Interval-Based Pruning for Top-k Processing over
Compressed Lists

Kaushik Chakrabarti #!, Surajit Chaudhuri #2, Venkatesh Ganti **
#Micmsoft Research, USA

{ 'kaushik,

Zsurajitc}

@microsoft.com

*Google Inc., USA

3vqanti@gooqle .com

Abstract—Optimizing execution of top-k queries over record-
id ordered, compressed lists is challenging. The threshold family
of algorithms cannot be effectively used in such cases. Yet,
improving execution of such queries is of great value. For
example, top-k keyword search in information retrieval (IR)
engines represents an important scenario where such optimiza-
tion can be directly beneficial. In this paper, we develop novel
algorithms to improve execution of such queries over state
of the art techniques. Our main insights are pruning based
on fine-granularity bounds and traversing the lists based on
judiciously chosen “intervals” rather than individual records.
We formally study the optimality characteristics of the proposed
algorithms. Our algorithms require minimal changes and can be
easily integrated into IR engines. Our experiments on real-life
datasets show that our algorithm outperform the state of the art
techniques by a factor of 3-6 in terms of query execution times.

I. INTRODUCTION

In many scenarios, top-k queries are processed over record-
id ordered, block-compressed lists. One of the primary exam-
ples of this is top-k keyword search in information retrieval
(IR) engines. Here, the user specifies one or more query terms
and optionally a Boolean expression over the query terms and
asks for k£ documents with the highest scores that satisfy the
Boolean expression. The score of a document is typically
computed by combining per-term relevance scores using a
monotonic combination function.

To support such keyword search queries efficiently, IR
engines maintain an inverted index which stores a “posting
list” for each term. The posting list contains one posting
(docid, tscore) for each document containing the term where
docid denotes the identifier of the document and tscore
denotes the term’s contribution to the overall document score
(referred to as term score for the document). The postings in
each posting list are stored in docid order [17], [9], [18], [19],
[4], [15]. In order to save disk space and reduce I/O cost, the
posting lists are stored as a sequence of blocks where each
block is compressed [20]. The compression techniques ensure
that each block can be decompressed independently [17], [5],
[19], [18]. Storing the postings in docid order allows: (i)
better compression as d-gaps (difference between consecutive
docids) can be encoded more compactly [18] (ii) more efficient
list intersections [9] and (iii) efficient maintenance as new
documents are added to the collection [20]. Due to the above
reasons, majority of commercial IR engines like Lucene,
Google Search Appliance, Microsoft Sharepoint Enterprise

PREPRESS PROOF FILE

Search, Oracle Text Search and SQL Server Full Text Search
store the posting lists in docid-ordered, block-compressed
form.

Most modern IR engines use the document at a time (DAAT)
framework to process queries [9], [16], [4], [18]. The naive
way to answer top-k queries using DAAT is to traverse the
posting lists of the query terms in tandem from one docid
to the next. For each docid, DAAT will evaluate the Boolean
expression, and if it is satisfied, will compute its final score. It
will maintain the running set of k highest scoring documents
seen so far and will return it at the end. The above algorithm,
henceforth referred to as naive DAAT algorithm, scans and
decompresses the entire posting list for each query term and
computes the scores of all docids in the lists that satisfy the
Boolean expression. Hence, it is inefficient for large document
collections [16], [15]

A. Review of State-of-the-art

The state-of-the-art technique is to leverage the top-k con-
straint to “skip” over parts of the posting lists [16], [4], [15],
[8].! This has proven useful in reducing the decompression and
score computation costs incurred by the naive DAAT algorithm
[15]. In this paper, we argue that the opportunities to skip can
be expanded far beyond the state-of-the-art; this would result
in significant performance gains.

We illustrate the state-of-the-art skipping algorithm through
an example. Consider the freetext query (i.e., no Boolean
expressions) containing query terms ¢; and ¢o. The posting
lists of the terms are shown in Figure 1. The horizontal axis
represent the domain of docids. Each posting is shown as a
dot and labeled with (docid, tscore). Each block is shown
as a rectangle spanning from the minimum docid to the
maximum docid in the block (here, each block contains 2
postings). For this example, we assume that the final document
score is the sum of the individual term scores; it can be any
monotonic function as discussed in Section III. The state-of-
the-art algorithm maintains an upper bound score for each
term: its maximal contribution to any document score. The
term upper bounds for ¢; and go are 5 and 6 respectively.
Suppose £ = 1. It opens a cursor on the posting list of
each query term. Initially, both cursors point to docid 1. The

IThe skipping algorithms used in commercial enterprise search engines are
not known publicly. We discuss the state-of-the-art from the research literature.

CAUSAL PRODUCTIONS

Posting
list > o © @ .B..C..D. oEo
of q (1,2) (3,3) (5,1) (8,2)(9,5) (11,2)(12,1) (14,2)(15,1)(17,1)
Posting E
list - o . o o
ofq, (1.2) (9,3) (15,6) (16,2)
Docid domain
Fig. 1. Skipping using term upper bounds.

algorithm computes the score (4) for the docid 1. If the upper
bound of a query term is less than the k*" highest score seen
so far, it skips parts of that term’s posting list. This does
not happen until the algorithm encounters docid 9. After it
encounters docid 9, the k" highest score becomes 8. The
cursors are pointing to docids 11 and 15 respectively. However,
since the upper bound of ¢; (5) is less than 8, it concludes
that documents containing only ¢; cannot be in the top-k
result. So, it advances the cursor for ¢; to docid 15. Thus,
it skips the block D, saving the costs of decompressing it and
computing the scores of the documents in D. We refer to the
above algorithm as ferm upper bound-based skipping (TUB-
skipping in short).

As observed in [15], TUB-skipping provides limited pruning
for a number of reasons. First, computing upper bounds at such
a coarse granularity produces weak bounds. Even if there is
a single docid in the posting list with a high score, the term
upper bound score will be high. Weak upper bounds lead to
limited skipping. Second, skipping is most beneficial when
we skip entire blocks, not just individual documents. This is
because block skipping saves both decompression and score
computation costs while document skipping saves only the
latter. Even if TUB-skipping finds a posting list to skip, it is
not able to skip blocks unless the entire block of that posting
list falls between two successive docids of the other posting
lists (e.g., block D in the above example). This is unlikely
unless one of the query terms are significantly more frequent
than the other terms. The threshold family of algorithms are
also not effective in this scenario; we discuss the details in
Section II.

B. Our Contributions

To overcome the above shortcomings of TUB-skipping, we
propose to maintain upper bounds at a much finer granularity,
specifically, at the granularity of blocks. Since these bounds
are much tighter, simply plugging in these bounds in place of
the term upper bounds in the TUB-skipping algorithm will lead
to better pruning. For example, after computing the score (4) of
docid 1, the cursors point to docids 3 and 9 respectively. Since
the upper bound score of block B (i.e., maximum term score
of any document in the block) is 2 (< 4), we can advance the
cursor to 9, thereby skipping block B. This was not possible
in the original TUB-skipping algorithm since the term upper
bound is 5 (> 4).

However, TUB-skipping cannot take full advantage of
block-granularity upper bounds for skipping blocks. Contin-
uing with the previous example, after advancing both cursors
to docid 15, TUB-skipping would compute its score and

hence end up decompressing blocks E and G. However,
using the upper bounds of the blocks, we know that docids
in the interval [15,16] can have maximum final score of
upperbound(E) + upperbound(G) = 1+ 6 = 7. Hence, it is
possible to skip block G (and also E by the same argument).

Designing algorithms to take advantage of the block-
granularity upper bounds is challenging. Note that we cannot
simply skip blocks based on the upper bound score of the
block. We need to compute, from the block upper bounds, tight
bounds on the final score (for the given query) of documents in
a block and identify opportunities for skipping based on those
bounds. Tightness of those bounds are crucial for effectiveness
of skipping. This becomes complex because the blocks of
different query terms are not aligned, i.e., they overlap partially
with each other. Hence, different parts of the block can have
different upper bound final scores. For example, block F has
upper bound 6 for the part it overlaps with A, 3 where it
overlaps with the gap and so on. We address this challenge
by introducing the concept of “intervals” of docids. Our key
idea is to use the block upper bounds to efficiently partition
the docid domain into a set of intervals for the given query
and compute a single upper bound score for each interval.
Subsequently, we traverse the posting lists at the granularity
of intervals and compute the top-k docids; we use the interval
upper bounds to skip most of the intervals. This in turn leads
to skipping of blocks. There are still several challenges: how
to partition such that the upper bounds are tight and the
query processing cost is minimized? how to compute such
a partitioning efficiently? what is the best way to traverse
the intervals? We address these challenges in this paper and
identify a set of candidate algorithms. Our algorithms are
simple and hence easy to integrate in IR engines using the
DAAT query processing framework. We study the optimality
characteristics of our algorithms. We identify an algorithm of
choice that exploits available memory to process the intervals
in a lazy fashion.

Several improvements have been suggested for TUB-
skipping by leveraging “fancy lists” (a separately materialized
list containing the few highest scoring documents for each
term) [8], [15]. We show how our algorithms can also leverage
fancy lists to improve performance. Furthermore, queries often
specify Boolean expressions over the query terms. We present
an optimization that can leverage such expressions to further
improve performance.

Finally, we conduct a thorough empirical evaluation of our
techniques over two real datasets, TREC Terabyte and To-
talJobs CV corpus. Our experiments show that our techniques
(i) decompress one to two orders of magnitude fewer blocks
and (ii)) compute scores of one fo two orders of magnitude
fewer docids compared with TUB-skipping techniques. This
results in 3-6X improvement in execution time compared with
the state-of-the-art TUB-skipping technique.

To the best of our knowledge, this is the first paper
to propose fine-granularity upper bounds and interval-based
pruning. Like TUB-skipping algorithms, our algorithms are
agnostic to the specific compression scheme used to compress

10 Cost
13%

Fig. 2. Breakdown of the query processing cost of naive DAAT algorithm
(averaged over 50 TREC Terabyte track queries on 8 million documents from
TREC GOV2 collection).

the blocks. Like prior work, we focus on reducing the costs of
decompressing the posting list (referred to as decompression

cost) and that of performing docid comparisons and computing
the final scores of documents (referred to as merge and score
computation cost). These two represent the major components
of the query processing cost (> 85%) as shown in Figure 2.
Although we present our techniques in the context of top-k
keyword search in IR engines, our framework applies to other
applications involving compressed lists like compressed data
warechouses [14].

Outline: We discuss related work in Section 2. We present the
preliminaries in Section 3. We describe our core algorithms
in Section 4. In Section 5, we present two extensions: to
leverage fancy lists and Boolean expressions. We evaluate our
techniques empirically in Section 6 and conclude in Section

7.
II. RELATED WORK

Several improvements have been proposed for the TUB-
skipping technique by leveraging fancy lists [8], [15]. The
main idea is to leverage the fancy list to compute tighter
upper bound scores for each term. This results in better
pruning. In our experiments, we compare our techniques with
TUB-skipping techniques both with and without fancy lists.
In both cases, our techniques significantly outperform TUB-
skipping due to finer-granularity upper bounds and interval-
based traversal. There is also a plethora of work on returning
approximate top-k answers. We focus on exact top-k tech-
niques in this paper. Furthermore, if the query involves a
Boolean expression over the terms, it can also be used to skip
blocks [10]. For example, if the Boolean expression is AN D,
we can skip a block that does not overlap with any block of
any other posting list.

The threshold family of algorithms (TA) have been proposed
to leverage the top-k constraint effectively in middleware
systems [6], [11], [7]. However, TA requires the document
list for each query term to be sorted by score. Since most
commercial IR engines maintain the posting lists in docid-
ordered, compressed form, obtaining the lists in score order
requires decompressing the entire posting list and a full sort
of the list. This is prohibitively expensive.

Another option is to maintain the posting lists in the score
order instead of docid order [2], [3]. Subsequently, we can use
TA without paying the above cost. However, this would require
a complete change of the underlying index organization used
in commercial IR engines. Furthermore, as observed in [8],
such an approach can introduce other inefficiencies because
compression is less effective as the d-gaps are larger compared
to the docid-ordered case. Performing list intersections (for

Boolean keyword queries) and updating the posting lists
become more complex in this organization [20]. The blocked
organization proposed in [3] where postings within block are
docid-ordered while blocks are score-ordered addresses some
of these issues. However, compression is still less effective
compared to docid ordered lists and list intersections remain
complex [3]. In this paper, we focus on techniques that require
minimal changes to the underlying index used in commercial
IR engines (i.e., docid-ordered, compressed posting lists).

Our pruning techniques are similar in spirit to multi-step k-
nearest neighbor search over multidimensional index structures
[13]. While the upper bounding principle still applies, the
techniques (i.e., how the filter distances are computed, how
the index is traversed) cannot be directly applied to our setting
as query processing over inverted indexes is fundamentally
different from that over multidimensional indexes.

III. PRELIMINARIES
A. Query Model

We assume that the query contains m terms qi,q2, . - ., Gm-
The query can optionally specify a Boolean expression over
the query terms. The system returns the k& highest scoring
documents that satisfy the Boolean expression (ties bro-
ken arbitrarily). We assume the score of a document d is
f(tscore(d,q1), ..., tscore(d, qy)) where tscore(d,q;) de-
notes the per-term score of d for term ¢; and f is a given
monotone function. A function f is said to be monotone if
flur, .. um) > f(ur,...,v5) when Vi,u; > v;. Many
of the popular IR scoring functions like TF-IDF, BM25 and
BM2S5F fall in this class of scoring functions.

B. Data Model

We assume that a posting list is maintained for each term.
The postings in each list are ordered by docid and organized
as a sequence of compressed blocks as shown in Figure 4 [17],
[5], [19], [18]. Each block typically contains a fixed number
of consecutive postings (e.g., around 100 as discussed in [17]).
Within a posting list, we identify a block by its block number.
Each block is compressed and hence can be decompressed
independently. We assume two modes of access to the blocks:
sequential and random access.

Modern IR engines often maintain a fancy list for each term,
i.e., a small fraction (~ 1%) of docids with the highest scores
for the term [8], [15], [9]. These docids are removed from the
blocks and are stored at the start of the posting list as shown in
Figure 4. We show how we can leverage fancy lists in Section
V-A.

C. Cost Model and Problem Statement

In the DAAT framework, the query processing cost has
3 components as shown in Figure 2: (i) /O Cost: that of
scanning the posting list of each query term on disk and
transferring it to memory (ii) Decompression cost: that of
decompressing the posting lists and (iii) Merge and Score
computation (M&S) cost: that of performing docid compar-
isons and computing the final scores of documents. Given a
keyword query, our goal is to return the top & docids and their

Generation
Component

Keywori{ Generate intervals
}

Pruning
Component

Prune Top k
intervals using [—4ocuments

upper bounds

query and compute upper
{q1>---an, bound scores
Summary data
of all blocks of
each query
term {q;,...q,,}

Fancy list
of each
query term
{Qp,- -G}

Blocks of query
terms overlapping
with non-prunable
intervals

Modified Inverted index]

Fig. 3. Architecture of our approach

scores while incurring the minimum I/O, decompression and
M&S costs.

IV. OUR APPROACH
A. Overview of our approach

Figure 3 shows the architecture of our approach. It has 3
components:
o Inverted Index Modification (index build-time): We com-
pute a small amount of summary information for each block
of each term (including the upper bound) and store it in the
inverted index.
o Interval Generation (query-time): Using only on the sum-
mary information, we partition the docid domain into a set of
intervals and compute a single tight upper bound (on the final
score of documents) for each interval.
e Interval Pruning (query-time): We then traverse the posting
lists of the query terms at the granularity of intervals and
compute the top-k docids. We use the upper bounds of the
intervals to “prune” out most of the intervals. This leads to
skipping of blocks.

We discuss the three components in detail the next three
subsections.

B. Inverted Index Modification

We modify the posting list of each term in two ways as of
shown in Figure 4:
Summary information for each block: While building the
inverted index, we compute the following summary informa-
tion for each block: the minimum docid, maximum docid
and maximum term score of any document in the block. We
refer to them as the mindocid, maxdocid and ubtscore (short
form for upper bound term score) of the block respectively.
We need to retrieve the summary data of all blocks of a
term without accessing the blocks themselves, so we store
the summary information for all blocks at the start of the
posting list (as shown in Figure 4). IR engines already store
some metadata at the start of the posting list (e.g., number of
documents, term upper bounds, fancy list); we simply append
our summary information to the existing metadata. Further,
we store the summary data of the blocks in the same order
the blocks are stored; this ensures efficient interval generation.
The summary information is about 1.5% of the size of posting
list (3 integers per block while block stores 200 integers
assuming 100 postings per block). We compress the summary
information using the same scheme used to compress the
blocks.

Summary [Fancy|Pointers |Signature| Postings Signature| Postings
data of all| list | to start of inblock 1} of [inblock b,
blocks of | of of block | (compress block |(compress

t t blocks 1 ed) b, ed)

0 Block 1 of t Block b, of t

Metadata (For random | . J
sectl.on O.f access to Postings list organized as blocks
posting list blocks)

Fig. 4. Posting list of a term ¢. Shaded regions represent our modifications.

Signature for each block : We compute a compact signature
for each block that describes the postings in the block. We
store it at the start of the block before the compressed
postings as shown in Figure 4. If the query specifies a Boolean
expression, we can use the signature for further pruning. We
discuss the details in Section V-B.

Note that our approach has almost negligible storage over-
head. Furthermore, the basic organization of the posting
list remains unchanged, hence our approach retains all the
desirable properties of the docid-ordered, block-compressed
organization.

C. Interval Generation

C.1 Optimal Set of Intervals

Our goal is to partition the docid domain into a set of
intervals such that we can compute a single upper bound score
(of the final score of documents) for each interval. Tightness
of these bounds are crucial for effective pruning; hence, we
require that upper bound score to be the tightest possible upper
bound score derivable from the summary information for all
docids in the interval. Formally, the tightest possible upper
bound score of a docid d (henceforth referred to as simply
upper bound score of d) is f(d.ubscorey,...,d.ubscore,)
where d.ubscore; is

= b.ubtscore if there exists a block b in ¢}s posting list
such that b.mindocid < d < b.mazxdocid

= 0 otherwise

In other words, we require the upper bound scores of all
docids in an interval to be the same.

Definition 1: (Intervals) An interval v is a contiguous
range of docids in the docid domain such that the upper bound
scores of all docids d € v in the range are equal.]

However, tightness is not the only factor. For example, one
can generate one interval for each docid; this trivially satis-
fies the above definition. However, this would make interval
pruning expensive since the latter needs to perform a check
for each interval: whether it can be pruned or not. Hence, the
optimal set of intervals is the partitioning that produces the
smallest number of intervals.

Definition 2: (Optimal Set of Intervals) Among all possi-
ble sets of intervals that partition the docid domain, the optimal
set is the one with the smallest number of intervals.]

Ubscores of
intervals

Singleton interval [12,12]
12

\ 1, 3) [3,414,5) [57] (7,8) [8,10] (10,12) l (12,14]
12 10 12 10 13 1 4

Block 1; SI&(1,42) Block 2; SE=(5,4,2) Blotk 3; SI_KB,14 3)

Spans of intervals

- -

q; 3 b 4 Poe d Poe ' i
{12 3 <51><62>71><k 1(9.2) 1 o (14.3)
B:lockl sr.=(3 10 ,2) BlockFiI;SI=(12,il4,l)
I 1 1 | | @

@ l (%’,1) ro v <9.2><1q,2) (12“1)(15,1)2!14,1)
| i 1 i Block 1 SI= '(3,123) : i |

as | i - D
' B2y Lo (9 8) (11) '

Docid domain
Fig. 5. Intervals for a freetext query with 3 terms q1,g2 and ¢3. Summary

information (SI) for each block, spans and ubscores of intervals are shown in
bold.

Example 1: Consider a freetext query with three terms ¢,
g2 and g3 whose posting lists are shown in Figure 5. Each
block here contains three postings. The summary information
(mindocid, maxdocid, ubtscore) is shown above each block.
Figure 5 shows the 9 intervals for the query. The spans and
ubscores of the intervals are shown on top. We denote a span
by [1, (), [) and (] depending on whether it is closed, open, left-
closed-right-open or left-open-right-closed respectively. The
span of the first interval is [1,3); all docids in this interval
has upper bound score 2. [|
Observation: If we consider the docids in increasing docid
order, the upper bound scores of docids change only at the
boundaries of the blocks of the query terms. Hence, the
boundaries of the blocks are also the boundaries of the optimal
set of intervals.

C.2 Interval Generation Algorithm

We present an algorithm that exploits the above observa-
tion to efficiently generate the optimal set of intervals. Let
dy, - ,d; denote the mindocids and maxdocids of all the
blocks of the query terms sorted in docid order. Since the
mindocids and maxdocids of all blocks for each query term
are stored in docid order in the inverted index, this can be
obtained in time linear to the number of blocks in the query
term posting lists (via a simple merge). Each pair {d;,d;11}
of consecutive docids in the above sequence is an interval. For
each boundary docid d;, we need to identify which interval
(the one corresponding to {d;_1, d;} or the one corresponding
to {d;,d;4+1}) to include it in. There are 5 cases as shown in
Figure 6:

R S 4

. . .

(a) (b) (©) (d) (e)
Fig. 6. Different cases for boundary points of intervals

e d; is maxdocid of one or more blocks but not mindocid
of any block (cases (a) and (b)): In this case, we include it
in {d;_1,d;} because d; has the same upper bound score as

other docids in that interval. Note that the upper bound score
of the docids in the other interval is different from the upper
bound score of d;.

e d; is mindocid of one or more blocks but not maxdocid of
any block (cases (c¢) and (d)): We include it in {d;,d;11} by
the same argument as above.

e d; is mindocid of one or more blocks and maxdocid of one
or more blocks (case (e)): In this case, we cannot include d; in
either the interval because the upper bound score of d; is not
the same as the upper bound scores of docids of either interval.
So, we exclude it from both those intervals and generate a
singleton interval [d;,d;]. [12,12] is an example of such a
singleton interval in Figure 5.

We show how we can efficiently compute the upper bound
score of an interval. Note that each interval overlaps with
exactly one block or one gap for each query term. In the
above algorithm, it is easy to keep track of the block/gap each
interval overlaps with for each query term. The upper bound
score v.ubscore; of an interval v for the ith query term is:

= b.ubtscore if v overlaps with block b for term g;

= 0 if v overlaps with gap for query term g;

The ubscore wv.ubscore of the interval v is
f(v.aubscorey, ..., v.ubscorey,).

We can formally show that the algorithm leveraging the
observation stated in the previous subsection indeed produces

the optimal set of intervals as defined in Definition 2.

Lemma 1: (Optimality of Intervals) The above set of
intervals is optimal.

Performance overhead: The running time of the algorithm is
linear to the number of blocks in the posting list of the query
terms. Since the number of blocks is much fewer than the
number of postings in the posting lists (around 1% assuming
blocks with 100 postings), the interval generation component
has negligible overhead (compared with the interval pruning
component).

D. Interval Pruning

All our pruning algorithms follow the following template.
They iterate over the intervals. For each interval, they perform
the following check: can the interval be pruned? This involves
checking whether the upper bound score (referred to as ub-
score in short) of the interval is less than the kth highest docid
score seen so far. If the check fails, they “process” the interval.
Processing an interval involves reading the blocks overlapping
with the interval from disk, decompressing them and running
the DAAT algorithm over that interval.

The order in which we iterate over the intervals affect cost.
For example, iterating over them in decreasing order of their
ubscores is optimal in terms of number of intervals processed.
This translates to superiority in terms of decompression and
M&S costs. However, this involves random accesses to the
blocks which is expensive. On the other hand, iterating over
them in increasing order of their mindocids implies that the
blocks are accessed via a sequential scan and hence has lower

Algorithm 1 PRUNESEQ

Input: List V of intervals, k

Output: Top k docids and their scores

Let currblks denote the decompressed blocks overlapping with
current interval

1: for j=1to V| do

2: if V[j].ubscore > thresholdScore then

3: fori = 1 tomdo

4: if V[j].block Num; # GAP then

5: if currblks [i].blockNum#V[j].block Num;
then

6: currblks[i] < Read V[j].blockNum;) from

disk (sequentially) and decompress

7: else

8: Clear block in currblks[i]

9: ExecuteDAATOnlInterval(currblks,V[jl,currTopK,k)

10: return currTopK

I/O cost. We study the above two orders and then two other
algorithms that tries to to balance between these two costs.

All our algorithms take as input the list of intervals V
(in increasing order of their mindocids) and their ubscores.
All our algorithms maintain the set currTopK of k highest
scoring docids seen so far (initially empty). They also track
the minimum score of current set of top-%k docids, referred to
as the threshold score.

D.1 Iterate over Intervals in Docid Order

We iterate over the intervals in increasing order of min-
docids. The pseudocode of the algorithm, referred to as
PRUNESEQ, is outlined in Algorithm 1. Note that v.ubscore
denotes the ubscore of the interval v and v.blockNum;
denotes the block number (identifier) of the block overlapping
with interval v for ¢th query term ¢;. If v overlaps with a
gap for ¢;, we assign a special value (denoted by GAP) to
v.blockNum;. We discuss two steps in further detail:
Reading blocks (lines 3-8): Note that a block can overlap
with multiple intervals. To avoid reading a block from disk
and decompressing it multiple times, we read/decompress it
once and retain it (in currblks) till we are sure that it is no
longer needed, i.e., no subsequent interval overlaps with it.
Running DAAT on an interval (line 9): The ExecuteDAA-
TOnlInterval procedure takes the decompressed blocks of the
interval and executes the DAAT algorithm over the span
of the interval (i.e., from the mindocid of the interval till
its maxdocid). We use the DAAT algorithm with the TUB-
skipping optimization. If it finds any docid in that span with
score higher than the threshold score, it updates currTopK
accordingly. To locate the starting point in the blocks overlap-
ping with the interval, we use binary search.

Example 2: We illustrate the execution of PRUNESEQ on
the intervals shown in Figure 5. Suppose & = 1. PRUNESEQ
will process all the intervals till [8,10]. At this stage, the
threshold score is 12. So, it will prune the last 3 intervals.
Thus, PRUNESEQ will avoid decompressing block 2 of ¢». B

Note that PRUNESEQ accesses the blocks in the same order
as they are stored in disk; so it performs a sequential scan

over each query term posting list. Hence, it has the same 1/O
cost as TUB-skipping. However, it decompresses much fewer
blocks and computes the score of much fewer docids compared
with TUB-skipping. Hence, the overall cost is much lower (as
confirmed by Figure 10(c)).

The main downside of PRUNESEQ is that initially, the
threshold score may be a weak lower bound of the final
top k documents. Hence, during this initial stage (until the
threshold score becomes tighter), a large number of intervals
may be processed unnecessarily (as evidenced by Figure
10(a)).

D.2 Iterate over Intervals in Ubscore Order

Alternately, we can iterate over the intervals in decreasing
order of their ubscores. We process the intervals until we
encounter an interval with ubscore less than or equal to the
threshold score. At this point, we can terminate as none of
the remaining intervals can contribute any docid to the top-k
results. We refer to the above algorithm as PRUNESCORE-
ORDER.

Note that since a block can overlap with multiple intervals,
the above algorithm may end up accessing the same blocks on
disk (random I/O) and decompressing them multiple times.
We mitigate that cost by caching the decompressed blocks
(referred to as DCache) during traversal.

PRUNESCOREORDER is optimal in terms of number of
blocks decompressed over a fairly general class of algorithms.
We formally capture this notion using instance-optimality [6].
Let D be the class of databases consisting of posting lists for
each term. Let A be the class of algorithms that are allowed
to perform either sequential or random accesses to blocks but
use limited amount of buffers (that holds at most one block
per query term). PRUNESCOREORDER is instance optimal
over A and D with optimality ratio m (m is the number
of query terms). This is, for every A € A and D € D,
cost(PRUNESCOREORDER,D) < m - cost(A, D) + ¢ where
c is a constant.

Theorem 1: (Instance Optimality of PRUNESCORE-
ORDER) PRUNESCOREORDER is instance optimal over A
and D in terms of distinct blocks decompressed with opti-
mality ratio m.

Proof Sketch: It is easy to show that PRUNESCOREORDER
only processes intervals with ubscore greater than final kth
highest score. Using the notion of r-optimality [13], it can
be shown that any algorithm A € A cannot prune any such
interval v, otherwise there will be false dismissals for some
D € D. This implies A must decompress at least one block
overlapping with each interval processed by PRUNESCORE-
ORDER. Hence, the optimality ratio of m. []

Although PRUNESCOREORDER is optimal in terms of
number of blocks decompressed (which translates to lower
decompression and M&S costs), it typically has much higher
I/O cost compared with PRUNESEQ as it performs random
I/O while accessing the blocks on disk. This can offset the
savings in decompression and M&S costs. Our experiments
confirm that this is indeed the case (Figure 11(a)) Note that

Algorithm 2 PRUNEHYBRID

Input: List V of intervals in docid order, p , k
Output: Top k docids and their scores

1: Viop < Top p X |V| intervals ordered by ubscore
2: for j =1 to [Viop| do
if Viopljl.ubscore < thresholdScore then
return currTopK
Clear blocks in currblks
fori =1 to m do
if Viop[7].blockNum; # GAP then
currblks[i] + Lookup block Viep[j]-blockNum; in
DCache, else read from disk and decompress (and
update DCache) if not found
9: ExecuteDAATOnlInterval(currblks,V[jl,currTopK,k)
10: Process unprocessed intervals in docid order as in PRUNESEQ
11: return currTopK

(98]

A A

if the posting lists of the query terms reside completely in
memory, PRUNESCOREORDER is optimal in terms of overall
cost.

D.3 Iterate in Ubscore Order, then in Docid Order

We present an algorithm that judiciously trades off I/O cost
with decompression/M&S costs to reduce the overall cost. The
main idea is to process a small number of intervals in ubscore
order, then switching and iterating over the rest of them in
docid order. Often, the docids from the intervals processed
during the first phase builds up a “good” set of current
top-k documents, making the threshold score a tight lower
bound of the final top & documents. In such cases, we can
prune out more intervals during the second phase compared
to PRUNESEQ, thus saving decompression and M&S costs.
If the extra cost of random accesses during the first phase is
lower than the savings in the decompression and M&S costs,
the algorithm will have lower overall cost. The pseudocode of
the above algorithm, referred to as PRUNEHYBRID, is outlined
in Algorithm 2.

p is the fraction of intervals to be processed in score
order before the switch is made; it is an input parameter to
PRUNEHYBRID. The system designer can control the tradeoff
using p. Note that PRUNEHYBRID reduces to PRUNESEQ
when p = 0 and to PRUNESCOREORDER when p = 1.

Example 3: We illustrate the execution of PRUNEHYBRID
on the intervals shown in Figure 5. Suppose £ = 1 and p =
0.1. PRUNEHYBRID will process the top 0.1 x9 ~ 1 intervals,
i.e., [8,10] in score order. At this stage, the threshold score
is 12. PRUNEHYBRID will consider the remaining intervals
sequentially and will prune all of them. Thus, PRUNEHYBRID
will avoid decompressing blocks 1 and 2 of ¢; and block 2 of
q2- u
D.4 Process Intervals Lazily Using Available Memory

Since the cost of random access is much higher than that
of sequential access, the optimal algorithm is to process the
intervals in score order but read the blocks in docid order. In
that way, we perform just one sequential scan (i.e., optimal
I/O cost) and, at the same time, incur optimal decompression

and M&S costs.> Our main insight is to utilize the available
amount of memory to approach the above goal.

Suppose we have enough memory available to hold all
the compressed blocks of the query terms. We can iterate
over the intervals in docid order as in PRUNESEQ. We prune
the intervals with ubscore less than or equal to threshold
score as before. For the non-prunable intervals, instead of
decompressing the blocks and processing the interval right
away, we read the compressed blocks from disk and fetch
them to memory. We refer to this as the “gathering” phase.
At the end, we process the gathered intervals in score order.
We refer to this as the “scoring” phase. This algorithm is
optimal as defined above.

In practice, we may not have enough memory available to

hold all the compressed blocks of the query terms. In that case,
we perform the above “gathering” in batches of intervals. For
each batch, we then process the intervals in score order. The
pseudocode of the algorithm, referred to as PRUNELAZY, is
outlined in Algorithm 3. We keep track of the the last interval
1p processed or pruned during the last scoring phase and the
last interval 1g gathered during the last gathering phase.
Gathering phase (lines 2-12): During the gathering phase,
we gather compressed blocks of the non-prunable intervals
(starting from the first unprocessed interval (1p+1)) into a
memory buffer. Once the buffer becomes full, we record the
last interval we have gathered in 1g and switch to the scoring
phase.
Scoring phase (lines 13-25): During the scoring phase, we
process the gathered batch of intervals, i.e., from (1p+1) till
1g in score order. However, unlike in PRUNESCOREORDER,
when a block of the interval is not found in the DCache, we
do not read from disk; we read it from the memory buffer,
decompress it, use it and cache it. When the termination
condition is satisfied, we discard all the gathered blocks, record
(in 1p) that all intervals till 1g has been processed or pruned
and switch back to the gathering phase. We keep toggling
between the two phases till we iterate over all the intervals.

Example 4: We illustrate the execution of PRUNELAZY on
the intervals shown in Figure 5. Suppose k¥ = 1. Let M
denote the size of the memory buffer in terms of number of
compressed blocks; suppose M = 5. PRUNELAZY gathers
blocks of all intervals till (10,12); it then switches to the
scoring phase. It processes [8,10] and prunes the rest. At this
stage, the threshold score is 12. It then switches again to the
gathering phase and gathers the remaining blocks. The next
switch is back to the scoring phase during which it prunes all
the intervals. Thus, PRUNELAZY will process only the interval
[8,10] and hence avoid decompressing blocks 1 and 2 of ¢
and block 2 of gs. |

We formally show that if the upper bound scores of the
intervals are realizable upper bounds, i.e., there exists at least
one document in the interval with that score, PRUNELAZY
scales linearly to the memory budget.

2PRUNESEQ does both in docid order while PRUNESCOREORDER
does both in score order.

Algorithm 3 PRUNELAZY

Input: List V of intervals, memory budget M, k, cursor
Output: Top k docids and their scores

Let membuf denote the memory buffer

Let 1p denote the last interval processed or pruned

Let 1g denote the last interval gathered

1: membuf < ¢, 1p < 0, 1g <+ 0
2: GATHERINGPHASE:
3: for j = (1p+1) to |V| do
if V[j].ubscore > thresholdScore then
5: fori =1 tom do
6: if V[j].blockNum; # GAP and V[j].blockNum; ¢
membuf then
if size(membuf) < M then

AN

8: Read block V[j].blockNum,; from disk (sequen-
tially) and add to membuf

9: else

10: lg < j-1

11: goto SCORINGPHASE

12: 1g « |V

13: SCORINGPHASE:

14: B+ {V[j],j=1p+1,---,1g} ordered by ubscore

15: for j = 1 to |B| do
16: if [j].ubscore < thresholdScore then

17: lp < 1g
18: Empty membuf
19: goto GATHERINGPHASE

20: Clear blocks in currblks

21: fori=1tomdo

22: if B[j].block Num; # GAP then

23: currblks[i] < Lookup block B[j].blockNum; in
DCache, read from membuf and decompress (and up-
date DCache) if not found

24: ExecuteDAATOnInterval(currblks,V[jl,currTopK,k)

25: return currTopK

Theorem 2: (Sensitivity of PRUNELAZY to memory) If
the upper bound scores of the intervals are realizable upper
bound scores and assuming that the docids are assigned
randomly, the expected number of blocks decompressed by
PRUNELAZY is EJ; times the optimal number where ¥;b;
is the total number of blocks in the posting lists of the query
terms and M denotes the size of the memory buffer (in terms

of number of compressed blocks).

Proof Sketch: Assuming the docids are randomly assigned,
the expected number of intervals processed during each pro-
cess phase is k. So, the expected total number of intervals
processed is k- Eﬁ” . The expected optimal number of intervals
processed is k. Hence, the proof.]

For m = 1, the upper bound scores are indeed realizable
bounds. This may not be true m > 2. However, our exper-
iments show that even for m > 2, the cost of PRUNELAZY

scales linear to the amount of memory (Figure 11(c)).

Lemma 2: (Correctness of algortihms) PRUNESEQ,
PRUNESCOREORDER, PRUNEHYBRID and PRUNELAZY
return correct top-k docids.

V. EXTENSIONS

We first discuss how our algorithms can leverage fancy lists
to improve performance. We then present an optimization to

New ubscores

of intervals > 5 3 5 3 6 4 5
LI R D U N A A
i oo 2 0 3w |
o SEE BEE S
I 1 1 I 1 v 1 T 1
i R T | |)
9 | L I B b
]\‘\Iew ubs(éore é)f bl:bck\»/g il i :: E ii i
as | N T CX N B

" Rerhové high terin-score " =_Fancy interval
docid from block and (containing only
include in fancy list docid 9); ubscore=12

Fig. 7. Improving upper bound scores of intervals using fancy lists.

leverage Boolean expressions, if specified by the query, to
further improve performance.

A. Adapting Interval Pruning to Leverage Fancy Lists

Many modern IR engines maintain a fancy list for each
term: a small fraction (~ 1%) of documents with the highest
scores for the term [8], [15], [9]. These docids are removed
from the blocks and are stored at the start of the posting list
as shown in Figure 4. Fancy lists are used to improve the term
upper bounds used in TUB-skipping [8], [15]. If present, fancy
lists can also improve the ubscores of the intervals and hence
the performance of our interval-based algorithms. Consider
the intervals for the freetext query with 3 terms g1, g2 and q3
shown in Figure 5. If we remove the high term score docid
9 from g3’s posting list (and include in ¢3’s fancy list), the
ubscores of the intervals decrease significantly as shown in
Figure 7. We need to adapt our algorithms to take advantage
of the fancy lists.

Adapting interval generation algorithm: In addition to the
regular intervals, we generate a “fancy interval” fy for each
docid d in any of fancy lists of the query terms. Figure 7
shows the fancy interval for the docid (9) in ¢3’s fancy list.
We obtain the ubscore of fy as follows. If d is in the fancy
list of ¢;, we get the ubscore fj.ubscore; of f; for g; from
the fancy list. Otherwise, we get it from the block or gap
d overlaps with for g;. The overall ubscore fy.ubscore is
f(fq.ubscorey, ..., fq.ubscorey,).

Adapting interval traversal and pruning algorithm: The
traversal and pruning algorithms work as before over the
combined set of regular intervals and fancy intervals. Only the
DAAT processing of a fancy interval f; is slightly different
from a regular interval: for the term(s) for which d is a fancy
hit, we get the term score from the fancy list itself.

B. Exploiting Boolean Expressions

Often, the query specifies a Boolean expression (e.g., AND)
over the query terms. In such cases, the interval generation
algorithm outputs only the intervals that contains documents
that can satisfy the Boolean expression. For example, for AND
query, we output only the intervals that overlap with a block
for each query term, i.e., [3,4],[5,7],[8,10], [12,12] and (12,14)
in Figure 5.

Often, an interval has blocks overlapping for all the query
terms but contains no docid that satisfies the AND Boolean
expression. [5,7] is such an interval in Figure 5. We present
an optimization that avoids processing such intervals. We

O S A o I B E—
o e oF " gu &

2 AR LR
T S L] - A
o 208 T
@w A
3 5 ¢ * "u A
o 9 =
© © 06 + By
a N [A
« <
c =
£ 204 —2kwds "

S w A

B o A

Sz = 3 kwds . A
n

& 802

S A 4 kwds "

A
0 n A

Fig. 8. Fraction of processed intervals with no results

compute and store a “signature” for each block that contains
information about the block at a finer granularity. We can
then modify the interval traversal and pruning algorithm as
follows: before processing a non-prunable interval, we use
the signatures of the blocks overlapping with interval to
check whether the interval may have docids that satisfy the
Boolean expression. We process the interval only if the check
is satisfied. If this check is significantly faster than processing
the interval and the check fails for most intervals, it leads to
lower cost.

However, we found that, for many queries, most intervals
pass the check. Figure 8 shows the fraction of intervals con-
taining at least one docid that satisfies the Boolean expression
for a sample of 100 real-world queries on the 55GB document
collection. This fraction is often high: it is above 90% for most
queries with 2 terms and for several queries with 3 terms. All
these intervals will obviously pass the check. Furthermore,
for most signature schemes, the cost of performing the check,
although lower than processing an interval, is not negligible. In
such cases, performing the check on all non-prunable intervals
is an overkill and can increase the overall cost.

To address this problem, we divide the non-prunable inter-
vals into two categories: ones that are likely to fail the check
and ones that are not. For each interval in the first category, we
perform the check and process it only if the check is satisfied.
For each interval in the second category, we skip the check
and process it directly. Note that no matter how we divide the
non-prunable intervals into these two categories, correctness
is not affected: we always return exact top-k results. We first
present an example signature scheme and then present a novel,
cost-driven technique to select the non-prunable intervals for
which the check is performed. For the purpose of exposition,
we describe our techniques in the context of AND Boolean
expression.

Example signature scheme: We present a simple signature
scheme; any scheme can be used as long as the check has no
false negatives. We first partition the domain of docids into
fixed-width “slices”. Figure 9 shows the slices with width 2.
Each block overlaps with a set of these (consecutive) slices.
For example, block 2 of ¢; overlaps with slices 3 and 4. We
compute a bitvector for each block with one bit corresponding
to each slice it overlaps with. The bit is set to true if the block
contains a docid in that slice and false otherwise. The bitvector
is the signature of the block. The signatures of 3 blocks are
shown in Figure 9. To perform the check on interval v, we
take, for each block overlapping with v, the “portion” of the

Fixed

Slice 1 Slice2 Slice3 Slice4 Slice5 Slice6 Slice 7

width [1,3) 35 [57 (7.9 [9,11) [11,13) [13,15)
slices .
Signature of | 4 1
q, P thig blogk gn o b e 0
Signature of | 4 0 0 1
a, thig block . L5 A
Signature of 1 0 0 1 1
a3 thig block |
Fig. 9. Example signature scheme.

bitvector overlapping with v and perform a bitwise-and. If at
least one bit in the result is set, the check is satisfied. To
perform the check on interval [5,7], we take the portions from
the above three blocks (11, 00 and 00 respectively). The check
(bitwise-and of 11,00 and 00) would return false.
Selecting the intervals for which signature check is per-
formed: For a non-prunable interval, we quickly estimate
the probability of the check being satisfied. We perform the
check only if that estimated probability is below a threshold
0; otherwise, we skip the check and process the interval
directly. The two challenges are (i) estimating the probability
of the check being satisfied efficiently and (ii) determine the
best value for §. Note that the choice of 6 affects the query
processing cost but not the correctness of the top-k results.
We estimate the probability using only the fraction of Is in
the signature of a block as follows. Let d(b) denote the fraction
of bits in the signature of block b that are set to 1 and w(v)
denote the width of interval v. Assuming the bits in a signature
of a block is equally likely to be set, the probability of a
bit in the signature being set is d(b). Assuming independence
among query terms, the probability of a bit in the result of
bitwise-and being set is [[, d(v.block Num;). The number of

w(v

bits for the interval is ——. So, the probability of the check

being satisfied (i.e., at least one of the bits is set) is 1 — (1 —
w(v)

IL d(v.blockNqu)

We present a cost-driven approach of determining the best
value of #: we model the query processing cost and select the
6 that minimizes the expected query processing cost.

Theorem 3: The optimal threshold value 8, is (1 — X)

where X\ is the ratio of the cost of the check to cost of
processing the interval.
Proof: Let e(v) denote the estimated probability that interval
v satisfies the check. Let Cgp(v) and Cp-(v) denote the
cost of the check and that decompressing blocks and DAAT
processing for an interval v; Cep(v) = A- Cpr(v). So, the cost
is

Plev) < 0): (Can) +e(6)- Cpr (1)) + Plelw) > 6)-Cor0)

= (A-P(e(v) < 0)+e(v)-Ple(v) < 0)+P(e(v) > 9)) -Cpr(v)
f

¢ the probability distribution of e(v). € expecte
) be the probability distribution of e(v). The expected
(0) is

([)+ [Car@ - / 9 1)) - ECor(w)

The expected cost is minimized when d]fiée)

A f(eom) + eomf(eopt) - f(‘90pt) =0

Hence, the optimal threshold value 6,,; is (1 —).

=0, ie.,

Thus, we perform the check on a non-prunable interval only
if w(w)

1- <1 - Hd(v.blockNumi)) <(1-=X

Although we described our techniques in the context of
AND Boolean expression, they can be easily generalized ar-
bitrary Boolean expressions (arbitrary combinations of ANDs
and ORs). We skip the details due to space limitations.

VI. EXPERIMENTAL EVALUATION

We now present an experimental evaluation of the tech-
niques proposed in the paper. The goals of the study are:
e To compare the performance of interval-based algorithms
with TUB-skipping
e To compare the performance of the four traversal and prun-
ing algorithms, PRUNESEQ, PRUNESCOREORDER, PRUNE-
HYBRID and PRUNELAZY
e To compare the performance of interval-based algorithms
with TUB-skipping in presence of fancy lists
e To evaluate the impact of the optimization for exploiting
Boolean expressions.

A. Experimental Setting

Inverted Index Implementation

Since our algorithms require modifications to posting lists,
we extract the posting lists out from an IR engine?® , modify
them as shown in Figure 4 and store them in binary files. We
store the dictionary (containing each term in the collection, its
IDFScore and a pointer to the start of its posting list) in an in-
memory hash table with the term as key. Our algorithms rely
on three inverted index APIs: ReadMetaData for reading
the summary data of a given term (used by interval gen-
eration step) and ReadBlockSeq and ReadBlockRand
for sequential and random access to a given block (used
by traversal and pruning step). Our implementation of those
APIs follow the traditional implementation (using standard file
seek and binary read operations). We store 100 postings per
block as proposed in [19]. We used variable-byte compression
to compress the d-gaps and term scores inside the blocks.
Variable-byte compression is commonly used in IR engines
to compress posting lists (including in Lucene [1]) due to its
fast decoding speeds [12]. Since the decompression cost is
higher for other compression schemes [12], [20], we believe
that our pruning techniques would provide even more savings
for other schemes.

To study the performance with and without fancy lists
and signatures, we created 3 versions of the index for each

3From SQL Server Full Text Search (FTS)
gine using the dynamic management function
dm_fts_index_keywords_by_document

en-
called

10

TABLE I
EXAMPLE QUERIES FROM TREC TERABYTE TRACK

volcanic activity
domestic adoption laws
ivory billed woodpecker
reverse mortgages

blue grass music festival history
school mercury poisoning
women rights saudi arabia
reintroduction gray wolves

document collection: one without fancy lists and signatures,
one with fancy lists but no signatures and one with both. For
fancy lists, we use the top 1% of the docids in the posting
list. For signatures, we use the bitvector scheme described in
Section V-B. We use slice width of 100. We compressed the
bitvectors using run-length encoding.
Query Processing Algorithms

We implemented (i) naive DAAT (ii) TUB-skipping [4] and
(iii) the four interval-based algorithms proposed in this paper.
For PRUNELAZY, we use M = 5000 (size of memory buffer
in terms of compressed blocks) unless otherwise mentioned.
We also evaluate the above algorithms in presence of fancy
lists and signatures. For all our experiments, we used a
DCache of 1000 blocks (which is about 1MB). The above
cache was shared across all queries.
Datasets

We report results over two real-life datasets.
TREC Terabyte: This is a collection of 8 million Web pages
crawled from the .gov domain (part of the GOV2 collection).
The total size of the collection is 201.3GB.
TotalJobs: This is a collection of 1118156 CVs (curriculum
vitae) uploaded to TotalJobs.com. The total size of the collec-
tion is 54.4GB.
For the Trec dataset, our results are averaged over 50 topic
(freetext) queries (751-800) from the 2005 TREC Terabyte
Track (average query length is 2.875 words). A few example
queries are shown in Table I. For TotalJobs dataset, we aver-
aged across 500 real queries obtained from the TotalJobs.com
query log (average query length is 2.74 words). We use the
BM25 scoring function and k£ = 10 for all our experiments.
All experiments were conducted on an AMD x64 machine
with two 1.99GHz AMD Opteron processor and 8GB RAM,
running Windows 2003 Server (Enterprise x64 edition). We
conducted our experiments with a cold cache.

B. Summary of Results

Performance on TREC Terabyte Dataset

We compare the various algorithms not only in terms of
the overall execution time but also individual components of
the cost, namely, the number of blocks decompressed and the
number of documents processed. Figure 10(a) compares the
four pruning algorithms with naive DAAT and TUB-skipping
in terms of number of blocks decompressed. TUB-skipping
hardly saves any block decompressions over naive DAAT;
the plot for naive DAAT is not visible as it is superimposed
by the plot for TUB-skipping. This validates our observation
that TUB-skipping is unlikely to skip blocks unless one of
the query terms is significantly more frequent than other
terms; most queries in the TREC benchmark do not fall in
this category (see Table I for examples). Our interval-based
pruning algorithms decompress one order of magnitude fewer

1000000

10000 3 T I
g “+Naive DAAT § 100000 ﬁ,—é “+Naive DAAT v 0.4 B Naive DAAT
£ 1000 ®TUB-skipping o ®TUB-skipping é 03 / WTUB-skipping
é #Seq % 10000 #Seq E 0.2 *Seq
o ><Hybrid(0.1) S <Hybrid(0.1) § s<Hybrid(0.1)
$ 100 i u yorict. gol oy Hybrid(.
° o o oo o *Hybrid(0.5) <u>: 1000 *Hybrid(0.5) ;, 0 | =" Hybrid(0.5)
= S & & & @ScoreOrder #ScoreOrder < #ScoreOrd
w QQQ 000 000 S L S QQQ QQQ @Q 000 QQQ 000 QQ coreOrder
E O A azy F S S Lazy S & & Lazy
DS S A P

Database size

Database Size

Database Size

(@
Fig. 10.
time w.r.t. database size

(b)

(a) Number of blocks decompressed w.r.t. database size (log scale) (b) Number of docids processed w.r.t. database size (log scale) (c¢) Execution

(©)

0.18 0186 — 1 R

§0.16 » ig/io,m 774 Zo0s . s . . .

r g:ig +TUB-skipping F O'olj /% etuB-skipping R R

801 T 4 mseq £ 008 . mSeq < °, o

§0.03 I« #Hybrid(0.1) £ 006 - #Hybrid(0.1) o4 —* K e .

2 0.06 ///,,, ~° “Hybrid(0.5) ¢ 004 | >Hybrid(0.5) o |t .

2'1 0.04 - — %&ScoreOrder :>(° 0.02 - ScoreOrder ; {‘1:0‘ - :

Z 002 olazy 0 - ~Lazy 0 s - ’
0 1 1 5 10 50 100 0 0.2 0.4 0.6 0.8 1

2 kwds 3kwds 4 kwds k M/NumBlocksinQueryTermPostingLists

()
Fig. 11.

blocks compared with TUB-skipping. This is because the fine-
granularity bounds and interval-based pruning that exploits
those bounds leads to much better block skipping. Among the
interval pruning algorithms, PRUNESCOREORDER is indeed
the best (as formally stated in Theorem 1). We can see that
PRUNELAZY is quite close to the optimal.

Figure 10(b) compares our pruning algorithms with naive
DAAT and TUB-skipping in terms of the number of docids
for which scores were computed. TUB-skipping is slightly
better than naive DAAT; however, the skipping is limited
due to weak upper bounds and docid-granularity traversal.
Our interval-based algorithms compute scores for one to
two orders of magnitude fewer docids compared with TUB-
skipping. This confirms that the fine-granularity bounds and
interval-based pruning leads to much better pruning. Among
the interval pruning algorithms, PRUNESCOREORDER is the
best as expected while PRUNELAZY is close to the optimal.

Figure 10(c) compares the various algorithms in terms of
the overall execution time. The improvements in number of
block decompressions and score computations translates to
improvement in execution time: our algorithms are 3-6 times
faster than TUB-skipping. PRUNELAZY performs the best
among the interval pruning algorithms; it is 20-30% faster
than other interval-based algorithms. PRUNESCOREORDER is
inefficient due to the high I/O cost. PRUNEHYBRID performs
fewer random accesses compared with PRUNESCOREORDER
but needs to also perform a sequential scan; the overall I/O
cost is still high enough to offset the savings in decompression

and M&S costs. We report the results for two values of
the parameter p that controls the tradeoff (0.1 and 0.5); we

(b)

(a) Execution time w.r.t. number of keywords (b) Execution time w.r.t. k£ (c) Sensitivity of PRUNELAZY to memory

11

©

obtained similar results for other values of p. PRUNELAZY
outperforms PRUNESEQ as it has lower decompression and
M&S costs compared with the latter and the same I/O cost.
Performance on TotalJobs Dataset

Figure 11(a) compares our pruning algorithms with TUB-
skipping in terms of the overall execution time. As in the
TREC dataset, our interval-based algorithms are 3-6 times
faster than TUB-skipping. PRUNELAZY performs the best
among the interval pruning algorithms; it is up to a factor
of 2 faster than other interval-based algorithms.

Figure 11(b) compares the various algorithms in terms
of execution time for various values of k. The cost of our
pruning algorithms increase linearly with k. Higher the value
of k, lower the threshold score, fewer the number of intervals
pruned, hence higher the cost. Our interval-based algorithms
outputperform TUB-skipping for all values of k.

Sensitivity of PRUNELAZY to memory

Figure 11(c) shows the sensitivity of performance of
PRUNELAZY (in terms of the number of blocks decompressed)
to the amount of available memory. The x-axis represents
the fraction of blocks in the query term posting lists that
fit in the available memory while the y-axis represents the
improvement of PRUNELAZY over PRUNESEQ relative to
the maximum possible improvement (i.e., of PRUNESCORE-
ORDER over PRUNESEQ). The performance of PRUNELAZY
improves linearly with the amount of memory available. We
formally proved this behavior for single term queries (see
Theorem 2); we empirically show that it holds for multi-term
queries as well.

8 =skippi .14 ~ ippi —0.07 2 kwds ®3kwds
5 7000 W _ 0.14 W B1000 +7 kwds ®3 kwds 24kwds 58 8% T Akwds—
2 6000 - mLazy 3012 |=lazy 4 800 0. L
5 Lazy+Fancy / 2 Lazy+Fancy / g 600 ;0‘05
£ 5000 2 01 s 20.04 .
§ 4000 £ 008 g 400 £0.08 —
23000 §oos | = g 200 - Zo001 ———
£ 2000 A g 0.04 = k. 0 T T T T T | g 0 T T T T T |
Ix x _— =
% 1000 = 2002 g o T S TP TP BN o O I TP R BN
¥ ® & o7 o7 o7 o7 N g & o7 o7 7 o &
N Z 0 : : : < M < ﬁx‘(" " " @ 7 o
v
2kwds 3 kwds 4kwds 2kwds 3 kwds 4kwds N v
(@ (®) () ()
Fig. 12. (a) # blocks decompressed when using fancy lists (b) Execution time when using fancy lists (c) Impact of signatures on # blocks decompressed

(d) Impact of signatures on execution time

Impact of fancy list on performance

Figure 12(a) compares PRUNELAZY with and without fancy
lists and TUB-skipping with fancy lists in terms of the number
of blocks decompressed. Our pruning techniques significantly
outperform TUB-skipping in presence of fancy lists as well.
This implies that the benefits of fine-granularity bounds and
interval-based pruning carry over to this case as well. Note
that PRUNELAZY with fancy lists significantly outperform
PRUNELAZY without fancy lists implying that that tighter
block upper bounds leads to better pruning. Figure 12(b)
compares the above techniques in terms of overall execu-
tion time. PRUNELAZY+FANCY is 3-5x faster than TUB-
skipping+Fancy. Using fancy lists improves the execution time
by 30% over PRUNELAZY without fancy lists.
Impact of signature on performance

Figure 12(c) shows the impact of signatures in terms of
number of blocks decompressed for various values of . Signa-
tures do not have significant impact for 2 or 3 keyword queries
because signature-check is not performed for most intervals.
On the other hand, for 4 keyword queries, signatures reduce
the number of blocks decompressed significantly. Higher the
value of 6, higher the number of intervals for which the
signature-check is performed, fewer the number of blocks
decompressed. Figure 12(d) shows the impact of signatures
in terms of execution time. For lower values of 6 (< 0.3), the
improvement in the number of blocks decompressed is worth
the extra cost of performing the checks, hence the execution
time drops for these values. This not the case for higher values
of # (> 0.3). Hence, the overall execution time follows a
U-shaped curve with the optimum at around # = 0.3. This
validates our checking algorithm presented in Section V-B: A
(the ratio of the cost of the check to the cost of processing
the interval) is 0.6, so the optimal choice of 6 is 0.4. which is
close to the observed optimal value of 6.

VII. CONCLUSIONS

In this paper, we study the problem of top-k processing over
record-id ordered, compressed lists. We develop algorithms
that improve execution of such queries over the state-of-the-art
techniques. Our main contributions are to use fine-granularity
bounds and pruning based on judiciously-chosen intervals.
Our empirical study indicate that our techniques outperform
state-of-the-art techniques by a factor of 3-6. Our algorithms

12

require minimal change to the underlying index organization
and hence can be easily integrated into IR engines.

Our work can be extended in multiple directions. We
considered a simple set of summary data per block; it might
be possible to achieve much better pruning by exploiting
other kinds of summary information. However, the challenge
is to keep the overhead of the approach low. Extending
the pruning techniques for complex scoring functions (e.g.,
machine-learned ranking) is also an open challenge.

REFERENCES

[1] formats.
[2]

[3]

Apache lucene index file
http://lucene.apache.org/java/2_3_2/fileformats.html, 2008.
V. Anh and A. Moffat. Pruned query evaluation using pre-computed
impacts. In SIGIR, 2006.

H. Bast, D. Majumdar, R. Schenkel, M. Theobald, and G. Weikum. To-
top-k: index-access optimized top-k query processing. In VLDB, 2006.
A. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient
query evaluation using a two-level retrieval process. In Proceedings of
CIKM Conference, 2003.

J. Dean. Challenges in building large-scale information retrieval systems
(wsdm 2009 keynote). http://research.google.com/people/jeff/WSDMO09-
keynote.pdf.

R. Fagin, A. Lotem, and N. Naor. Optimal Aggregation Algorithms for
Middleware. J. Comp. Sys. Sci., 66(4), 2002.

U. Giintzer, W.-T. Balke, and W. KieBling. Optimizing Multi-Feature
Queries for Image Databases. In VLDB Conf., 2000.

X. Long and T. Suel. Optimized query execution in large search engines
with global page ordering. In VLDB, 2003.

C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA, 2008.

A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval.
ACM Trans. Inf. Syst., 1996.

S. Nepal and M. Ramakrishna. Query Processing Issues in Image
(Multimedia) Databases. In ICDE Conf., 1999.

F. Scholer, H. Williams, J. Yiannis, and J. Zobel. Compression of
inverted indexes for fast query evaluation. In SIGIR, 2002.

T. Seidl and H. P. Kriegel. Optimal multi-step k-nearest neighbor search.
In SIGMOD, 1998.

D. glezak, J. Wréblewski, V. Eastwood, and P. Synak. Brighthouse: an
analytic data warehouse for ad-hoc queries. PVLDB, 2008.

T. Strohman, H. Turtle, and B. Croft. Optimization strategies for
complex queries. In Proceedings of ACM SIGIR conference, 2005.

H. Turtle and J. Flood. Query evaluation: strategies and optimizations.
IPM, 31(6), 1995.

I. H. Witten, A. Moftat, and T. C. Bell. Managing Gigabytes: Compress-
ing and Indexing Documents and Images. Morgan Kaufmann, 1999.
H. Yan, S. Ding, and T. Suel. Inverted index compression and query
processing with optimized document ordering. In In WWW Conf., 2009.
J. Zhang, X. Long, and T. Suel. Performance of compressed inverted
list caching in search engines. In In WWW Conf., 2008.

J. Zobel and A. Moffat. Inverted files for text search engines. ACM
Comput. Surv., 38(2), 2006.

[5]

[6]

[7]

[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]
(16]
(17]
[18]
[19]

[20]

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
