
Automated Dynamic Reconfiguration for High-

Performance Regular Expression Searching
Ken Eguro

Microsoft Research

Redmond, WA USA

eguro@microsoft.com

Abstract—Dynamic reconfiguration can be necessary to

produce fast and flexible FPGA-based applications. However, in

practice very few developers actually use this capability. One

reason for this is that it is very difficult to write and execute

applications that are spread across multiple configurations. This

paper uses the problem of regular expression searching for e-

mail spam filtering to illustrate the potential advantages of

dynamic reconfiguration and the inherent development problems

associated with the conventional design methodology. To solve

these problems, we present a regular expression system compiler.

This automated tool includes 1) a mechanism to split a large set

of searches into multiple hardware configurations and 2) a

control system to manage reconfiguration and I/O marshalling

during execution. Even with very rudimentary reconfiguration

support from the platform used in our testing, we are able to

perform 3 to 4 orders of magnitude faster than software.

I. INTRODUCTION

Perhaps the most powerful feature of most modern

commercial FPGAs is that they are configured merely by

changing bits held in memory. RAM-based configuration

allows FPGAs to be quickly reprogrammed an essentially

infinite number of times. This reconfigurability opens the

door for FPGAs to be extremely flexible and high-

performance devices. That said, very few FPGA application

developers truly make full use of this capability.

Most FPGA-based applications today only configure the

device once – at power-on. This usage pattern makes the

FPGA into an essentially static computing platform and the

reconfigurability of the system could be viewed as more a

liability rather than an asset. Even among applications that do

make use of reconfiguration, FPGAs are only generally

reprogrammed on a task-by-task basis. That is, an FPGA

might run task A for 30 seconds before being reconfigured to

perform task B for the next 30 seconds. In some sense, this is

even the model of execution that is used by the canonical

example of dynamic reconfiguration: software-defined radios.

Reconfiguration is almost never used during the processing of

a single task.

Intra-task runtime reconfiguration may be necessary to

build practical FPGA-based solutions for many applications.

In this paper, we will discuss why dynamic reconfiguration is

needed to perform regular expression searching for e-mail

spam filtering. We will also investigate the issues that make

implementing runtime reconfiguration difficult. We address

these concerns by introducing a complete regular expression

system-level compiler. This tool automatically divides and

executes regular expressions across multiple virtual

configurations without user intervention.

II. REGULAR EXPRESSION SEARCHING & FPGAS

Regular expressions are widely used in many different

fields, ranging from network intrusion detection to DNA

sequencing. Executing regular expression searches on spatial

computing devices, such as FPGAs, rather than conventional

microprocessors is particularly attractive. This is because

FPGAs can take advantage of the huge amount of inherent

parallelism present in this search problem. There have been a

number of previous research efforts that have performed

highly parallel regular expression searching [1][3][4][5] using

FPGAs. One issue that these approaches have is that they

only consider the case in which the regular expressions are

implemented on a single static configuration.

III. IMPLICATIONS OF STATIC CONFIGURATION

Only using static configuration can lead to problems for

application developers. In this section, we will focus on how

the lack of dynamic reconfiguration can cause two troubles for

e-mail spam filtering: issues with problem scaling and low

resource utilization.

The most serious side effect of static-only FPGA

configuration is that it creates a hard capacity limit. One key

advantage of microprocessors is that their sequential

execution model naturally virtualizes the computational

resources. This virtualization is important because it allows

the performance of the system to gracefully decline as a

problem becomes more complex.

In contrast, if an FPGA application developer only

considers static execution, their computation must fit within a

single configuration. Although there may be hundreds of

thousands of LUTs and flip-flops in the FPGA, if we ignore

any time-multiplex sharing built into the circuit, all of the

resources are statically allocated. Thus, if the application is

run through the traditional set of CAD tools and it turns out

that the resource requirements exceed the capacity of the

device, the system will simply fail catastrophically.

This is a serious issue for applications such as spam

filtering in which the problem size is constantly growing.

Although most of the regular expressions used by the filtering

process will eventually be retired, far more may be added to

take their place in the meantime. With purely static

configuration, the only upgrade path to accommodate

additional regular expressions is to add more FPGAs to the

system. When the user has enough regular expressions to fill

the first FPGA, they must get another. However, as will be

discussed below, the first FPGA may not truly be “full”.

Since FPGAs can take advantage of so much parallelism,

they can actually be too fast for an application. In the case of

spam filtering, any real e-mail system will be connected to a

network with a fixed incoming capacity. For that matter,

while the system may be flooded by mail in short bursts, the

latency of message delivery is not terribly important, at least

within reasonable bounds. Thus, the processing required

during periods of high traffic can be amortized over periods of

low traffic.

Statically configured FPGAs cannot take advantage of this

fixed data rate and may be underutilized. For example, a user

might want to look for 1,000 regular expressions on an e-mail

system with a nominal load of 10 Mbps. Let us assume that

the user’s regular expressions completely fill a single FPGA

configuration and that it is capable of processing at a rate of 1

Gbps. This performance is well above the nominal workload

and if the user is only able to statically configure the FPGA,

the device will be idle 99% of the time.

If the user were able to take advantage of dynamic

reconfiguration, they would gain the ability to trade off

performance for capacity. They could map multiple sets of

searches to different configurations and quickly swap between

them. This enables two key features. First, as the number of

searches grows, the throughput of the system will gradual

decline rather than suddenly fail. Second, when each

individual computation is faster than the required data rate, the

system can perform multiple computations on the same

virtualized fabric to maximize utilization.

IV. ROADBLOCKS TO DYNAMIC RECONFIGURATION

Despite the advantages of dynamic reconfiguration, it is

seldom used. However, this is generally not caused by some

intrinsic restriction of the FPGA platform itself. Rather, the

problem is that single-configuration application development

is the only easy path through existing commercial FPGA CAD

tools. There are two fundamental problems that users can face.

First, how can we effectively divide a large set of problems

into smaller groups that can fit on a given device? Second,

how do we actually execute these sub-problems when they are

spread across multiple configurations?

The task of dividing a set of regular expressions among

multiple configurations can be extremely laborious and time

consuming. Coincidentally, this is also a problem if we do not

want dynamic reconfiguration, but simply want to spread a

problem across multiple FPGAs. Dividing a workload is

troublesome because current FPGA CAD tools provide too

little feedback too late in the compilation process to be useful.

In order to divide a set of regular expressions into a small

number of different configurations, a developer would need to

make countless manual iterations through the CAD tools. If

the first regular expression could fit on a single configuration,

we could try the first five. If these fit, we could try the first

ten. If not, perhaps the first three. This trial-and-error search

process is troublesome because each run through the mapping

tools could take hours. As will be discussed in more detail in

Section V.B, this problem can be solved by providing a fast

estimate of the resource requirements of each regular

expression. After we have this information, we can build a

system to automatically partition the problem into smaller

sub-tasks.

The simple execution of an application that is spread across

multiple configurations is also an issue. This is because such

an arrangement requires a custom-made control system to

reprogram the device with the correct configuration at the

appropriate time and marshal the correct input and output data

to and from the various configurations. Developing the

software and hardware for such a control system requires

manual intervention each time that the regular expressions are

modified. This time-intensive and potentially error-prone

process can make dynamically configured systems impractical.

As will be discussed in Section V.C, this process can be

automated so that a user does not need any expert knowledge

to map searches to the system.

V. REGULAR EXPRESSION SYSTEM GENERATION

To be truly deployable, applications that rely on dynamic

reconfiguration cannot be time-consuming to create or require

meticulous custom development. In this section we describe a

method to automatically generate a complete regular

expression execution engine. This system provides a very

simple interface that makes the actual implementation and

execution of the regular expressions invisible to the user. We

first outline the basic architecture of a single configuration.

Our discussion continues with a description of how a large set

of regular expressions can be divided into a minimal number

of difference configurations. Finally, we show how these

configurations can be run without user intervention.

A. Regular Expression Compilation and System Design

The process of simply converting a list of regular

expressions into gate-level state machines is relatively well

understood. Our approach is fairly basic in that we take an

incoming list of regular expressions and convert them into

Non-deterministic Finite Automata (NFA) using Thompson’s

Algorithm [6]. These NFA are then turned into one-hot-

encoded state machines by using techniques similar to those in

[5]. The operations that we support are shown in Fig. 1.

As shown in Fig. 2, each regular expression in our system

is turned into a unique state machine. The individual

matching units (Fig. 1a) within each state machine are fed by

either a byte decoder or a character class ROM. The byte

decoder indicates if the current input character matches a

single character. On the other hand, a character class ROM is

a 256x1-bit memory capable of matching the current character

against multiple values (i.e – is the input character a vowel?).

The output of each regular expression is fed to a saturating

N-bit counter to determine how many times the regular

expression is matched during a given message. These results

are captured by an I/O controller that manages the transfer of

the input and output data with a system controller running on

the host computer.

B. Resource Estimation and Problem Partitioning

To handle problems that require more resources than one

configuration can offer, we need an intelligent way to split the

searches into smaller, more appropriately-sized groups. This

must be done without iterative trial and error through the CAD

tools. Towards this end, we present a method to quickly and

accurately estimate the resource requirements of a given set of

regular expressions.

Our approach begins by estimating the resource

requirements of all of the desired regular expressions

individually. This is accomplished using the method shown in

Fig. 3. Each basic matching unit (Fig. 1a) requires 1 LUT to

implement its AND gate. As discussed earlier, if a regular

expression uses a character class, it requires a 256x1-bit ROM.

On the Virtex-5 device used in our testing, this requires 4

LUTs. All of the other basic operations rely on OR gates.

The resource requirements of a given OR gate depends upon

its fan-in, as shown in the orEst equation.

After the resource requirements of the regular expressions

are calculated, we can partition them into separate

configurations. As shown in Fig. 4, the partitioning process is

given a LUT threshold. This threshold represents the

maximum number LUTs a single configuration of regular

expressions should require. In our testing, we determined that

a reasonable threshold is 88% of the LUTs in the target FPGA.

This resulted in good utilization while offering a reliable

buffer for consistent placement and routing. This threshold is

certainly platform specific, but is likely easy to determine

through minimal empirical testing.

During the partitioning process, the system first evaluates

the LUTs needed by the I/O controller and byte decoder.

After this, it considers every regular expression in turn to

determine if the search will fit within the current configuration.

If it can, it can be added it to the existing circuit. If not, we

create a new configuration and continue. When a

configuration is filled, we record the indices of the regular

expressions that we put into the configuration. When all of

the regular expressions have been split up, we generate the

corresponding logic and state machine HDL files for each

configuration. These HDL files are sent through the normal

CAD toolflow to produce the actual FPGA bitstreams.

Two things should be noted. First, the packing algorithm

we use is very simple. Much better utilization may be

obtained by performing knapsack solving. However, a

knapsack algorithm is only feasible because we can reliably

predict the resource utilization of the various regular

expressions. Second, our resource estimation is only that – an

approximation of the resources required by a regular

expression after it is mapped to the hardware. While we

would like these estimates to be as accurate as possible, it is

critical that these estimations remain a pessimistic upper

bound. Any underestimation may result in the CAD tools

failing during compilation due to capacity problems.

C. Customized Runtime Support

The last part of our regular expression system generator is

responsible for automatically running the searches spread

across multiple configurations. Although various aspects of

the logic within each individual hardware configuration

change depending upon how the regular expressions are split

up, the system controller shown in Fig. 2 is the portion of the

Match Single Instance

AND

match?

C1 | C2

C1

OR

C1 C2

C1 C2

C2

OR

C1

C1*

OR C1

C1+

C1

OR

C1?

a) b)

c)

d)

e)

f)

Fig. 1. Gate-level implementations for fundamental NFA operations.

System Controller

SystemACEXUP V5

User Interface
CPU

Byte Decoder
Input

Character
=?0x00 =?0x01

…

… =?0xFF

Reg Ex N

N-bit Sat. Counter

N-bit Sat. Counter

N-bit Sat. Counter

Char Class

ROM

Reg Ex 1

Reg Ex 2

Input and output controller

LX110T

Fig. 2. System-level diagram of regular expression engine.

resourceEst(%FA for Reg Ex or sub-expression){

 current LUT count L = 0;

 for all sub-expressions S in X{

 if (S is sub-expression) L += resourceEst(S);

 else if (S is match single char) L += 1;

 else if (S is match char class) L += 1 + charClassLUTs;

 else if (S is OR) L += orEst(S.fanin);

 }

 return L;

}

�����(fanin) =
 � ���������nn= ����� ℎ�− 1
�=0 �

where ����ℎ = log���������

� + &�������������� ℎ� ∗ (����ℎ)*

��������� (fanin)

 � ����������=0 � + &���������
where ����ℎ = log��������� (fanin)

Note: For the Virtex-5, charClassLUTs = 4 and

 lutInputs = 6.

partition(set of Reg Exes R, LUT threshold T){

 current LUT count L = I/O controller + byte decoder;

 current configuration C.start = 0;

 for all Reg Exes r in R{

 tempLUT = resourceEst(r) + saturating counter;

 if (tempLUT > T - I/O controller + byte decoder)

 exit(-1);

 else if ((tempLUT + L) < T) L += tempLUT;

 else{

 C.end =r.index - 1;

 make new configuration C;

 C.start = r.index;

 L = I/O controller + byte decoder + tempLUT;

 }

 add r to configuration C;

 next r;

 }

 C.end = last r.index;

 return all C information;

}

systemController(configuration bitstreams B,

 configuration information C, input messages M,

 results buffer R, configuration interval I){

 configure FPGA with B[0];

 currMessageSet = M[0] to M[I];

 currEndMessage = I;

 while (currMessageSet.first < M.last){

 for all bitstreams b in B{

 for all messages m in currMessageSet{

 send message m to FPGA and receive results;

 place results into R[m][b][C[b].start to C[b].end];

 }

 configure FPGA with next b;

 }

 currEndMessage += I;

 currMessageSet = M[I+1] to M[currEndMessage]

 or M[last];

 }

 return R;

}

Fig. 3. Resource estimation pseudo-code. Fig. 4. Partitioning pseudo-code. Fig. 5. System controller pseudo-code

engine most seriously affected. The system controller is a C

program running on the host PC that provides the user

interface. It receives input messages to be processed from the

user and returns the completed results. It is also responsible

for determining which configuration is mapped to the FPGA,

when it is reconfigured, what data to send to the FPGA and

what to do with the results that come back from the hardware.

As seen in Fig. 5, the system controller takes in the

configuration bitstreams and configuration index information

generated from the partitioning process. It also receives the

input messages and a results buffer from the user. The last

parameter given to the system controller is a configuration

interval. The configuration interval determines how many

messages we process sequentially before we reconfigure the

device with another bitstream. Before execution is started, the

input messages are divided into sets of I messages. The

configuration interval can affect the performance of the

system because, as we will discuss in Section VI,

reconfiguration can be relatively time consuming. Increasing

the configuration interval allows us to reconfigure fewer times

and amortize the reconfiguration delay that we do incur over

more messages.

Execution begins by mapping the first bitstream to the

FPGA. Then, each of the messages in the current set of input

data is sent to the FPGA for processing. The results that

return from the FPGA are placed in the results buffer. The

results are reordered based upon which message they

correspond to, which configuration the message was

processed with, and what regular expression indices were

mapped to that particular configuration. When the last

message in the current set has been processed with the first

configuration, the system controller reconfigures the FPGA

with the next bitstream. When all of the messages in current

input data set have been processed through all of the

configurations, the system controller moves to the next set of

messages.

VI. TESTING AND RESULTS

We tested our automated regular expression engine using a

set of ~49.6K regular expressions. These searches represent

the complete filtering list used for all e-mail received by the

Microsoft domain. All but the 14 largest regular expressions

in this list were implemented in our evaluation. The

remaining 14 search terms use extensive nested quantification,

resulting in circuits that require 50% or more of the resources

provided by our target platform, the Virtex-5 LX110T on the

Digilent XUP-V5 board. Synthesis, placement and routing

were performed using the tools in ISE 10.1.

Our first experiment involved testing our resource

estimation and partitioning tool. The tool divided the 49.6K

regular expressions into 45 configurations. All 45

configurations successfully placed, routed, and met timing

constraints for operation at 125 MHz. Across all 45

configurations, our tool overestimated the resource

requirements by an average of 7.7%. This suggests that,

although sufficient for our proof-of-concept system, we may

benefit from using a more sophisticated estimation algorithm

that can account for some of the optimizations performed by

the Xilinx tool during synthesis.

On the other hand, our simple packing algorithm works

acceptably. As mentioned earlier, our target was filling the

device to 88% capacity. We averaged 78.2% utilization

across all of the configurations. Taking into account our

average 7.7% overestimate during partitioning, we are likely

coming very close to our desired resource utilization.

We also tested the performance potential of our system.

For comparison, we used a single-threaded software

implementation running on a E6850 Core 2 Duo machine with

4GB of RAM. Five different sets of regular expressions were

tested with 1.1K, 2.2K, 4.5K, 8.9K and 49.6K searches. The

input messages used for execution were taken from the Enron

mail corpus in [2]. The best results from 3 independent runs

are shown in Fig. 6.

The four sets of searches with 1.1K, 2.2K, 4.5K and 8.9K

regular expressions were also mapped to the FPGA. These

lists required 1, 2, 4 and 8 configurations, respectively.

Unfortunately, due to technical considerations we were not

able to test the hardware using the full set of regular

expressions. As seen in Fig. 2, our current implementation

relies on a SystemACE controller [7] to reconfigure the FPGA.

We used this setup because ISE 10.1 does not implement

support for partial reconfiguration on the Virtex-5. Thus, our

options for implementing dynamic reconfiguration were

relatively limited. The SystemACE offers the capability of

reconfiguring the FPGA with up to 8 bitstreams held on a

CompactFlash card. Since we were limited to 8

configurations, the breadth of our performance testing was

limited. Testing on the hardware was repeated multiple times

using configuration intervals between 1 (reconfigure once for

every bitstream needed during the processing of each message)

and 32K (reconfigure once for every bitstream needed during

the processing of every group of 32K messages).

All of our testing results assume that the regular

expressions have been pre-compiled (either into NFAs for the

software version or into bitstreams for the FPGA) and that all

necessary data begins and ends in the CPU’s main memory.

The software results only include the actual search time, while

the FPGA results also include the CPU�FPGA transfer time

and the SystemACE reconfiguration time.

Looking at Fig. 6, we can make several interesting

observations. First, as the number of regular expressions is

increased, the performance of the software-based searches

degrades faster than that of hardware-based searches. This is

likely because while a small number of regular expressions

can be implemented in software within the cache, as the

number of regular expressions is increased the system very

quickly requires the capacity of main memory.

A second observation is that the performance of our

hardware implementations scales extremely predictably. For a

given configuration interval, the hardware’s performance

almost exactly halves when we double the number of

configurations used from 2 to 4 to 8. This means that, with a

fair degree of confidence, we can extrapolate the performance

of the hardware implementation if the SystemACE were able

TABLE I . Average Matching Rate (Normalized to CPU Results)

Average Matching

Rate (norm)

1.1 K RE

(1 confi)

2.2 K RE

(2 config)

4.5K RE

(4 config)

8.9K RE

(8 config)

49.6K RE

(45 config)

CPU 1.00 1.00 1.00 1.00 1.00

F
P

G
A

I = 1 601.19 0.15 0.25 0.93 1.12

I = 2 693.68 0.31 0.50 1.87 2.25

I = 4 819.80 0.62 1.00 3.73 4.49

I = 8 819.80 1.24 2.00 7.46 8.98

I = 16 901.79 2.47 3.99 14.90 17.94

I = 32 901.79 4.94 7.97 29.70 35.76

I = 64 901.79 9.89 15.94 59.03 71.05

I = 128 901.79 22.85 37.05 138.34 166.52

I = 256 901.79 44.41 71.97 262.36 315.81

I = 512 901.79 84.67 133.16 499.89 601.73

I = 1K 901.79 147.32 252.03 917.17 1104.01

I = 2K 901.79 266.47 386.34 1423.40 1713.36

I = 4K 901.79 421.40 674.99 2490.95 2998.38

I = 8K 901.79 584.52 932.12 3479.42 4188.22

I =16K 901.79 724.81 1174.48 4340.66 5224.90

I = 32K 901.79 823.65 1365.67 4925.92 5929.39

“I=” refers to configuration interval. Italics indicate extrapolated results.

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

0 2000 4000 6000 8000 10000

B
yt

e
s/

Se
c

of Regular Expressions

Hardware vs. Software Performance

FPGA, I = 32768

FPGA, I = 16384

FPGA, I = 8192

FPGA, I = 4096

FPGA, I = 2048

FPGA, I = 1024

FPGA, I = 512

FPGA, I = 256

FPGA, I = 128

FPGA, I = 64

FPGA, I = 32

FPGA, I = 16

FPGA, I = 8

FPGA, I = 4

FPGA, I = 2

FPGA, I = 1

CPU

Fig. 6. Graph of CPU and FPGA performance.

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2000 4000 6000 8000 10000

Fr
ac

ti
o

n
 o

f
N

o
n

-R
e

co
n

fi
gu

ra
ti

o
n

 T
im

e

of Regular Expressions

Reconfiguration Overhead

FPGA, I = 32768

FPGA, I = 16384

FPGA, I = 8192

FPGA, I = 4096

FPGA, I = 2048

FPGA, I = 1024

FPGA, I = 512

FPGA, I = 256

FPGA, I = 128

FPGA, I = 64

FPGA, I = 32

FPGA, I = 16

FPGA, I = 8

FPGA, I = 4

FPGA, I = 2

FPGA, I = 1

Fig. 7. Graph of time spent not waiting for device reconfiguration.

to accommodate 45 configurations. The estimated

performance of searching for the full set of regular

expressions is shown with italicized data in Table I.

A third observation is that the amount of reconfiguration

we perform can drastically affect performance. Looking at

Table I, increasing the configuration interval by a factor of 2

almost exactly doubles the achievable performance. Largely,

this is because the reconfiguration time dominates the runtime

of most of the hardware tests – the SystemACE on the XUP

board requires ~1.5 seconds to complete each reconfiguration.

As shown in Fig. 7, the tests that used I ≤ 32 spent 99% or

more of their time waiting for reconfiguration. This likely

indicates that finding a faster reconfiguration mechanism is a

high priority.

Looking at Table I and Fig. 7 together, we can see that the

massive parallelism that the FPGA implementations offer can

still overcome the handicap of the reconfiguration overhead.

For example, searching for 8.9K regular expressions using I =

128, the hardware spends 97% of its time reconfiguring. It

only spends 3% of its runtime transferring data and actually

executing. However, it still manages to perform 138x faster

than the software implementation. The achievable speedup

also increases with larger configuration intervals. Looking I =

512, the speedup over software is 500x. At I = 32K, the

speedup is nearly 5000x.

VII. CONCLUSIONS

In this paper we have shown that dynamic reconfiguration

is necessary to perform fast and flexible regular expression

searching on an FPGA. However, we highlighted two

problems that can discourage application developers from

using dynamic reconfiguration. First, when a user has a large

set of problems that cannot be implemented on a single

configuration, the existing toolflow makes it very difficult to

intelligently split them across multiple configurations. Second,

executing an application that is spread across multiple

configurations requires manual customization.

We solved these problems by developing an automated

regular expression system compiler. This tool uses fast

resource estimation so that it can divide a set of regular

expressions among a minimal number of separate

configurations. Once the application has been split, it can be

run using an automatically generated controller that manages

device reconfiguration and I/O marshalling. During testing,

we showed that this system can achieve very high

performance. Although we believe that it could benefit from a

faster reconfiguration mechanism, we were able to perform up

to 5000x faster than a software implementation with only very

basic reconfiguration support. When we are able to

incorporate partial reconfiguration in the future, this will be a

sophisticated and deployable regular expression system.

Overall, dynamic reconfiguration gives FPGAs a capability

essential to any practical computing platform: resource

virtualization. This is an underutilized and relatively poorly

understood area of FPGA research. Further work is necessary

to make this feature truly accessible to application developers.

REFERENCES

[1] J. Bispo, I. Sourdis, J. Cardoso, and S. Vassiliadis, “Regular

Expression Matching for Reconfigurable Packet Inspection,” IEEE

Conference on Field Programmable Technology, 2006, 119 – 126.
[2] B. Klimt and Y.Yang, “Introducing the Enron Corpus,” Conference on

Email and Anti-Spam, 2004.

[3] S. W. Lee, S. H. Hwang, and N. Park, “A High Performance NIDS
using FPGA-based Regular Expression Matching,” ACM Symposium

on Applied Computing, 2007, 1187 – 1191.

[4] C. H. Lin, C. T. Huang, C. P Jiang, and S. C. Chang, “Optimization of
Regular Expression Pattern Matching Circuits on FPGAs,” Conference

on Design, Automation and Test in Europe, 2006, 12 – 17.

[5] R. Sidhu, and V. K. Prasanna, “Fast Regular Expression Matching
using FPGAs,” IEEE Symposium on Field-Programmable Custom

Computing Machines, 2001, 227 – 238.

[6] K. Thompson, “Regular expression search algorithm,”
Communications of the ACM 11(6) , June 1968, 419 – 422.

[7] Xilinx Inc., “System ACE CompactFlash Solution,” DS080 v2.0, 2008.

