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Abstract—Dynamic reconfiguration can be necessary to 

produce fast and flexible FPGA-based applications.  However, in 

practice very few developers actually use this capability.  One 

reason for this is that it is very difficult to write and execute 

applications that are spread across multiple configurations.  This 

paper uses the problem of regular expression searching for e-

mail spam filtering to illustrate the potential advantages of 

dynamic reconfiguration and the inherent development problems 

associated with the conventional design methodology.  To solve 

these problems, we present a regular expression system compiler.  

This automated tool includes 1) a mechanism to split a large set 

of searches into multiple hardware configurations and 2) a 

control system to manage reconfiguration and I/O marshalling 

during execution.  Even with very rudimentary reconfiguration 

support from the platform used in our testing, we are able to 

perform 3 to 4 orders of magnitude faster than software. 

I. INTRODUCTION 

Perhaps the most powerful feature of most modern 

commercial FPGAs is that they are configured merely by 

changing bits held in memory.  RAM-based configuration 

allows FPGAs to be quickly reprogrammed an essentially 

infinite number of times.  This reconfigurability opens the 

door for FPGAs to be extremely flexible and high-

performance devices.  That said, very few FPGA application 

developers truly make full use of this capability. 

Most FPGA-based applications today only configure the 

device once – at power-on.  This usage pattern makes the 

FPGA into an essentially static computing platform and the 

reconfigurability of the system could be viewed as more a 

liability rather than an asset.  Even among applications that do 

make use of reconfiguration, FPGAs are only generally 

reprogrammed on a task-by-task basis.  That is, an FPGA 

might run task A for 30 seconds before being reconfigured to 

perform task B for the next 30 seconds.  In some sense, this is 

even the model of execution that is used by the canonical 

example of dynamic reconfiguration: software-defined radios.  

Reconfiguration is almost never used during the processing of 

a single task.   

Intra-task runtime reconfiguration may be necessary to 

build practical FPGA-based solutions for many applications.  

In this paper, we will discuss why dynamic reconfiguration is 

needed to perform regular expression searching for e-mail 

spam filtering.  We will also investigate the issues that make 

implementing runtime reconfiguration difficult.  We address 

these concerns by introducing a complete regular expression 

system-level compiler.  This tool automatically divides and 

executes regular expressions across multiple virtual 

configurations without user intervention. 

II. REGULAR EXPRESSION SEARCHING & FPGAS 

Regular expressions are widely used in many different 

fields, ranging from network intrusion detection to DNA 

sequencing.  Executing regular expression searches on spatial 

computing devices, such as FPGAs, rather than conventional 

microprocessors is particularly attractive.  This is because 

FPGAs can take advantage of the huge amount of inherent 

parallelism present in this search problem.  There have been a 

number of previous research efforts that have performed 

highly parallel regular expression searching [1][3][4][5] using 

FPGAs.  One issue that these approaches have is that they 

only consider the case in which the regular expressions are 

implemented on a single static configuration. 

III. IMPLICATIONS OF STATIC CONFIGURATION 

Only using static configuration can lead to problems for 

application developers.  In this section, we will focus on how 

the lack of dynamic reconfiguration can cause two troubles for 

e-mail spam filtering: issues with problem scaling and low 

resource utilization. 

The most serious side effect of static-only FPGA 

configuration is that it creates a hard capacity limit.  One key 

advantage of microprocessors is that their sequential 

execution model naturally virtualizes the computational 

resources.  This virtualization is important because it allows 

the performance of the system to gracefully decline as a 

problem becomes more complex. 

In contrast, if an FPGA application developer only 

considers static execution, their computation must fit within a 

single configuration.    Although there may be hundreds of 

thousands of LUTs and flip-flops in the FPGA, if we ignore 

any time-multiplex sharing built into the circuit, all of the 

resources are statically allocated.  Thus, if the application is 

run through the traditional set of CAD tools and it turns out 

that the resource requirements exceed the capacity of the 

device, the system will simply fail catastrophically.   

This is a serious issue for applications such as spam 

filtering in which the problem size is constantly growing. 

Although most of the regular expressions used by the filtering 

process will eventually be retired, far more may be added to 

take their place in the meantime.  With purely static 

configuration, the only upgrade path to accommodate 

additional regular expressions is to add more FPGAs to the 



system.  When the user has enough regular expressions to fill 

the first FPGA, they must get another.  However, as will be 

discussed below, the first FPGA may not truly be “full”. 

Since FPGAs can take advantage of so much parallelism, 

they can actually be too fast for an application.  In the case of 

spam filtering, any real e-mail system will be connected to a 

network with a fixed incoming capacity.  For that matter, 

while the system may be flooded by mail in short bursts, the 

latency of message delivery is not terribly important, at least 

within reasonable bounds.  Thus, the processing required 

during periods of high traffic can be amortized over periods of 

low traffic. 

Statically configured FPGAs cannot take advantage of this 

fixed data rate and may be underutilized.  For example, a user 

might want to look for 1,000 regular expressions on an e-mail 

system with a nominal load of 10 Mbps.  Let us assume that 

the user’s regular expressions completely fill a single FPGA 

configuration and that it is capable of processing at a rate of 1 

Gbps.  This performance is well above the nominal workload 

and if the user is only able to statically configure the FPGA, 

the device will be idle 99% of the time.   

If the user were able to take advantage of dynamic 

reconfiguration, they would gain the ability to trade off 

performance for capacity.  They could map multiple sets of 

searches to different configurations and quickly swap between 

them.  This enables two key features.  First, as the number of 

searches grows, the throughput of the system will gradual 

decline rather than suddenly fail.  Second, when each 

individual computation is faster than the required data rate, the 

system can perform multiple computations on the same 

virtualized fabric to maximize utilization. 

IV. ROADBLOCKS TO DYNAMIC RECONFIGURATION 

Despite the advantages of dynamic reconfiguration, it is 

seldom used.  However, this is generally not caused by some 

intrinsic restriction of the FPGA platform itself.  Rather, the 

problem is that single-configuration application development 

is the only easy path through existing commercial FPGA CAD 

tools.  There are two fundamental problems that users can face.  

First, how can we effectively divide a large set of problems 

into smaller groups that can fit on a given device?  Second, 

how do we actually execute these sub-problems when they are 

spread across multiple configurations? 

The task of dividing a set of regular expressions among 

multiple configurations can be extremely laborious and time 

consuming.  Coincidentally, this is also a problem if we do not 

want dynamic reconfiguration, but simply want to spread a 

problem across multiple FPGAs.  Dividing a workload is 

troublesome because current FPGA CAD tools provide too 

little feedback too late in the compilation process to be useful.   

In order to divide a set of regular expressions into a small 

number of different configurations, a developer would need to 

make countless manual iterations through the CAD tools.  If 

the first regular expression could fit on a single configuration, 

we could try the first five.  If these fit, we could try the first 

ten.  If not, perhaps the first three.  This trial-and-error search 

process is troublesome because each run through the mapping 

tools could take hours. As will be discussed in more detail in 

Section V.B, this problem can be solved by providing a fast 

estimate of the resource requirements of each regular 

expression.  After we have this information, we can build a 

system to automatically partition the problem into smaller 

sub-tasks. 

The simple execution of an application that is spread across 

multiple configurations is also an issue.  This is because such 

an arrangement requires a custom-made control system to 

reprogram the device with the correct configuration at the 

appropriate time and marshal the correct input and output data 

to and from the various configurations.  Developing the 

software and hardware for such a control system requires 

manual intervention each time that the regular expressions are 

modified.  This time-intensive and potentially error-prone 

process can make dynamically configured systems impractical.  

As will be discussed in Section V.C, this process can be 

automated so that a user does not need any expert knowledge 

to map searches to the system. 

V. REGULAR EXPRESSION SYSTEM GENERATION 

To be truly deployable, applications that rely on dynamic 

reconfiguration cannot be time-consuming to create or require 

meticulous custom development.  In this section we describe a 

method to automatically generate a complete regular 

expression execution engine.  This system provides a very 

simple interface that makes the actual implementation and 

execution of the regular expressions invisible to the user.  We 

first outline the basic architecture of a single configuration.  

Our discussion continues with a description of how a large set 

of regular expressions can be divided into a minimal number 

of difference configurations.  Finally, we show how these 

configurations can be run without user intervention. 

A. Regular Expression Compilation and System Design 

The process of simply converting a list of regular 

expressions into gate-level state machines is relatively well 

understood.  Our approach is fairly basic in that we take an 

incoming list of regular expressions and convert them into 

Non-deterministic Finite Automata (NFA) using Thompson’s 

Algorithm [6].  These NFA are then turned into one-hot-

encoded state machines by using techniques similar to those in 

[5].  The operations that we support are shown in Fig. 1. 

As shown in Fig. 2, each regular expression in our system 

is turned into a unique state machine.  The individual 

matching units (Fig. 1a) within each state machine are fed by 

either a byte decoder or a character class ROM.   The byte 

decoder indicates if the current input character matches a 

single character.  On the other hand, a character class ROM is 

a 256x1-bit memory capable of matching the current character 

against multiple values (i.e – is the input character a vowel?). 

The output of each regular expression is fed to a saturating 

N-bit counter to determine how many times the regular 

expression is matched during a given message.  These results 

are captured by an I/O controller that manages the transfer of 

the input and output data with a system controller running on 

the host computer. 



B. Resource Estimation and Problem Partitioning 

To handle problems that require more resources than one 

configuration can offer, we need an intelligent way to split the 

searches into smaller, more appropriately-sized groups.  This 

must be done without iterative trial and error through the CAD 

tools.  Towards this end, we present a method to quickly and 

accurately estimate the resource requirements of a given set of 

regular expressions. 

Our approach begins by estimating the resource 

requirements of all of the desired regular expressions 

individually.  This is accomplished using the method shown in 

Fig. 3.  Each basic matching unit (Fig. 1a) requires 1 LUT to 

implement its AND gate.  As discussed earlier, if a regular 

expression uses a character class, it requires a 256x1-bit ROM.  

On the Virtex-5 device used in our testing, this requires 4 

LUTs.  All of the other basic operations rely on OR gates.  

The resource requirements of a given OR gate depends upon 

its fan-in, as shown in the orEst equation.  

After the resource requirements of the regular expressions 

are calculated, we can partition them into separate 

configurations.  As shown in Fig. 4, the partitioning process is 

given a LUT threshold.  This threshold represents the 

maximum number LUTs a single configuration of regular 

expressions should require.  In our testing, we determined that 

a reasonable threshold is 88% of the LUTs in the target FPGA.  

This resulted in good utilization while offering a reliable 

buffer for consistent placement and routing.  This threshold is 

certainly platform specific, but is likely easy to determine 

through minimal empirical testing. 

During the partitioning process, the system first evaluates 

the LUTs needed by the I/O controller and byte decoder.  

After this, it considers every regular expression in turn to 

determine if the search will fit within the current configuration.  

If it can, it can be added it to the existing circuit.  If not, we 

create a new configuration and continue.  When a 

configuration is filled, we record the indices of the regular 

expressions that we put into the configuration.  When all of 

the regular expressions have been split up, we generate the 

corresponding logic and state machine HDL files for each 

configuration.  These HDL files are sent through the normal 

CAD toolflow to produce the actual FPGA bitstreams. 

Two things should be noted.  First, the packing algorithm 

we use is very simple.  Much better utilization may be 

obtained by performing knapsack solving.  However, a 

knapsack algorithm is only feasible because we can reliably 

predict the resource utilization of the various regular 

expressions.  Second, our resource estimation is only that – an 

approximation of the resources required by a regular 

expression after it is mapped to the hardware.  While we 

would like these estimates to be as accurate as possible, it is 

critical that these estimations remain a pessimistic upper 

bound.  Any underestimation may result in the CAD tools 

failing during compilation due to capacity problems. 

C. Customized Runtime Support 

The last part of our regular expression system generator is 

responsible for automatically running the searches spread 

across multiple configurations.  Although various aspects of 

the logic within each individual hardware configuration 

change depending upon how the regular expressions are split 

up, the system controller shown in Fig. 2 is the portion of the 
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Fig. 1.  Gate-level implementations for fundamental NFA operations. 
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Fig. 2. System-level diagram of regular expression engine. 

resourceEst(%FA for Reg Ex or sub-expression){ 

 current LUT count L = 0; 

 for all sub-expressions S in X{ 

  if (S is sub-expression) L += resourceEst(S); 

  else if (S is match single char) L += 1; 

  else if (S is match char class) L += 1 + charClassLUTs;

  else if (S is OR) L += orEst(S.fanin); 

 } 

 return L; 

} 

�����(fanin) = 
 � ���������nn= ����� ℎ�− 1
�=0 �

where ����ℎ = log��������� 

             
� + &�������������� ℎ� ∗ (����ℎ)* 

��������� (fanin)  

      


 � ����������=0 � + &���������
where ����ℎ = log��������� (fanin)  

 

Note:  For the Virtex-5, charClassLUTs = 4 and  

    lutInputs = 6. 

partition(set of Reg Exes R, LUT threshold T){ 

 current LUT count L = I/O controller + byte decoder; 

 current configuration C.start = 0; 

 for all Reg Exes r in R{ 

  tempLUT = resourceEst(r) + saturating counter; 

  if (tempLUT > T - I/O controller + byte decoder) 

   exit(-1); 

  else if ((tempLUT + L) < T) L += tempLUT; 

  else{ 

   C.end =r.index - 1; 

   make new configuration C; 

   C.start = r.index; 

   L = I/O controller + byte decoder + tempLUT; 

  } 

  add r to configuration C; 

  next r; 

 } 

 C.end = last r.index; 

 return all C information; 

} 

systemController(configuration bitstreams B,  

  configuration information C,  input messages M,  

  results buffer R, configuration interval I){ 

 configure FPGA with B[0]; 

 currMessageSet = M[0] to M[I]; 

 currEndMessage = I; 

 while (currMessageSet.first < M.last){ 

  for all bitstreams b in B{ 

   for all messages m in currMessageSet{ 

    send message m to FPGA and receive results; 

    place results into R[m][b][C[b].start to C[b].end]; 

   } 

   configure FPGA with next b; 

  } 

  currEndMessage += I; 

  currMessageSet = M[I+1] to M[currEndMessage] 

   or M[last]; 

 } 

 return R; 

} 
 

 
Fig. 3.  Resource estimation pseudo-code. Fig. 4.  Partitioning pseudo-code. Fig. 5.  System controller pseudo-code 



engine most seriously affected.  The system controller is a C 

program running on the host PC that provides the user 

interface. It receives input messages to be processed from the 

user and returns the completed results.  It is also responsible 

for determining which configuration is mapped to the FPGA, 

when it is reconfigured, what data to send to the FPGA and 

what to do with the results that come back from the hardware. 

As seen in Fig. 5, the system controller takes in the 

configuration bitstreams and configuration index information 

generated from the partitioning process.  It also receives the 

input messages and a results buffer from the user.  The last 

parameter given to the system controller is a configuration 

interval.  The configuration interval determines how many 

messages we process sequentially before we reconfigure the 

device with another bitstream.  Before execution is started, the 

input messages are divided into sets of I messages.  The 

configuration interval can affect the performance of the 

system because, as we will discuss in Section VI, 

reconfiguration can be relatively time consuming.  Increasing 

the configuration interval allows us to reconfigure fewer times 

and amortize the reconfiguration delay that we do incur over 

more messages. 

Execution begins by mapping the first bitstream to the 

FPGA.    Then, each of the messages in the current set of input 

data is sent to the FPGA for processing.   The results that 

return from the FPGA are placed in the results buffer.  The 

results are reordered based upon which message they 

correspond to, which configuration the message was 

processed with, and what regular expression indices were 

mapped to that particular configuration.  When the last 

message in the current set has been processed with the first 

configuration, the system controller reconfigures the FPGA 

with the next bitstream.  When all of the messages in current 

input data set have been processed through all of the 

configurations, the system controller moves to the next set of 

messages. 

VI. TESTING AND RESULTS 

We tested our automated regular expression engine using a 

set of ~49.6K regular expressions.  These searches represent 

the complete filtering list used for all e-mail received by the 

Microsoft domain.  All but the 14 largest regular expressions 

in this list were implemented in our evaluation.  The 

remaining 14 search terms use extensive nested quantification, 

resulting in circuits that require 50% or more of the resources 

provided by our target platform, the Virtex-5 LX110T on the 

Digilent XUP-V5 board.  Synthesis, placement and routing 

were performed using the tools in ISE 10.1. 

Our first experiment involved testing our resource 

estimation and partitioning tool.  The tool divided the 49.6K 

regular expressions into 45 configurations.  All 45 

configurations successfully placed, routed, and met timing 

constraints for operation at 125 MHz.  Across all 45 

configurations, our tool overestimated the resource 

requirements by an average of 7.7%.  This suggests that, 

although sufficient for our proof-of-concept system, we may 

benefit from using a more sophisticated estimation algorithm 

that can account for some of the optimizations performed by 

the Xilinx tool during synthesis. 

On the other hand, our simple packing algorithm works 

acceptably.  As mentioned earlier, our target was filling the 

device to 88% capacity.  We averaged 78.2% utilization 

across all of the configurations.  Taking into account our 

average 7.7% overestimate during partitioning, we are likely 

coming very close to our desired resource utilization. 

We also tested the performance potential of our system.  

For comparison, we used a single-threaded software 

implementation running on a E6850 Core 2 Duo machine with 

4GB of RAM.  Five different sets of regular expressions were 

tested with 1.1K, 2.2K, 4.5K, 8.9K and 49.6K searches.  The 

input messages used for execution were taken from the Enron 

mail corpus in [2].  The best results from 3 independent runs 

are shown in Fig. 6. 

The four sets of searches with 1.1K, 2.2K, 4.5K and 8.9K 

regular expressions were also mapped to the FPGA.  These 

lists required 1, 2, 4 and 8 configurations, respectively.  

Unfortunately, due to technical considerations we were not 

able to test the hardware using the full set of regular 

expressions.  As seen in Fig. 2, our current implementation 

relies on a SystemACE controller [7] to reconfigure the FPGA.  

We used this setup because ISE 10.1 does not implement 

support for partial reconfiguration on the Virtex-5.  Thus, our 

options for implementing dynamic reconfiguration were 

relatively limited.  The SystemACE offers the capability of 

reconfiguring the FPGA with up to 8 bitstreams held on a 

CompactFlash card.  Since we were limited to 8 

configurations, the breadth of our performance testing was 

limited.  Testing on the hardware was repeated multiple times 

using configuration intervals between 1 (reconfigure once for 

every bitstream needed during the processing of each message) 

and 32K (reconfigure once for every bitstream needed during 

the processing of every group of 32K messages). 

All of our testing results assume that the regular 

expressions have been pre-compiled (either into NFAs for the 

software version or into bitstreams for the FPGA) and that all 

necessary data begins and ends in the CPU’s main memory.  

The software results only include the actual search time, while 

the FPGA results also include the CPU�FPGA transfer time 

and the SystemACE reconfiguration time. 

Looking at Fig. 6, we can make several interesting 

observations.  First, as the number of regular expressions is 

increased, the performance of the software-based searches 

degrades faster than that of hardware-based searches.  This is 

likely because while a small number of regular expressions 

can be implemented in software within the cache, as the 

number of regular expressions is increased the system very 

quickly requires the capacity of main memory. 

A second observation is that the performance of our 

hardware implementations scales extremely predictably.  For a 

given configuration interval, the hardware’s performance 

almost exactly halves when we double the number of 

configurations used from 2 to 4 to 8.  This means that, with a 

fair degree of confidence, we can extrapolate the performance 

of the hardware implementation if the SystemACE were able 



TABLE I . Average Matching Rate (Normalized to CPU Results) 

Average Matching 

Rate (norm) 

1.1 K RE 

(1 confi) 

2.2 K RE 

(2 config) 

4.5K RE 

(4 config) 

8.9K RE 

(8 config) 

49.6K RE 

(45 config) 

CPU  1.00 1.00 1.00 1.00 1.00 

F
P

G
A

 

I = 1 601.19 0.15 0.25 0.93 1.12 

I = 2 693.68 0.31 0.50 1.87 2.25 

I = 4 819.80 0.62 1.00 3.73 4.49 

I = 8 819.80 1.24 2.00 7.46 8.98 

I = 16 901.79 2.47 3.99 14.90 17.94 

I = 32 901.79 4.94 7.97 29.70 35.76 

I = 64 901.79 9.89 15.94 59.03 71.05 

I = 128 901.79 22.85 37.05 138.34 166.52 

I = 256 901.79 44.41 71.97 262.36 315.81 

I = 512 901.79 84.67 133.16 499.89 601.73 

I = 1K 901.79 147.32 252.03 917.17 1104.01 

I = 2K 901.79 266.47 386.34 1423.40 1713.36 

I = 4K 901.79 421.40 674.99 2490.95 2998.38 

I = 8K 901.79 584.52 932.12 3479.42 4188.22 

I =16K 901.79 724.81 1174.48 4340.66 5224.90 

I = 32K 901.79 823.65 1365.67 4925.92 5929.39 

“I=” refers to configuration interval.  Italics indicate extrapolated results. 
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Fig. 6.  Graph of CPU and FPGA performance. 
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Fig. 7.  Graph of time spent not waiting for device reconfiguration. 

to accommodate 45 configurations.  The estimated 

performance of searching for the full set of regular 

expressions is shown with italicized data in Table I. 

A third observation is that the amount of reconfiguration 

we perform can drastically affect performance. Looking at 

Table I, increasing the configuration interval by a factor of 2 

almost exactly doubles the achievable performance.  Largely, 

this is because the reconfiguration time dominates the runtime 

of most of the hardware tests – the SystemACE on the XUP 

board requires ~1.5 seconds to complete each reconfiguration.  

As shown in Fig. 7, the tests that used I ≤ 32 spent 99% or 

more of their time waiting for reconfiguration.  This likely 

indicates that finding a faster reconfiguration mechanism is a 

high priority. 

Looking at Table I and Fig. 7 together, we can see that the 

massive parallelism that the FPGA implementations offer can 

still overcome the handicap of the reconfiguration overhead.  

For example, searching for 8.9K regular expressions using I = 

128, the hardware spends 97% of its time reconfiguring.  It 

only spends 3% of its runtime transferring data and actually 

executing.  However, it still manages to perform 138x faster 

than the software implementation.  The achievable speedup 

also increases with larger configuration intervals.  Looking I = 

512, the speedup over software is 500x.  At I = 32K, the 

speedup is nearly 5000x. 

VII. CONCLUSIONS 

In this paper we have shown that dynamic reconfiguration 

is necessary to perform fast and flexible regular expression 

searching on an FPGA.  However, we highlighted two 

problems that can discourage application developers from 

using dynamic reconfiguration.  First, when a user has a large 

set of problems that cannot be implemented on a single 

configuration, the existing toolflow makes it very difficult to 

intelligently split them across multiple configurations.  Second, 

executing an application that is spread across multiple 

configurations requires manual customization.   

We solved these problems by developing an automated 

regular expression system compiler.  This tool uses fast 

resource estimation so that it can divide a set of regular 

expressions among a minimal number of separate 

configurations.  Once the application has been split, it can be 

run using an automatically generated controller that manages 

device reconfiguration and I/O marshalling.  During testing, 

we showed that this system can achieve very high 

performance.  Although we believe that it could benefit from a 

faster reconfiguration mechanism, we were able to perform up 

to 5000x faster than a software implementation with only very 

basic reconfiguration support.  When we are able to 

incorporate partial reconfiguration in the future, this will be a 

sophisticated and deployable regular expression system. 

Overall, dynamic reconfiguration gives FPGAs a capability 

essential to any practical computing platform: resource 

virtualization.  This is an underutilized and relatively poorly 

understood area of FPGA research. Further work is necessary 

to make this feature truly accessible to application developers. 

REFERENCES 

[1] J. Bispo, I. Sourdis, J. Cardoso, and S. Vassiliadis, “Regular 

Expression Matching for Reconfigurable Packet Inspection,” IEEE 

Conference on Field Programmable Technology, 2006, 119 – 126. 
[2] B. Klimt and Y.Yang, “Introducing the Enron Corpus,” Conference on 

Email and Anti-Spam, 2004. 

[3] S. W. Lee, S. H. Hwang, and N. Park, “A High Performance NIDS 
using FPGA-based Regular Expression Matching,” ACM Symposium 

on Applied Computing, 2007, 1187 – 1191. 

[4] C. H. Lin, C. T. Huang, C. P Jiang, and S. C. Chang, “Optimization of 
Regular Expression Pattern Matching Circuits on FPGAs,” Conference 

on Design, Automation and Test in Europe, 2006, 12 – 17. 

[5] R. Sidhu, and V. K. Prasanna, “Fast Regular Expression Matching 
using FPGAs,” IEEE Symposium on Field-Programmable Custom 

Computing Machines, 2001, 227 – 238. 

[6] K. Thompson, “Regular expression search algorithm,” 
Communications of the ACM 11(6) , June 1968, 419 – 422. 

[7] Xilinx Inc., “System ACE CompactFlash Solution,” DS080 v2.0, 2008. 



 


