case
if (+4M >= n) {
M-=;
approx_func = false;
}
} else if (QoS_loss<0.9*QoS_SLA) {
// high QoS case

if(--M < 0) {

M = 0;

approx_func = true;
}
} else {

;// do nothing
}
recalib = false;

}

Figure 6. Code generation for function approximation

QoS Compute for GMY Search:
QoS_Compute (return_QoS, loop_count, calibrate,
calibrateQoS)

{
if (!calibrate)
{
if (!return_QoS) {
Store top N docs (loop count);
return -1;
} else {
if (Same_docs (Get_top N_docs (loop_count),
Current top N docs()) {
return O;
} else {
return 1;
}
}

} else {

s

Figure 5. QoS_Compute for Live Search

to implement custom approximation poli-
cies. Figure 7 shows an example of a custom
QoS_ReCalibrate() that we used for the Search
application. For Search, QoS_Compute() returns
a QoS loss of 1 (100%) if the top N documents
returned by the precise and approximate version do
not exactly match and a QoS loss of 0 otherwise.
To perform re-calibration and compare against a
target QoS SLA that is of the form, “the application
returns identical results for 99% of the queries”,
we need to measure the QoS loss across multiple
queries as implemented in the code shown. The

Customized QoS ReCalibrate for GMY Search:
QoSiReCalibrate_(Qosiloss, Qos_SLA) {
// n_m: number of monitored queries
// n_1l: number of low QoS queries in monitored queries
if (n_m==0) {
// Set Sample QoS to 1 to trigger QoS ReCalibrate
// for the next 100 consecutive queries
Saved_Sample_QoS=Sample_QoS;
Sample QoS=1;

}
n_m++;
if (QoS loss !=0) {
n 1++;
}
if (n_m==100) {
QoS_loss=n_l/n_m;
if (QoS_loss>QoS_SLA) {
// low QoS case
increase_accuracy () ;
} else if (QoS_loss < 0.9*QoS_SILA) {
// high QoS case
decrease_accuracy () ;
} else {
; // no change
}
Sample_QoS=Saved_Sample QoS;
}

}

Figure 7. Customized QoS_Recalibration
for Live Search

calibration and QoS_Approx() code is the same as
the default code synthesized by Green.

3.4 Discussion
We believe Green is a well-engineered and novel

approach to an important problem that goes a long
way towards reducing the programmer burden but

there is still work to be done. Currently, the pro-
grammer must first profile the application to iden-
tify function and loop-level hotspots. For expen-
sive functions, she must provide one/many approx-
imate versions of the function, calibration test in-
puts, and an initial QoS_SLA value (the function
return value typically serves as the QoS_Compute()
function). For expensive loops, she needs to pro-
vide a QoS_Compute() function, calibration test
inputs and an initial QoS_SLA. The QoS_model
data generated by the calibration phase can be
used to determine an appropriate QoS_SLA to re-
place the initial QoS_SLA. Typically, the default
QoS_Appox() code can be used along with a user-
provided sample_QoS value for re-calibration (using
default QoS_Recalibrate()).

While there are still important open research
problems related to further reducing programmer
burden through more automated program approxi-
mation, the Green system provides a framework to
pose these questions and serves as a first-step to-
wards the goal of principled approximation. We
hope it will generate discussion and debate in an
important and relatively unexplored research direc-
tion.

4 Green Evaluation

We performed two types of experiments. First,
we show that Green can produce significant im-
provements in performance and reduction in energy
consumption with little QoS degradation. Next,
we show that the QoS models Green constructs
are robust and in conjunction with runtime re-
calibration provide strong QoS guarantees. For
evaluation, we use four applications including Live
Search, a back-end implementation of a commer-
cial web-search engine, and three desktop applica-
tions such as Eon from SPEC CPU2000 [18], Cluster
GA (CGA) [11], and Discrete Fourier Transformation
(DFT) [6]. Detailed application descriptions are pro-
vided later in this section.

4.1 Environment

We use two different machines for our experi-
ments. A desktop machine is used for experiments
with Eon, CGA, and DFT. The desktop machine runs
an Intel Core 2 Duo (3 GHz) processor with 4 GB
(dual channel DDR2 667 MHz) main memory. A
server-class machine is used for experiments with
Live Search. The server machine has two Intel 64-
bit Xeon Quad Core (2.33 GHz) with 8 GB main

memory.

For each application, we compare the approxi-
mated versions generated by the Green compiler
implemented using the Phoenix compiler frame-
work [15] against their corresponding precise (base)
versions. For evaluation, we measure three key pa-
rameters for each version: performance, energy con-
sumption, and QoS loss. For the desktop applica-
tions, the wall-clock time between start and end of
each run is used for performance evaluation. For
Live Search, we first run a set of warmup queries
and use the measured throughput (i.e., queries per
second (QPS)) while serving the test queries as the
performance metric. To measure the energy con-
sumption, we use an instrumentation device that
measures the entire system energy consumption by
periodically sampling the current and voltage val-
ues from the main power cable. The sampling pe-
riod of the device is 1 second. Since the execution
time of the applications we study are significantly
longer, this sampling period is acceptable. Finally,
we compute the QoS loss of each approximate ver-
sion by comparing against results from the base ver-
sions. The QoS metric used for each application
will be discussed later. We also attempted to mea-
sure the overhead of Green by having each call to
QoS_Approx() eventually return false and found the
performance to be indistinguishable from the base
versions of the applications without the Green code.

4.2 Applications

In this section, we provide a high-level descrip-
tion and discuss Green approximation opportunities
for each application. In addition, we discuss the
evaluation metrics and input data-sets used.

4.2.1 Live Search

Description: Live Search is a back-end imple-
mentation of a commercial web-search engine that
accepts a stream of user queries, searches its index
for all documents that match the query, and ranks
these documents before returning the top N doc-
uments that match the query in rank order. Web
crawling and index updates are disabled. There are
a number of places in this and subsequent sections
where additional information about the Live Search
application may have been appropriate but where
protecting Lives business interests require us to re-
duce some level of detail. For this reason, perfor-
mance metrics are normalized to the base version
and the absolute number of documents processed
are not disclosed.

Opportunities for Approximation: The base

version of Live Search processes all the match-
ing candidate documents. Instead, we can limit
the maximum number of documents (M) that each
query must process to improve performance and re-
duce energy consumption while still attempting to
provide a high QoS.

Evaluation Metrics: We use QPS as the perfor-
mance metric since throughput is key for server ap-
plications. We use Joules per Query as the energy
consumption metric. Finally, for our QoS loss met-
ric, we use the percentage of queries that either re-
turn a different set of top N documents or return
the same set of top N documents but in a different
rank order, as compared to the base version.
Input data-sets: The Live Search experiments
are performed with a production index file and pro-
duction query logs obtained from our data center.
Each performance run uses two sets of queries: (1)
warm-up queries: 200K queries to warm up the sys-
tem and (2) test queries: 550K queries to measure
the performance of the system.

4.2.2 Eon

Description: Eon is a probabilistic ray tracer
that sends N2 rays to rasterize a 3D polygonal
model [18]. Among the three implemented al-
gorithms in Eon, we only used the Kajiya algo-
rithm [9].

Opportunities for Approximation: The main
loop in Eon iterates N2 iterations and sends a ray
at each iteration to refine the rasterization. As the
loop iteration count goes higher, QoS improvement
per iteration can become more marginal. In this
case, the main loop can be early terminated while
still attempting to meet QoS requirements.
Evaluation Metrics: We measure the execution
time and energy consumption to rasterize an input
3D model. To quantify the QoS loss of approxi-
mate versions, we compute the average normalized
difference of pixel values between the precise and
approximate versions.

Input data-sets: We generated 100 input data-
sets by randomly changing the camera view using a
reference input 3D model of Eon.

4.2.3 Cluster GA

Description: Cluster GA (CGA) solves the prob-
lem of scheduling a parallel program using a genetic
algorithm [11]. CGA takes a task graph as an input
where the execution time of each task, dependen-
cies among tasks, and communication costs between
processors are encoded using node weights, directed
edges, and edge weights, respectively. CGA refines

the QoS until it reaches the maximum generation
(G). The output of CGA is the execution time of a
parallel program scheduled by CGA.
Opportunities for Approximation: Depending
on the size and characteristics of a problem, CGA
can converge to a near-optimal solution even before
reaching G. In addition, similar to Eon, QoS im-
provement per iteration can become more marginal
at higher iteration counts (i.e., generation). By ter-
minating the main loop earlier, we can achieve sig-
nificant improvement in performance and reduction
in energy consumption with little QoS degradation.
Evaluation Metrics: We use the same metrics for
performance and energy consumption as for Eon.
For a QoS metric, we compute the normalized dif-
ference in the execution time of a parallel program
scheduled by the base and approximate versions.
Input data-sets: We use 30 randomly generated
task graphs described in [12]. To ensure various
characteristics in the constructed task graphs, the
number of nodes varies from 50 to 500 and commu-
nication to computation ratio (CCR) varies from 0.1
to 10 in randomly generating task graphs.

4.2.4 Discrete Fourier Transform

Description: Discrete Fourier Transform
(DFT) is one of the most widely used signal pro-
cessing applications [6] that transforms signals in
time domain to signals in frequency domain.
Opportunities for Approximation: In the core
of DFT, sin and cos functions are heavily used.
Since the precise version implemented in standard
libraries can be expensive especially when the un-
derlying architecture does not support complex FP
operations, the approximated version of sin and
cos functions can be effectively used if it provides
sufficient QoS. We implement several approximated
versions of sin and cos functions [8] and apply them
to our DFT application.

Evaluation Metrics: We use the same metrics for
performance and energy consumption as Eon. As a
QoS metric, we compute the normalized difference
in each output sample of DFT between the precise
and approximated versions.

Input data-sets: We randomly generate 100 dif-
ferent input data-sets. Each input sample has a
random real value from 0 to 1.

with Live

4.3 Experimental Results

Search

Figure 8 demonstrates the tradeoff between the
QoS loss and the improvement in performance and

m Norm. Throughput Norm. Energy QoS Loss
. 140 1.0
S
S - 0.9

120 -
ey 0.8 _
’g, 100 - 0.7 3\0/
% 80 - 0.6 3
2 05 3
< 60 - 0.4 9
8 40 03 &
c 0.2
£ 20 o1
g 0 0.0
z SR D T S

¢ & D 32 '\Q &
Q_O A\ ~ Q <
Q

Figure 8. The tradeoff between QoS loss
and the improvement in performance and
energy consumption of Live Search.

reduction in energy consumption. Base version is
the current implementation of Live Search, while
M-* versions are approximated. Specifically, M-*N
statically terminates the main loop after processing
*N matching documents for each query. M-PRO-
0.5N samples QoS improvement after processing
every 0.5N documents and adaptively terminates
the main loop when there is no QoS improvement
in the current period. As can be seen, some ap-
proximated versions significantly improve the per-
formance and reduce the energy consumption (i.e.,
Joules per query) with very little QoS loss. For
example, M-N improves throughput by 24.3% and
reduces energy consumption by 17% with 0.94% of
QoS loss. Another interesting point is that M-PRO-
0.5N that uses the adaptive approximation leads
to slightly better performance and less energy con-
sumption while providing better QoS compared to
M-2N version that uses the static approximation.
This showcases the potential of adaptive techniques
to optimize Live Search.

To study the sensitivity of Green’s QoS model to
the training data-set size, we randomly permuted
the warm-up and test queries and injected different
number of queries ranging from 10K to 250K queries
to build the QoS model. Figure 9 demonstrates the
difference in estimated QoS loss (when M=N) with
the varying size of training data-sets. QoS mod-
els generated with much fewer number of queries
are very close to the one generated with 250K. For
example, the QoS model generated using only 10K
queries differs by only 0.1% compared to the one
generated using 250K inputs. This provides em-
pirical evidence that Green can construct a robust

10

Number of Training Queries

Figure 9. Sensitivity of Green’s QoS model
of Live Search to the size of training data-
sets.

+—QoS Loss (%) =M
12

1.2N
10 ‘\ ~ 10N
8 0.8N
6 - -~ - 06N
4 0.4N
L \’\—NV—\\M 0.2N
0 0.0N

0 50000 100000 150000 200000 250000
of Processed Queries

Figure 10. The effectiveness of Green’s re-
calibration mechanism for Live Search.

QoS model for Live Search without requiring huge
training data-sets.

To evaluate the effectiveness of Green’s re-
calibration mechanism, we performed an experi-
ment simulating an imperfect QoS model. Say a
user indicates his/her desired QoS target as 2%, but
the constructed QoS model incorrectly supplies M
= 0.1N (which typically results in a 10% QoS loss).
Thus, without re-calibration Live Search will per-
form poorly and not meet the target QoS. Figure 10
demonstrates how can Green provide robust QoS
guarantees even when supplied with an inaccurate
QoS model. After processing every 10K queries,
Green monitors the next 100 consecutive queries
(i.e., Sample_QoS=1%) by running the precise ver-
sion while also computing the QoS loss, if it had

® Norm. Exec. Time Norm. Energy QoS Loss
120 7
S
< 100 — 6
o
2 S e
iy 80 — S
[} 4 n
Eeo 3
[—
. 3
g 40 5
i 29
£ 1 |
z
0 - T ‘ ‘ ‘ T 0
N=5 N=6 N=7 N=8 N=9 Base

Figure 11. The tradeoff between QoS loss
and the improvement in performance and
energy consumption of Eon.

used the approximated version for those 100 queries.
Since the current QoS model is not accurate enough,
the monitored results will keep reporting low QoS.
Then, Green’s re-calibration mechanism keeps in-
creasing the accuracy level (i.e., by increasing the
M value by 0.1N) until it satisfies the user-defined
QoS target. In Figure 10, Green meets the QoS tar-
get after processing 180K queries. The user could
use a period smaller than 10K to make Green adapt
faster but there is a tradeoff between quick adap-
tation and degradation in performance and energy
consumption caused by more frequent monitoring.

4.4 Experimental Results with Desktop
Applications

Figure 11 shows the results for Eon using 100 ran-
domly generated input data-sets. Similar to Live
Search, approximated versions of Eon significantly
improve the performance and energy consumption
with relatively low QoS loss. Figure 12 demon-
strates the sensitivity of Green’s QoS model for Eon
to the size of training data-sets. We varied the train-
ing data size from 10 to 100, and compared the es-
timated QoS loss difference (when N=9) of the gen-
erated QoS model to the one generated using 100
inputs. Figure 12 provides empirical evidence that
Green’s QoS model for Eon can be constructed ro-
bustly with relatively small training data-sets. For
example, the QoS model generated using 10 inputs
differs by only 0.12% compared to the one generated
using 100 inputs.

Figure 13 demonstrates the Green model of CGA
using 30 randomly generated input data-sets. Up to

11

0.06 -

0.04 +

0.02 -

Differencein Estimated QoS (%)
o
o
[o7]

0.00 -
10 20 30 40 50 60 70 80 90 100
Number of Training Inputs

Figure 12. Sensitivity of Green’s QoS
model of Eon to the size of training data-
sets.

mNorm. Exec. Time Norm. Energy QoS Loss
= 120 20
s - 18
? 100 16
Q F <
5 8o - UE
S [12 2
£ 60 10 3
Z 40 | g
6
. 1 -4
£ 20] L,
2 o : 0

S & & & S S
¢ & & & & °

Figure 13. The tradeoff between QoS loss
and the improvement in performance and
energy consumption of CGA.

G=1000, QoS loss is reasonable (<10%), while sig-
nificantly improving performance and energy con-
sumption by 66.2% and 65.0%, respectively. In Fig-
ure 14, We also present the sensitivity of Green’s
QoS model of CGA to the training data-set size. We
varied the number of training inputs from 5 to 30
and compared the estimated QoS loss (G=2500)
from the generated QoS model to the one generated
using 30 inputs. While the difference in the esti-
mated QoS loss is higher than other applications
due to the discrete nature of the outcome of a par-
allel task scheduling problem, the difference is still
low (<1.5% even when 5 inputs are used).

Figure 15 shows the tradeoff between QoS loss
and improvement in performance and energy con-

=
o

1.4 -
1.2 -

=
o
|

o©
o
|

o
)
|

o
~
|

o©
)
|

Differencein Estimated QoS (%)

o
)

5 10 15 20 25 3

Number of Training Inputs

0

Figure 14. Sensitivity of Green’s QoS
model of CGA to the size of training data-
sets.

®Norm. Exec. Time Norm. Energy QoS Loss
120 0.6
g
= 100 0.5
o
2 @
g 8o 0.4 S
2 2
= 60 0.3 o
$ 2
U;J'i 40 02 &
E 20 0.1
(o]
2
0 0.0

3.2 52 73 12.1 14.7 20.2 23.1 Base

Figure 15. The tradeoff between QoS loss
and the improvement in performance and
energy consumption of DFT.

sumption using various approximated versions of
DFT generated by Green. More specifically, each DFT
version uses sin and cos functions that provide dif-
ferent accuracy ranging from 3.2 digits to 23.1 dig-
its [8]. Up to the accuracy of 12.1 digits, no accu-
racy loss is observed while improving performance
and energy consumption of DFT by 8.1% and 8.4%,
respectively. Even using the accuracy of 3.2 digits,
the observed QoS loss is very low (0.57%), while
improving performance and energy consumption of
DFT by 15.8% and 18.1%, respectively. This clearly
indicates the potential of function-level approxima-
tion using Green. While not shown, the QoS model
constructed for DFT is also similarly robust and can
be accurately generated with very few inputs.

12

5 Related Work

There are several application domains such as
machine learning and multimedia data processing
where applications exhibit soft computing proper-
ties [4]. The common soft computing properties
are user-defined, relaxed correctness, redundancy in
computation, and adaptivity to errors [2,13]. Re-
searchers have studied improving the performance,
energy consumption, and fault tolerance of applica-
tions and systems by exploiting these soft comput-
ing properties. However, to the best of our knowl-
edge, we believe Green is the first system that pro-
vides a simple, yet flexible framework and program-
ming support for principled approximations that at-
tempts to meet specified QoS requirements.

Green is most similar to Rinard’s previous
work [16,17] in the sense of proposing a probabilis-
tic QoS model (i.e., distortion model in [16]) and
exploiting the tradeoff between the performance im-
provement and QoS loss. However, our proposal
significantly differs in three aspects. First, Green
provides language constructs at the function- or
loop-level which can often allow more modular, fine-
grained, and efficient optimizations for C/C++ pro-
grams whereas [16,17] considered tasks as an opti-
mization granularity. Second, Green introduces the
re-calibration mechanism that can effectively pro-
vide strong QoS guarantees even in the presence
of some degree of inaccuracy in the constructed
QoS model. Finally, we experimentally demonstrate
that the principled approximation can be effective
for a wider range of application domains (i.e., not
only scientific applications) including a production-
quality, real-world web-search engine.

Several researches focused on floating-point ap-
proximation techniques [1,19]. Alvarez et al. pro-
posed fuzzy memoization for floating-point (FP)
multimedia applications [1]. Unlike the classical
instruction memoization, fuzzy memoization asso-
ciates similar inputs to the same output. Tong et al.
proposed a bitwidth reduction technique that learns
the fewest required bits in the FP representation
for a set of signal processing applications to reduce
the power dissipation in FP units without sacrificing
any QoS [19]. While effective in improving perfor-
mance and energy consumption of FP applications,
applications with infrequent use of FP operations
will not benefit from these schemes significantly.
In addition, they do not provide any runtime re-
calibration support for statistical QoS guarantees.
In contrast, Green is more general, targets a wider
range of applications (i.e., not only FP applications)
and attempts to meet specified QoS requirements.

Several researches studied the impact of the
soft computing properties on the error tolerance
of systems in the presence of defects or faults in
chips [5,14]. Breuer et al. demonstrated that many
VLSI implementations of multimedia-related algo-
rithms are error-tolerant due to the relaxed correct-
ness. Based on this, they proposed design tech-
niques to implement more error-resilient multime-
dia chips [5]. Li and Yeung investigated the fault
tolerance of soft computations by performing fault-
injection experiments [14]. They demonstrated that
soft computations are much more resilient to faults
than conventional workloads due to the relaxed pro-
gram correctness. Our work differs as it focuses on
performance and energy optimizations that meet
specified QoS requirements instead of fault toler-
ance.

6 Conclusions

This paper describes the Green system that sup-
ports energy-conscious programming using princi-
pled approximation for expensive loops and func-
tions. Green generates a calibration version of the
program that it executes to construct a QoS model
that quantifies the impact of the approximation.
Next, it uses this QoS model to synthesize an ap-
proximate version of the program that attempts to
meet a user-specified QoS target. Green also pro-
vides a runtime re-calibration mechanism to adjust
the approximation decision logic to meet the QoS
target.

To evaluate the effectiveness of Green, we built a
prototype implementation using the Phoenix com-
piler framework and applied it to four programs
including a real-world search application. The ex-
perimental results demonstrate that the Green ver-
sion of these applications perform significantly bet-
ter and consume less energy with only a small loss
in QoS. In particular, we improved the performance
and energy consumption of Live Search by 22.0%
and 14.0% respectively with 0.27% of QoS degra-
dation. We also showed that the QoS models con-
structed for these applications are robust. In con-
junction with Green’s runtime re-calibration mech-
anism, this enables approximated applications to
meet user-specified QoS targets.

7 Acknowledgements

We would like to thank Preet Bawa, William
Casperson, Engin Ipek, Utkarsh Jain, Benjamin
Lee, Onur Mutlu, Xuehai Qian, Gaurav Sareen, Neil

13

Sharman, and Kushagra Vaid, who made contribu-
tions to this paper in the form of productive discus-
sions and help with the evaluation infrastructure.

References

[1] C. Alvarez and J. Corbal. Fuzzy memoiza-
tion for floating-point multimedia applications.
IEEE Trans. Comput., 54(7):922-927, 2005.
W. Baek, J. Chung, C. Cao Minh,
C. Kozyrakis, and K. Olukotun. Towards
soft optimization techniques for parallel cogni-
tive applications. In 19th ACM Symposium on
Parallelism in Algorithms and Architectures.
June 2007.

L. A. Barroso. Warehouse-scale computers. In
USENIX Annual Technical Conference, 2007.
P. P. Bonissone. Soft computing: the
convergence of emerging reasoning technolo-
gies. Soft Computing—A Fusion of Founda-
tions, Methodologies and Applications, 1(1):6—
18, 1997.

M. A. Breuer, S. K. Gupta, and T. Mak. Defect
and error tolerance in the presence of massive
numbers of defects. IEEE Design and Test of
Computers, 21(3):216-227, 2004.

E. O. Brigham. The fast Fourier transform and
its applications. Prentice-Hall, Inc., Upper Sad-
dle River, NJ, USA, 1988.

G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: amazon’s highly available
key-value store. SIGOPS Oper. Syst. Rev.,
41(6):205-220, 2007.

J. G. Ganssle. A Guide to Approxi-
mation. http://www.ganssle.com/approx/
approx.pdf.

J. T. Kajiya. The rendering equation. SIG-
GRAPH Comput. Graph., 20(4):143-150, 1986.
R. Katz. Research directions in internet-scale
computing. In 3rd International Week on Man-
agement of Networks and Services, 2007.

V. Kianzad and S. S. Bhattacharyya. Mul-
tiprocessor clustering for embedded systems.
In Euro-Par ’01: Proceedings of the 7th In-
ternational FEuro-Par Conference Manchester
on Parallel Processing, pages 697-701, London,
UK, 2001. Springer-Verlag.

Y.-K. Kwok and I. Ahmad. Benchmarking
the task graph scheduling algorithms. Paral-
lel Processing Symposium, 1998. IPPS/SPDP
1998. Proceedings of the Symposium on Paral-

2]

[12]

[15]

[16]

[17]

[18]

[19]

lel and Distributed Processing 1998, pages 531—
537, Mar-3 Apr 1998.

X. Liand D. Yeung. Exploiting soft computing
for increased fault tolerance. In In Proceedings
of Workshop on Architectural Support for Gi-
gascale Integration, 2006.

X. Li and D. Yeung. Application-level cor-
rectness and its impact on fault tolerance. In
HPCA °07: Proceedings of the 2007 IEEE 15th
International Symposium on High Performance
Computer Architecture, pages 181-192, Wash-
ington, DC, USA, 2007. IEEE Computer Soci-
ety.

Phoenix Academic Program. http:
//research.microsoft.com/Phoenix/.

M. Rinard. Probabilistic accuracy bounds for
fault-tolerant computations that discard tasks.
In ICS ’06: Proceedings of the 20th annual
international conference on Supercomputing,
pages 324-334, New York, NY, USA, 2006.
ACM.

M. C. Rinard. Using early phase termination to
eliminate load imbalances at barrier synchro-
nization points. In OOPSLA ’07: Proceedings
of the 22nd annual ACM SIGPLAN conference
on Object-oriented programming systems and
applications, pages 369-386, New York, NY,
USA, 2007. ACM.

Standard Performance FEvaluation Corpora-
tion, SPEC' CPU Benchmarks. http://www.
specbench.org/, 1995-2000.

J. Tong, D. Nagle, and R. Rutenbar. Reduc-
ing power by optimizing the necessary preci-
sion/range of floating-point arithmetic. Very
Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 8(3):273-286, Jun 2000.

14

