Generalized Lattice Agreement

[Extended Abstract]

Jose M. Falerio
Microsoft Research India
t-josfal@microsoft.com

G. Ramalingam
Microsoft Research India
grama@microsoft.com

ABSTRACT

Lattice agreement is a key decision problem in distributed
systems. In this problem, processes start with input val-
ues from a lattice, and must learn (non-trivial) values that
form a chain. Unlike consensus, which is impossible in the
presence of even a single process failure, lattice agreement
has been shown to be decidable in the presence of failures.
In this paper, we consider lattice agreement problems in
asynchronous, message passing systems. We present an al-
gorithm for the lattice agreement problem that guarantees
liveness as long as a majority of the processes are non-faulty.
The algorithm has a time complexity of O(/N) message de-
lays, where N is the number of processes. We then introduce
the generalized lattice agreement problem, where each pro-
cess receives a (potentially unbounded) sequence of values
from an infinite lattice and must learn a sequence of in-
creasing values such that the union of all learnt sequences is
a chain and every proposed value is eventually learnt. We
present a wait-free algorithm for solving generalized lattice
agreement. The algorithm guarantees that every value re-
ceived by a correct process is learnt in O(N) message delays.
We show that this algorithm can be used to implement a
class of replicated state machines where (a) commands can
be classified as reads and updates, and (b) all update com-
mands commute. This algorithm can be used to realize se-
rializable and linearizable replicated versions of commonly
used data types.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-

Communication NetworksDistributed Systems; D.4.5 [Software]:

Operating SystemsReliabilityFault Tolerance; E.1 [Datal:
Data StructuresDistributed Data Structures

Keywords

replication, fault tolerance, lattice agreement

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage aatidbpies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

PODC'12, July 16-18, 2012, Madeira, Portugal.

Copyright 2012 ACM 978-1-4503-1450-3/12/07 ...$10.00.

Sriram Rajamani
Microsoft Research India
sriram@microsoft.com

Kaushik Rajan
Microsoft Research India
krajan@microsoft.com

Kapil Vaswani
Microsoft Research India
kapilv@microsoft.com

1. INTRODUCTION

Lattice agreement is a key decision problem in distributed
systems. In this problem, each process starts with an input
value belonging to a lattice, and must learn an output value
belonging to the lattice. The goal is to ensure that each
process learns a value that is greater than or equal to its
input value, each learnt value is the join of some set of input
values, and all learnt values form a chain. Unlike consensus,
which is impossible in the presence of even a single failure [5],
lattice agreement is decidable, and asynchronous, wait-free
algorithms for shared memory distributed systems have been
proposed [4, 3, 7] (see Section 7).

In this paper, we consider the lattice agreement problem
in asynchronous, message passing systems. We present a
wait-free algorithm for solving a single instance of lattice
agreement. We also study a generalization of lattice agree-
ment, where each process receives a (potentially unbounded)
sequence of values from an infinite lattice, and the goal is to
learn a sequence of values that form a chain. As before, we
wish to ensure that every learnt value is the join of some set
of received values and that every received value is eventually
included in a learnt value. We present a wait-free algorithm
for solving generalized lattice agreement.

One of the challenges in extending the lattice agreement
algorithm to generalized lattice agreement is ensuring live-
ness and progress because of the potential to iterate over
an unbounded chain without learning new values. Our al-
gorithm guarantees that every received value is learnt in
O(N) message delays, even in the presence of failures and
concurrent proposals. Our algorithm is adaptive [3]: its com-
plexity depends only on the number of participants actively
contending at any given point in time. If only k processes
receive values, then every received value is learnt in O(k)
message delays. In the extreme case, if only one process re-
ceives values, our algorithm guarantees that every value is
learnt in 3 message delays (including the round trip from
the client to the system). Our algorithms guarantee safety
properties in the presence of arbitrary non-Byzantine fail-
ures (including process failures as well as message losses).
The algorithms guarantee liveness and progress as long as
a majority of processes are correct and messages between
correct processes are eventually delivered.

Finally, we show that generalized lattice agreement can
be used to implement a special class of replicated state ma-
chines, the main motivation for our work. State machine
replication [8] is used to realize data-structures that toler-
ate process failures by replicating state across multiple pro-

cesses. The key challenge here is to execute data-structure
operations on all replicas so that the replicas converge and
consistency (in the form of serializability or linearizability [6])
can be guaranteed. One common approach to state ma-
chine replication is to use distributed consensus [9] among
the replicas to determine the order in which operations are
to be performed. Unfortunately, the impossibility of consen-
sus means that this approach cannot guarantee liveness in
the presence of failures.

Operations of a state machine can be classified as updates
(operations that modify the state) and reads (operations
that do not modify the state). In this paper, we consider
the problem of replicating state machines when all update
operations commute with each other. Recent work [12] has
shown how several interesting data-structures with update
operations that logically do not commute, such as sets (with
adds and deletes), sequences, certain kinds of key-value ta-
bles, and graphs can be realized using a more complex data-
structure with commutative update operations. Thus, com-
mutativity of updates is a reasonable assumption in several
settings.

We show that generalized lattice agreement can be used
to obtain an algorithm for this class of state machines that
guarantees consistency and liveness in the presence of pro-
cess failures (as long as a majority of the processes are non-
faulty). We are not aware of any previous algorithm that
guarantees both consistency and liveness for this problem.
Algorithms have been previously proposed to exploit com-
mutativity, including generalized consensus [10]. General-
ized consensus is similar to generalized lattice agreement,
with some significant differences. In generalized consensus,
processes propose values belonging to a partially ordered set
where not all pairs of elements have a least upper bound (or
join). Processes then learn a sequence of values. General-
ized consensus requires values learnt by different processes
to have a least upper bound, but does not require these
values to be comparable (i.e., form a chain). These differ-
ences between generalized consensus and generalized lattice
agreement turn out to be crucial in achieving consistency
with liveness.

A straightforward approach to state machine replication
using generalized consensus exploits commutativity as fol-
lows: different processes do not have to agree on the order
in which commuting operations are performed. However,
processes must still agree on the order of non-commuting
operations. Even when all updates commute, read opera-
tions do not commute with update operations. The need
to support non-commuting reads necessitates consensus in
this approach and, hence, this approach cannot guarantee
liveness.

The essence of our approach is to separate updates from
reads. Note that the state of any replica corresponds to a set-
of-updates (that have been executed to produce that state).
We utilize generalized lattice agreement, on the power set
lattice of the set-of-all-updates, to learn a chain of sets-of-
updates. Each learnt set-of-updates represents a consistent
state that can be used for reads. Specifically, every replica
utilizes the state corresponding to its most recent learnt
value to process read operations. More details on how we
do this appears in the paper.

Note that generalized consensus cannot be used to sep-
arate updates from reads in this fashion. Suppose we ap-
ply generalized consensus for the state machine consisting

of only update operations. Since all operations commute,
generalized consensus guarantees liveness in this case. Un-
fortunately, the learnt values are not guaranteed to form a
chain (with generalized consensus). Hence, different learnt
values cannot be used to process read operations without
compromising consistency.

As a simple example, consider a set data type that sup-
ports adds and reads. Assume clients issue two update com-
mands, Add(1) and Add(2), and several reads, concurrently
on an initially empty set. The adds commute with each
other but the reads do not. The key to consistency is to
ensure that two concurrent read operations do not return
values {1} and {2}. A conventional replicated state ma-
chine based on consensus must explicitly order reads with
respect to updates, which ensures consistency but compro-
mises liveness. In our implementation, replicas utilize our
wait-free algorithm for generalized lattice agreement on the
power set lattice P({Add(1),Add(2)}). Since lattice agree-
ment guarantees that learnt values form a chain, it follows
that no two reads can observe states {1} and {2}. Fur-
thermore, our implementation ensures that if a read returns
some value of the set (say {1}), then any subsequent read
observes a state produced by applying a larger set of com-
mands (namely {1}, or {1,2}).

To summarize, this paper makes the following three con-
tributions:

e We provide a new algorithm for solving a single in-
stance of the lattice agreement problem for asynchronous
message passing system with O(N) message delays.
This is the first algorithm for this problem in an asyn-
chronous message passing setting.

e We introduce the generalized lattice agreement prob-
lem and present an algorithm for this problem with an
upper bound of O(N) message delays for a value to be
learnt.

e We use our algorithm for generalized lattice agreement
to obtain an algorithm for replicated state machines
with commuting updates. This is the first algorithm
for this problem that guarantees both consistency and
liveness.

2. SYSTEM MODEL

We are interested in lattice agreement problems in an
asynchronous message passing system. We consider a system
of N independent and asynchronous processes each of which
have a unique identity. We assume processes are arranged
as nodes in a complete graph and can communicate with
each other by sending messages along edges. We make no
assumptions about the order in which messages are delivered
or about how long it takes for a message to be delivered. We
consider non-Byzantine failures, both crash-failures of pro-
cesses as well as message losses. We will refer to a process
that does not fail (in a given execution) as a correct process.

3. LATTICE AGREEMENT

Problem Definition. Let (L,C,U) be a semi-lattice with
a partial order C and join (least-upper-bound) L. We say
that two values v and v in L are comparable iff w C v or
v C w. In lattice agreement, each of the N processes starts

with an initial value from the lattice and must learn values
that satisfies the following conditions:

1. Validity. Any value learnt by a process is a join of
some set of initial values that includes its own initial
value.

2. Stability. A process can learn at most one value.

3. Consistency. Values learnt by any two processes are
comparable.

4. Liveness. Every correct process eventually learns a
value.

Most agreement problems are hard to solve in an asyn-
chronous message passing system if a majority of the pro-
cesses fail or if an arbitrary number of messages are lost [1].
For lattice agreement, we require that the safety properties
hold even in the presence of arbitrary non-Byzantine fail-
ures (crash failures and message losses). Liveness must hold
so long as a majority of processes are correct and messages
between correct processes are eventually delivered.

Note that there is a subtle difference between the lattice
agreement problem as stated here and the one proposed by
Attiya et al. in [4]. Attiya et al. only require that any
learnt value be less than or equal to the join of all initial
values. The validity condition here is stricter, it restricts
each learnt value to necessarily be a join of some initial val-
ues. This difference is not very significant. Any solution
to the problem defined here is also a valid solution to the
problem defined by Attiya et al.. All known algorithms for
lattice agreement (for shared memory systems) as defined
by Attiya et al. satisfy the stricter validity condition that
we use here.

Algorithm. Our algorithm for lattice agreement is shown
in Algorithm 1. For convenience, we consider two kinds
of processes, (1) proposer processes, each of which has an
initial value initialValue, and learns a single output value
outputValue, and (2) acceptor processes, which help pro-
poser processes learn output values. The algorithm permits
the same process to play the roles of both a proposer and an
acceptor. Let N, denote the number of proposer processes
and let NV, denote the number of acceptor processes. In this
formulation, our liveness guarantees require a majority of
acceptor processes to be correct.

In our formal description of the algorithm, we present ev-
ery process as a collection of guarded actions (loosely in the
style of IO-automata). A guarded action consists of a guard
(precondition) predicate and an effect. We also give a name
to every action to facilitate our subsequent discussion. An
action is said to be enabled (for a process) if its correspond-
ing precondition is true at the process. A precondition of the
form ?M (x)&& P(z) is said to be true iff the process has an
input message M (z) satisfying the predicate P(x). Here
M is a message name (tag) and z is the parameter value
carried by the message. A process repeatedly selects any
enabled action and executes its effect atomically. Whenever
a process executes an action whose guard includes a message
predicate ?M (z), the matching message M(z) is consumed
and removed from the input channel.

Every proposer begins by proposing its value to all accep-
tors (see Propose in Algorithm 1). Each proposal is asso-
ciated with a proposal number that is unique to each pro-

poser. Proposal numbers are not required to be totally or-
dered. The only purpose they serve is to uniquely identify
proposals made by a proposer.

An acceptor may accept or reject a proposed value. Every
acceptor ensures that all values that it accepts form a chain
in the lattice. It does this by tracking the largest value it
has accepted so far in the variable accepted Value. When it
gets a proposal, it accepts the proposed value iff it is greater
than or equal to acceptedValue, and send an acknowledg-
ment back to the proposer. If it rejects a proposed value, it
sends back the join of the proposed value and accepted Value
back to the proposer along with the rejection.

This guarantees that all values accepted by a single ac-
ceptor are comparable. However, different acceptors may
accept incomparable values. A value is said to be a chosen
value iff it is accepted by a majority of acceptors. Note that
any two chosen values have at least one common acceptor.
Hence, any two chosen values are guaranteed to be compa-
rable. Proposers simply count the number of acceptances
every proposed value gets and whenever a proposed value
gets a majority of acceptances, it knows that its proposed
value is a chosen value. The proposer then executes the
Decide() action, and declares the current proposed value as
its output value.

This approach ensures the safety requirements of the prob-
lem. We now show how proposers deal with rejections to
ensure liveness and termination. A proposer waits for a
quorum of acceptors to respond to its proposal. If all these
responses are acceptances, the proposer is done (since its
value has been included in an output value). Otherwise, it
refines its proposal by replacing its current value with the
join of its current value and all the values it received with
its rejection responses. It then goes through this process all
over again, using its current value as the new proposed value.
Once a proposer proposes a new value, it ignores responses
it may receive for all previous proposals. This approach en-
sures termination since all values generated in the algorithm
belong to a finite sub-lattice of L (namely, the lattice L’ con-
sisting of all values that can be expressed as the join of some
set of input values).

Time complexity We now establish the complexity of the
lattice agreement algorithm. In particular, we measure the
time complexity [1] defined as the time it takes for a correct
process to learn an output value, under the assumption that
every message sent to a correct process is delivered in one
unit of time. We present a simple informal argument here
to show that the time complexity of the lattice agreement
algorithm is O(N) and defer the formal treatment to sec-
tion 5. From the algorithm it can be seen that every time
a proposer performs the action Refine(), it proposes a value
that is strictly greater than the previously proposed value.
As every proposed value is a join of some initial values, in
the worst case, the N** proposal will be the join of all ini-
tial values. Such a proposal has to be accepted. As the
time between successive proposals is two units and at most
N proposals are made the time complexity of the algorithm
is O(N). Note that if only k processes propose values, then
the complexity is O(k).

Algorithm 1 Lattice Agreement

// Proposer process

int UID // Unique id for a process

enum {passive, active} status = passive

int ackCount, nackCount, activeProposalNumber = 0
L initialValue // Initial value of the process

L proposedValue, outputValue =L

action Propose()

guard: activeProposalNumber = 0

10: effect:

11: proposedValue = initial Value

12: status = active

13: activeProposalNumber—++

14: ackCount = nackCount = 0

15: Send Proposal(proposed Value, activeProposalNumber, UID) to all Acceptors

17: action ProcessACK(proposalNumber, value, id)
18: guard: ?ACK(proposalNumber, value, id) && proposalNumber = activeProposalNumber
19: effect: ackCount++

21: action ProcessNACK(proposalNumber, value)

22: guard: ?NACK(proposalNumber, value) && proposalNumber = active ProposalNumber
23: effect:

24: proposedValue= proposedValue U value

25: nackCount++

27: action Refine()

28: guard: nackCount > 0 && nackCount + ackCount > [(N, + 1)/2] && status = active
29: effect:

30: activeProposalNumber+-+

31: ackCount = nackCount = 0

32: Send Proposal(proposedValue, activeProposalNumber, UID) to all Acceptors

34: action Decide()
35: guard: ackCount > [(Na + 1)/2] && status = active

36: effect:

37: outputValue= proposed Value
38: status = passive

39:

40: // Acceptor process
41: L acceptedValue = L

43: action Accept(proposalNumber, proposedValue, proposerld)

44: guard: ?Proposal(proposalNumber, proposedValue, proposerld) && acceptedValue T proposedValue
45: effect:

46: acceptedValue := proposedValue

47: Send ACK(proposalNumber, proposedValue, proposerld) to proposerld

49: action Reject(proposalNumber, proposedValue, proposerld)

50: guard: ?Proposal(proposalNumber, proposedValue, proposerld) && acceptedValue L proposedValue
51: effect:

52: acceptedValue := acceptedValue LI proposedValue

53: Send NACK(proposalNumber, acceptedValue) to proposerld

4. GENERALIZED LATTICE AGREEMENT process p may receive an input value belonging to the lattice

We now generalize the lattice agreement problem, allow- (from a client) at any point in time. There is no bound on
ing processes to accept a possibly infinite sequence of input the number of input values a process may receive. Let v/
values. denote the i-th input value received by a process p. The

objective is for each process p to learn a sequence of output
Problem Definition. Let L be a join semi-lattice with a values wJ’-’ that satisfy the following conditions:

partial order C. Consider a system with N processes. Each

1. Validity. Any learnt value wf is a join of some set of
received input values.

2. Stability. The value learnt by any process p increases
monotonically: j < k = w! E wy.

3. Consistency. Any two values wf and w] learnt by
any two processes are comparable.

4. Liveness. Every value v received by a correct process
p is eventually included in some learnt value wy of
every correct process ¢: i.e., v C w/.

As in lattice agreement, we require that the safety prop-
erties hold even in the presence of arbitrary non-Byzantine
failures (crash failures and message losses), and liveness must
hold as long as a majority of processes are correct and mes-
sages between correct processes are eventually delivered.

Algorithm. The algorithm for solving one instance of lat-
tice agreement can be extend to solve generalized lattice
agreement. The extensions are described in Algorithm 2.
The proposer process has two new actions Receive() and
Buffer(). In generalized lattice agreement problem, input
values belonging to the lattice arrive, over time, in an un-
bounded fashion. We model this using the action Receive(),
which can be executed an unbounded number of times. In
addition, the action Propose() changes to the pseudo code
shown in Algorithm 2. All the other actions, ProcessACK(),
ProcessNACK(), Refine() and Decide() are the same as shown
in Algorithm 1. For convenience, we introduce a new type
of processes called Learners, which learn values chosen by
acceptors. We change the Accept action in acceptors to send
acknowledgments to all learners.

The goal of generalized lattice agreement is to ensure that
learnt values form a chain and every input value is eventu-
ally learnt. Our algorithm achieves this in two stages. First,
the algorithm ensures that a received value is eventually in-
cluded in the proposed value of some proposer. Second, the
algorithm ensures that every value proposed by a proposer
is eventually learnt, using repeated iterations of the basic
lattice agreement algorithm.

The first goal above can be trivially achieved by a proposer
if it replaces its current value by the join of its current value
and the received value whenever any new value is received.
Unfortunately, this can cause non-termination in the second
stage algorithm. Recall that the informal termination ar-
gument for the basic lattice agreement algorithm exploits
the fact that all computed values belong to a finite lattice.
This is no longer true if every received value is immediately
incorporated into proposed values.

As an example, consider a system with two proposers p1
and p2 and three acceptors, a1, a2 and as. Let L be a power
set lattice P(Z) defined over natural numbers. Consider an
execution in which p; first proposes the value {1}, which
is accepted by a1 and a2 (hence chosen). Subsequently ps
proposes the value {2}. Since {2} Z {1}, at least one of
the acceptors a; or az will reject the proposal and update
its accepted value to {1,2}. Before po refines and sends
its proposal, assume p; receives a value {3} and proposes
{1,3}. Since {1, 3} IZ {1, 2}, at least one of the acceptors a;
or a2 will reject the proposal and update its accepted value
to {1,2,3}. Furthermore, since L is an infinite lattice, it is
easy to see that so long as proposers keep including newly
received values in their proposals this process can continue
without any value being chosen.

This lack of termination due to conflicting proposals is
reminiscent of non-termination in Paxos. However, for the
lattice agreement problem, we can guarantee termination by
controlling when proposers can incorporate received values
into new proposals. In our algorithm, a proposer buffers all
new values it receives until it successfully completes its par-
ticipation in a round of the basic lattice agreement problem
instance. The variable bufferedValues contains the join of
all values received since the last Propose. A proposer is said
to successfully complete a round when it receives a majority
of responses to its proposal that are all acceptances. When
this happens, the proposer includes buffered Values into its
next proposed value during the subsequent execution of the
action Propose() and moves into its next round.

With this modification, we can show that at least one
of the proposers will successfully complete its round and
process its buffered values. However, we cannot guarantee
that all proposers will successfully complete their rounds
and process their buffered values. For example, the same
proposer p may successfully complete all the rounds and
keep introducing new received values into the next round.
As a result, none of the other proposers may ever receive a
majority of acceptances to their proposals.

If a proposer does not successfully complete its round,
then it will never include its buffered values into the second
stage. Hence, values it receives may never be learnt. We
get around this problem by making a proposer broadcast
any new value it receives to all other proposers. Other pro-
posers treat this broadcast value just like any other values
they receive. Effectively all values are sent to all proposers.
Since we have a liveness guarantee that at least some cor-
rect proposer will eventually successfully complete its cur-
rent round and move on to its next round, and messages
between correct processes are eventually delivered, we can
guarantee that all received values are included in the second
stage and eventually learnt.

In the next section, we formalize the notion of a round
and will see that there is a distinction between a process
completing a round and a process successfully completing
a round. We will show that every process is guaranteed to
complete every round, and at least one process is guaranteed
to successfully complete a given round.

5. SAFETY AND LIVENESS

We now establish the safety and liveness properties of
the generalized lattice agreement algorithm. We start with
some definitions. An execution of the algorithm consists of
each process executing a sequence of execution-steps. An
execution-step (of a single process) consists of the execu-
tion of a single action. We identify the action executed in
a step (as indicated in our algorithm description) by the
name of the action and its parameters: e.g., Receive(v). If
a process has one or more enabled actions, it selects one of
its enabled actions (non-deterministically) and executes it
atomically and repeats this process. A process may fail at
any point in time (after which it does not execute any more
execution-steps). We will use the term correct process (or
non-failed process) to refer to a process that does not fail
during the execution under consideration. Note that a pro-
cess may fail in the middle of an execution step, and our
algorithm guarantees safety properties even in this case.

Recall that N, denotes the number of acceptor processes
and N, denotes the number of proposer processes. We will

Algorithm 2 Generalized Lattice Agreement

: // Proposer Process

: /] All variables and actions specified in Algorithm 1 except Propose() are also included.

. L bufferedValues = L

: procedure ReceiveValue(value)
Send InternalReceive(value) to all Proposers \ {UID}
buffered Values = value U buffered Values

: action Receive(value)

: guard: 7ExternalReceive(value)
: effect: ReceiveValue(value)

: guard: ?InternalReceive(value)
: effect: bufferedValues = value U buffered Values

: action Propose()

: guard: status = passive && proposedValue U buffered Values 1 proposed Value

: effect:
proposedValue = proposedValue U buffered Values
21: status = active
22: activeProposal Number—+—+
23: ackCount = nackCount = 0

1
2
3
4
5
6
7
8
9
10
11
12:
13: action Buffer(value)
14
15
16
17
18
19
20

24: Send Proposal(proposedValue, activeProposalNumber, UID) to all Acceptors

25: bufferedValues = L

27: // Acceptor Process

28: // All variables and actions specified in Algorithm 1 except Accept() are also included.

29: action Accept(proposalNumber, proposed Value, proposerld)

30: guard: ?Proposal(proposalNumber, proposedValue, proposerld) && acceptedValue T proposed Value

31: effect:
32: acceptedValue := proposed Value

33: Send ACK(proposalNumber, proposedValue, proposerId) to proposerld and all Learners

35: // Learner process
36: L learntValue = L
37: int ackCount[int,int] // all initially 0

39: action Learn(proposalNumber, value, proposerld)
40: guard: ?ACK(proposalNumber, value, proposerld)
41: effect:

42: ackCount[proposerld][proposalNumber]|++

43: if (ackCount[proposerld][proposalNumber] > [(Nq + 1)/2] && learntValue T value) then

44: learnt Value = wvalue
45: endif

46:

47: procedure L LearntValue()
48: effect:

49: return learntValue

assume in the sequel that N, is at least 2. (Otherwise, the
problem and proofs are trivial.)

A set S of acceptors is said to be a quorum iff |S| >
[(Ng 4+ 1)/2]. Note that by definition any two quorums
have a non-empty intersection.

A value v € L is said to be a received value if and when
some proposer executes the step Receive(v). A value v is
said to have been initiated if some proposer executes an
Propose step where it proposes v. A value v is said to have
been proposed if some proposer executes either an Propose or
Refine step where it proposes v. A proposal (n,v,d) is said

to have been chosen if some quorum of acceptors execute
Accept(n, v,id). A value v is said to have been chosen if
some proposal (n,v,id) has been chosen. A value v is said
to have been decided if and when some proposer executes a
Decide(v) step. A value v is said to have been learnt by a
learner process p if and when p executes the step Learn(w)
for some w J v. (Note that the definition of a learnt value
differs from the preceding definitions, to be consistent with
the problem definition and requirements.)

51 Safety

Simpler proofs have been omitted in the sequel.

THEOREM 5.1. The value of proposedValue (of any pro-
poser), acceptedValue (of any acceptor), and learntValue (of
any learner) can all be expressed as the join of some subset
of previously received input values.

ProoF. Follows by induction on the length of execution.

COROLLARY 5.2. Validity: Any learnt value is a join of a
subset of received values.

THEOREM 5.3. Stability: The value of learntValue of any
learner increases monotonically over time.

LEMMA 5.4. Values acknowledged by an acceptor increase
monotonically: for any two steps Accept(n,v,id) and
Accept(n’,v',id") ezecuted by the same acceptor (in that or-
der), v Ev'.

LEMMA 5.5. Any two chosen values u and v are compa-
rable.

PROOF. Let Quorum(u) be the quorum of acceptors that
acknowledged a proposal with value u. Let Quorum(v) be
the quorum of acceptors that acknowledged a proposal with
value v. Let A = Quorum(u) N Quorum(v). By the
definition of a quorum, A must be non-empty. Consider any
acceptor a € A. a must have acknowledged both u and wv.
Therefore, from Lemma 5.4, u Cv or v Cu. [

THEOREM 5.6. Consistency : Any two values u and v
learnt by two different processes are comparable.

ProoF. Follows from Lemma 5.5 since every learnt value
is a chosen value. [J

5.2 Liveness

We now show that our algorithm guarantees liveness (sub-
ject to our failure model described earlier) and derive its
complexity. The key idea behind the proof is to establish
that any execution can be partitioned into a sequence of
rounds such that:

e A new value is chosen in every round, and

e Every round is guaranteed to terminate. In particular,
we show that each proposer can propose at most N,+1
times within a single round.

e Every value proposed in a round is included in the
value chosen in the same round.

e If a value has been received by all correct processes in
a round, then it is included in a proposal in the next
round.

All of the following results apply to a given execution.

LEMMA 5.7. Values proposed by a single proposer strictly
increase over time: if v; is the value proposed by proposer p
in proposal number i and vi+1 is the value proposed by p in
proposal number i + 1, then v; C vit1.

Definition Let v1 T v2 T --- C vr be the set of all values
chosen in a given execution. Define vg to be L. We partition
the sequence of execution-steps of a proposer p into rounds
as follows. Let v denote the value p’s proposed Value at the
end of an execution-step s. Step s is said to belong to the
initial (dummy) round 0 if v =_L. Step s is said to belong to
the (last) round k + 1 if v [Z vx. Otherwise, step s belongs
to the unique round r that satisfies v C v, and v £ vp_1.
We refer to round k + 1 as an incomplete round and every
other round as a completed round.

Note that the above definition of rounds is consistent
with the ordering of events implied by message delivery: if
execution-step e; sends a message that is processed by an
execution-step ez, then e; belongs to the same round as es
or an earlier round.

LEMMA 5.8. Let v be a value proposed in a completed
round r and let v, be the value chosen in round r. Then,
v C v

PROOF. Follows from the definition of rounds. []

LEMMA 5.9. A proposer executes at most one Decide step
and at most one Propose in a round.

PROOF. A proposer must alternate between Propose and
Decide steps. Suppose a proposer initiates v, then decides
Vg, then initiates vs and then decides v4. We must have
v1 C v2 C v C vg. Note that vo must be a chosen value
and, hence, Decide(v2) must mark the end of a round for the
proposer. The result follows. [J

LEMMA 5.10. Assume that a proposer makes at least two
proposals in a round r. Let wi and ws denote the first and
second value it proposes. Let v._1 be the value chosen in
round r — 1. Then, v,—1 C wa.

PrOOF. The proposer must have received responses from
a quorum of acceptors for proposal w1 before it proposes w.
At least one of these acceptors, say a, must have acknowl-
edged the value v,—1. Furthermore, a must have acknowl-
edged vr.—1 before responding to proposal wi. (Otherwise,
we would have w; C v,._1, which contradicts the definition
of rounds.) Hence, regardless of whether a ACKs or NACKs
w1, we have v,—1 C we. [

LEMMA 5.11. A proposer can execute at most Np+1 pro-
posals in a single round.

ProoOF. Consider a round r in which a proposer p pro-
poses a sequence of values w1 C w2 C -+ C wg. Let Prev
denote the set of all values initiated in a round 7’ < r. Let
Curr denote the set of all values initiated in round r. Note
that Curr can contain at most one value per proposer (from
Lemma 5.9). Define All to be Prev U Curr.

Note that each proposed value w; can be expressed as the
join of some subset of values in All. (This follows similar to
Theorem 5.1.) Define covered; to be {u € All | u C w;}.
Thus, we have w; = | | covered;;.

It follows from above that coveredi C --- C coveredy is a
strictly increasing sequence of subsets of All = PrevU Curr.

Now, we show that covereds O Prev. Let v € Prev. Since
v was initiated in an earlier round ' < r, we must have
v E vr—1, where v,_1 is the value chosen in round r — 1. It
follows from Lemma 5.10 that v,_1 T ws.

Putting these together, it follows that the strictly increas-
ing sequence coveredi C --- C covered) can have a length
at most N, + 1.

O

Liveness Assumptions. Note that all the preceding re-
sults hold in the presence of arbitrary failures and message
losses. The following progress guarantees, however, require
the following extra assumptions: (a) A majority of acceptor
processes are correct, (b) At least one proposer process is
correct, (c) At least one learner process is correct, and (d)
All messages between correct processes are eventually deliv-
ered. (Note that if every process simultaneously plays the
roles of proposer, acceptor, and learner, then the first three
assumptions simplify to the assumption that a majority of
the processes are correct.)

LEMMA 5.12. Every round eventually terminates.

Proor. Follows from Lemma 5.11. O

LEMMA 5.13. FEwvery initiated value is eventually included
in a chosen value.

ProOF. Follows from Lemma 5.12 and Lemma 5.8. [J

LEMMA 5.14. Every value received by a correct process is
eventually proposed.

Proor. Consider a value u received by some correct pro-
cess. By definition of Receive, u is sent to all proposers. It is
eventually delivered to all correct proposers. If any correct
proposer P that receives u is passive when it receives u, it
will initiate u. However, if P is active, then it is in the middle
of some round. It follows from Lemma 5.11 that eventually
some proposer P’ must execute a Decide step. Therefore,
some correct process will eventually propose u. [

THEOREM 5.15. Every value received by a correct process
is eventually learnt by every correct learner.

Proor. Implied by Lemma 5.13 and Lemma 5.14. Note
that once a value is chosen, a correct learner will eventually
receive the acknowledgments sent for the chosen value and
learn it. [

5.3 Time Complexity

We now establish the complexity of the generalized lattice
agreement algorithm, in terms of the number of message
delays (as described in Section 3). Recall that when a new
value v is received, it is first sent to all correct proposers via
the action Newlnput. This takes one unit of time. Consider
the last proposer to receive this value. By Lemma 5.11 we
know that within the next N, +1 proposals (i.e., 2x (Np+1)
units of time) some proposer will decide and will propose
v in the next round. By Lemma 5.8 and Lemma 5.11, v
will be chosen in the next N, + 1 proposals. Every chosen
value will be learnt by the learners after one message delay.
Putting this all together it can be seen that every value
received by a correct process is learnt in O(N) units of time.
Lemma 5.11 also implies that if only k processes receive
values, each received value will be chosen in O(k) message
delays. In the extreme case, if only one process receives
values, each received value can be learnt in three message
delays (from the client to the proposer, from the proposer

to acceptors, and acceptors to client, assuming the client
acts as a learner). This is one message delay more than the
fast path of two message delays in Paxos [11]. Improving
this bound while preserving wait-freedom remains an open
problem.

6. STATEMACHINE REPLICATIONUSING
LATTICE AGREEMENT

State machine replication is a general approach for imple-
menting data-structures that can tolerate process failures by
replicating state across multiple processes. In one common
approach to state machine replication, replica processes re-
ceive requests or commands from clients, utilize consensus
to decide on the order in which commands must be pro-
cessed, and apply commands to the local replica of the state
machine in that order. If the state machine is deterministic
and no Byzantine faults occur, each correct process is guar-
anteed to generate the same responses and reach the same
state. Unfortunately, the undecidability of consensus means
that this approach cannot guarantee liveness in the presence
of failures.

In this paper, we consider a special class of state machines.
We first assume that operations of the state machine can
be classified into two kinds: updates (operations that mod-
ify the state) and reads (operations that do not modify the
state, but return a value). Thus, an operation that modifies
the state and returns a value is not permitted. Furthermore,
we assume that all update operations commute with each
other and are deterministic. Several data types such as sets,
sequences, certain types of key-value tables, and graphs [12]
can be designed with commuting updates.

There are several approaches for implementing such state
machines, each with different consistency and performance
characteristics. One approach is to allow each replica pro-
cess to process reads and updates in arbitrary order. This
approach requires no co-ordination between processes and
guarantees that as long as all commands are eventually de-
livered, all correct processes eventually reach the same state.
However, this approach does not provide strong consistency
guarantees, such as linearizability or serializability, for reads.

Both linearizability and serializability guarantee that the
observed behavior of the replicated state machine on some
set of (possibly concurrent) operations is the same as the
behavior of the state machine (with no replication) for some
sequential execution (the “witness”) of the same set of op-
erations. Linearizability provides the additional guarantee
that any two temporally non-overlapping operations (in the
execution) occur in the same order in the “witness”.

One approach to guarantee linearizability, based on gener-
alized consensus, is for processes to agree on a partial order
on the commands that totally orders every read command
with every update command that it does not commute with.
This alternative guarantees linearizability but requires the
use of consensus to compute the partial order, which is im-
possible in the presence of failures.

Serializability Using Lattice Agreement. Algorithm 3
describes a wait-free algorithm for state machine replication
based on generalized lattice agreement that guarantees seri-
alizability. In this algorithm, the lattice L is defined to be
the power set of all update commands with the partial or-
der C defined to be set inclusion. (We use the term “update
command” to refer to instances of update operations.) We

Algorithm 3 Serializable ReplicatedStateMachine

1: procedure ExecuteUpdate(cmd)
2: ReceiveValue({c¢md})

3:

4: procedure State Read()

5: return Apply(LearntValue())

Algorithm 4 Linearizable ReplicatedStateMachine

1: procedure ExecuteUpdate(cmd)
2: ReceiveValue({c¢md})
waituntil cmd € LearntValue()

: procedure State Read()
ExecuteUpdate(CreateNop())
return Apply(LearntValue())

refer to a set of update commands as a cset. In this setting,
update commands can be executed by proposers and read
commands can be executed by learners. A proposer executes
an update command cmd by simply executing the procedure
ReceiveValue({cmd}), taking the singleton set {cmd} to be
a newly proposed value. Reads are processed by computing
a state that reflects all commands in the learnt cset (applied
in arbitrary order).

Due to the properties of generalized lattice agreement, it is
easy to see that this algorithm is wait-free and serializable,
with both reads and updates requiring O(N) message de-
lays. Furthermore, this algorithm guarantees progress: ev-
ery update operation will eventually be reflected in all read
operations (subject to our failure model). Note that the
execution of an update command c¢md completes (from a
client’s perspective) when the set {¢md} has been sent to
all proposers. For simplicity, assume that each process acts
as a proposer, acceptor and learner. Progress is guaranteed
as long as message delivery is reliable and at least a majority
of the processes are correct.

Linearizability Using Lattice Agreement. We now
extend the preceding algorithm to guarantee linearizability,
as shown in Algorithm 4. For simplicity, we assume that
each process acts as a proposer, acceptor and learner. The
first challenge is to preserve the order of non-overlapping
update operations: if one replica completes the execution of
an update operation c¢; before another replica initiates the
execution of an update operation ce, then we must ensure
that c1 occurs before cs in the linearization order. This is not
guaranteed by the serializable algorithm presented above.

We extend the execution of an update operation as fol-
lows. When a process executes an update command cmd,
it includes the command in the next proposal (as before),
and then waits until the command has been learnt. This
preserves the order of non-overlapping update operations.

The second challenge concerns a read operation that is
initiated after an update operation completes. In this case,
we need to ensure that the value returned by the read opera-
tion reflects the effects of the update operation. We assume
that the set of update commands includes a special no-op
command which does not modify the state. Reads are pro-
cessed by creating a new instance of the no-op command,
executing this command, and then computing a state that
reflects all commands in the learnt cset(applied in arbitrary
order).

Optimizations. There are several simple ways of opti-
mizing the basic algorithms presented above. Every invoca-
tion of Apply does not have to recompute state by executing
all commands in LearntValue(). Instead, the implementation
can exploit the monotonic nature of learnt values and the
commutativity of update commands to incrementally com-
pute state.

7. RELATED WORK

As mentioned before, the lattice agreement problem has
been studied previously in an asynchronous shared mem-
ory setting [4, 3, 7]. In [7], Inoue et al. propose a lattice
agreement algorithm which requires O(M) register opera-
tions when processes are assigned identifiers in the range
[1 — M]. The problem of assigning N processes names in a
range [0—poly(N)] is referred to as the re-naming problem [2]
and has been studied before. The best known algorithms for
assigning identifiers in the range [0 — O(NN)] have a complex-
ity of O(Nlog(N)). Hence the complexity of the Inoue et
al. algorithm expressed in terms of number of participat-
ing processes is O(Nlog(N)), if the cost of naming is taken
into account. Algorithms whose complexity depends only on
the number of participant processes and not on the range of
identifiers assigned to processes are called range-independent
algorithms [3]. Further, an algorithm is adaptive if its com-
plexity only depends on the number of participants actively
contending at any given point in time [3]. The Inoue et al.
algorithm is not adaptive. The algorithm proposed in [3] is
both adaptive and range independent, it has a complexity
of O(Nlog(N)) where N is the number of active partici-
pants. The construction of the algorithm requires a series
of re-naming algorithms that are carefully put together to
obtain a range independent and adaptive lattice agreement
algorithm.

Some of the shared memory algorithms can be translated
into message passing algorithms using emulators [1]. In par-
ticular, any shared memory algorithm that only uses single-
writer multiple-reader atomic registers can be translated
into a message passing algorithm with each read and write
operation requiring only constant (O(1)) message delays. A
direct emulation of the above algorithms using emulators
from [1] leads to asynchronous message passing algorithms
with complexity O(Nlog(N)).

In this paper we provide an asynchronous message passing
algorithm for lattice agreement with complexity O(N). Our
algorithm is range independent, as it only requires the iden-
tifiers of all participating processes be unique and does not
rely on any renaming steps. Our algorithm is also adaptive
since the number of proposal refinements executed by a pro-
poser depends only on the number of active proposers. We
further show that the algorithm can be extended, without
changing the complexity, to a generalization of the lattice
agreement problem where processes receive a (potentially
unbounded) sequence of values from a lattice and learn a
sequence of values that form a chain.

8. REFERENCES

[1] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev.
Sharing memory robustly in message-passing systems.
J. ACM, 42, 1995.

[2] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David
Peleg, and Riidiger Reischuk. Renaming in an

asynchronous environment. J. ACM, 37:524-548, July
1990.

Hagit Attiya and Arie Fouren. Adaptive and efficient
algorithms for lattice agreement and renaming. STAM
J. Comput., 31, February 2002.

Hagit Attiya, Maurice Herlihy, and Ophir Rachman.
Atomic snapshots using lattice agreement. Distrib.
Comput., 8, March 1995.

Michael J. Fischer, Nancy Lynch, and Michael S.
Paterson. Impossibility of distributed consensus with
one faulty process. Journal of the ACM,
2(32):374-382, April 1985.

Maurice P. Herlihy and Jeannette M. Wing.
Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming
Languages and Systems, 12:463-492, July 1990.
Michiko Inoue and Wei Chen. Linear-time snapshot
using multi-writer multi-reader registers. In
Proceedings of the 8th International Workshop on

8]

[9]

Distributed Algorithms, WDAG ’94. Springer-Verlag,
1994.

Leslie Lamport. The implementation of reliable
distributed multiprocess systems. Computer Networks,
2:95-114, 1978.

Leslie Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16:133-169, May
1998.

Leslie Lamport. Generalized consensus and paxos.
Technical Report MSR-TR-2005-33, Microsoft
Research, April 2005.

Leslie Lamport. Fast paxos. Distributed Computing,
19:79-103, 2006.

M. Shapiro, N. Preguica, C. Baquero, and

M. Zawirski. Convergent and commutative replicated
data types. Bulletin of the European Association for
Theoretical Computer Science (EATCS), (104):67-88,
2011.

