
A SECURE COPROCESSOR FOR DATABASE APPLICATIONS

Arvind Arasu
*
, Ken Eguro

*
, Raghav Kaushik

*
, Donald Kossmann

†
,

Ravi Ramamurthy
*
, Ramarathnam Venkatesan

*‡

Microsoft Research
*
Redmond, WA USA and

‡
Bangalore, India

email: {arvinda, eguro, skaushi,

ravirama, venkie}@microsoft.com

†
ETH-Zurich

 Zurich, Switzerland

 email: donaldk@ethz.ch

ABSTRACT

The scalability and availability of cloud computing makes it

an ideal platform for many database applications. However,

it is challenging to secure sensitive client information in a

practical and rigorous manner against both external

attackers and curious cloud administrators. In this paper, we

describe a novel secure FPGA-based query coprocessor and

discuss how it can be tightly integrated with a commercial

database system such as SQL Server. This combination,

called Cipherbase, leverages efficient division of labor –

using a conventional untrusted cloud server to handle

mundane database operations while sensitive data is

segregated and processed in trusted hardware to ensure

confidentiality. We examine the architectural design issues

that affect the achievable performance of the system and

report initial results demonstrating the effectiveness for

real-world cloud database applications.

1. INTRODUCTION

Several vendors such as Amazon RDS and SQL Azure

offer cloud database-as-a-service. The low startup cost,

scalability, and high-availability of these systems encourage

organizations to migrate their database applications to the

cloud. However many applications have sensitive

information (e.g. employee payroll salaries, Social Security

numbers, etc.) which needs to be secured in order to be

placed in the cloud.

 While most commercial database products support

encryption [9][10], these solutions are insufficient from a

security standpoint. This is because they only encrypt the

database file while on disk. Although this protects against

an adversary that physically steals a hard drive, during

normal operation encrypted data is decrypted and stored as

plaintext in main memory (not to mention the cryptographic

keys to perform the decryption). This makes data accessible

to a cloud administrator or hacker that can gain root

privileges. A recent study [12] reflects this concern,

showing that a primary deterrent towards moving

applications to the cloud is precisely this problem of

securing sensitive data from the service provider.

 The only feasible solution to this issue is to encrypt

sensitive data before storing it in the cloud. The problem

now is how to safely perform database operations on

encrypted data without dramatically affecting the system’s

usability or performance. As we will discuss, existing

solutions for operating on encrypted data have limitations in

terms of generality, performance, cost, or security. These

issues negate the advantages of migrating database

applications like online transaction processing (OLTP) to

the cloud.

 In this paper, we outline a new architecture for servicing

cloud database applications efficiently. A key component in

this system is an FPGA-based secure database coprocessor.

When tightly integrated with a commercial database

system, this secure coprocessor enables the execution of

SQL queries on encrypted data entirely in the cloud. This

occurs without handling plaintext data or cryptographic

keys in a conventional server where a user with root

privileges could gain access. This system, Cipherbase,

provides customers with strong security guarantees and a

flexible, cost-effective way of ensuring the efficient

migration of database applications to the cloud.

2. SECURING CLOUD DATABASE PROCESSING

In this section, we discuss different alternatives by which

we can secure cloud database processing. To make the

discussion concrete, consider a simple banking application

which maintains the accounts of different customers. The

sensitive attributes that need to be protected include the

customer ID (Social Security number) and their account

balance. The queries that need to be executed on this

database include computing the new account balance after a

deposit or withdrawal and calculating the new account

balance to reflect earned interest.

 Secure Servers: As shown in Fig. 1, one approach is to

secure an entire server in-cloud where a database system

(DBMS) can run using plaintext. Similar to what is

provided by Amazon GovCloud or high-end private cloud

solutions, these servers are physically and logically isolated

(e.g. in cages with cameras and guards, and placed on

separate secured networks). In general, this approach is

very costly to implement due to the unique physical

environment the service provider has to maintain and due to

the management issues this isolation creates (e.g.

complicated failover and load balancing).

 Perhaps more seriously, though, it is very difficult to

make rigorous security guarantees for these isolated servers.

For example, many common security problems stem from

the fact that these servers are built from general-purpose

processors. General-purpose processors contain a single,

physically unified memory space for both program and

data. This makes them highly adaptable, but also opens the

door for exploits such as buffer overruns and rootkits that

can defeat memory protection mechanisms.

 Thus, the security of these systems can only be

guaranteed if the entire software stack can be proven to be

bug-free. However, as shown in [11], formally verifying

even a simple OS kernel with 8,700 lines of C and 600 lines

of assembly is highly non-trivial. A modern cloud server

built on a complex hypervisor and running full-featured

virtual machines simply has too large a surface area to be

formally verified in practice.

 (Partial) Homomorphic Encryption: In contrast to

secure servers where data is store unencrypted and operated

upon in a trusted location, homomorphic encryption

techniques enable computation directly on ciphertext. From

a security perspective, this is ideal since the cloud database

only stores ciphertext while still able to compute arbitrary

SQL queries on the data. Since no keys or plaintext ever

exist on cloud machines, the operations can run on

untrusted machines in full view of would-be attackers.

 However, to date, no computationally tractable fully

homomorphic encryption technique [5] has been found.

There are only efficient partial homomorphic encryption

(PHE) techniques that can perform specific operations. For

instance, the Paillier cryptosystem [7] can perform addition

on ciphertext using public key algorithms. Similarly,

deterministic encryption (e.g. AES-EBC mode) consistently

produces the same ciphertext when presented with the same

plaintext. This allows equality evaluation and, by extension,

database operations such as grouping and joins.

 CryptDB [8] is a recent system that supports a subset of

SQL queries using such PHE techniques. However, since

different PHE approaches use different underlying

cryptographic principles, they are incompatible with one

another. In the case of our simple banking application, there

is no efficient PHE technique that can support both

additions and multiplications on ciphertext. Thus, existing

PHE techniques do not provide a sufficiently generic

solution appropriate for arbitrary cloud database processing.

 Trusted Client: The previous two approaches perform

secure computation entirely in-cloud. Trusted client based

techniques rely on a combination of untrusted cloud and

trusted customer-owned resources. This is a currently

popular solution for many cloud “success” stories [13].

 Here, data is stored using conventional encryption

techniques in an untrusted (indicated with red in Fig. 2)

cloud DBMS. The cloud DBMS connects to a trusted

(indicated with blue) component in a customer-end machine

which has the encryption key. Since the cloud database is

untrusted and does not have access to the key, any

computation that requires manipulation of ciphertext must

be performed in the trusted client.

 This results in distributed query evaluation between the

trusted client and the untrusted cloud DBMS. Consider the

task of computing earned interest. The system must

transmit the encrypted balance to the trusted client, decrypt

the value, update it, and re-encrypt before sending the new

value back to the cloud DBMS. Here, the overhead of

transmitting data back and forth between the client and

cloud server easily dwarfs the time actually spent

computing. In fact, for many common queries this approach

may result in shipping a large fraction of the database to the

trusted client (e.g. calculating the sum of all accounts).

Thus, this approach can incur a non-trivial performance

penalty as well as a cost penalty (the cost to maintain client-

side servers and the cost of bandwidth consumed shuttling

data between the cloud and client). This issue seriously

reduces the benefits of migrating the database to the cloud.

 Trusted Hardware: As we have seen, existing secure

cloud database approaches all have limitations in terms of

generality, performance, cost, or security. At the same time

though, the general concept of distributed query evaluation

cleanly divides work among trust and untrusted compute

resources. Trusted compute is needed to handle operations

on sensitive data, but untrusted resources can be used for

other database operations – e.g. storage, retrieval, and

logging services, computations that run on non-sensitive

plaintext data, or computations that do not need to directly

manipulate ciphertext. The only real issue with the trusted

Client
App

Trusted Server

Cloud DBMS

Query

Results

Fig. 1. Trusted Server Approach

Client
Component

Query

Encrypted

Data
key

Cloud DBMS
Client

App

Query

Results

Fig. 2. Trusted Client Approach

Cloud
DBMS

TM
Key

Trusted
DBMS

Client
App

Query

Encrypted

Results

Queries &

Data

Pages

Encrypted

Results

Fig. 3. Loosely-Coupled Architecture

TM
Key

Expression
Evaluation

Client
App

Query

Encrypted

Results

Expressions

& Encrypted

Cells

Encrypted

Results

Cloud
DBMS

Fig. 4. Tightly-Coupled Architecture

client model is that the trusted compute resources are

physically so far removed from the cloud itself. Thus, we

could successfully leverage the advantages of the cloud

(without exotic servers or encryption techniques) if we had

a secure in-cloud location where we could store encryption

keys, decrypt sensitive values, compute database

operations, and re-encrypt the results.

 Towards this end, using dedicated hardware as a secure

co-processing platform is promising in terms of providing

security for a fixed set of operations. Simply implementing

these operations in a separate device helps protects the data,

but beyond this, as discussed in [4], purpose-built circuits

present a much smaller attack surface as compared to

secure server solutions. Formal verification techniques are

more tenable and the fundamental nature of custom

hardware addresses many of the vulnerabilities of general-

purpose processor-based systems. For example, memory

address spaces can be physically disjoint since we simply

do not need the same degree of freedom as in a general-

purpose processor. Similarly, many of the complexities

(and potential for bugs) associated with software-based

systems revolve around multi-tasking an inherently

sequential processor. Dedicated hardware, on the other

hand, can natively support multi-tasking with completely

independent circuits.

 In terms of the cloud, FPGAs are a particularly

attractive platform to provide dedicated hardware. While

offering many of the previously mentioned advantages of

dedicated circuits, they also offer a large degree of

flexibility. This is important because a cloud provider can

purchase and install a single chip that can be quickly

repurposed to support a wide variety of applications. This

allows the cloud to adapt these resources to meet current

and future demands. When not running secure database

operations, they could be used for other secure cloud

computing applications [4], or play a more traditional role

as high-performance computational accelerators.

3. SECURE DATABASE COPROCESSOR DESIGN

In this section, we describe the design of a secure database

co-processor. As discussed earlier, this trusted compute

resource augments an untrusted cloud DBMS by

performing secure operations on sensitive data.

3.1. System Integration

As shown in Fig. 3 and Fig. 4, there are two basic

architectures for distributing query evaluation between the

trusted and untrusted computing platforms: loosely and

tightly coupled. In both options, the database encryption

key is only present on client machines and on the trusted

co-processor in the cloud (denoted as TM). The

fundamental difference between these two architectures is

in way that query execution is divided between the cloud

DBMS and the TM. Specifically, they differ in the

granularity of operations.

 In a loosely-coupled architecture, the TM contains a full

DBMS and is responsible for executing entire queries or

sub-queries. Queries or sub-queries that do not involve

sensitive information are executed on the untrusted cloud

DBMS, while queries that involve sensitive information are

executed by the TM. The fact that the TM in a loosely-

coupled architecture contains a complete DBMS creates

both advantages and disadvantages.

 Perhaps the most important benefit of a loosely-coupled

solution is that it is relatively easy to build. Since the TM is

a self-contained DBMS, the client only needs to change the

database schema to reflect which fields are encrypted. The

queries themselves also need to be re-written to reflect the

split nature of the computation, but this can utilize existing

database features for distributed query processing, such as

user-defined functions and remote stored procedures. This

means that loosely-coupled systems can use largely off-the-

shelf software and hardware components.

 At the same time, the loosely-coupled TM must be

fairly complex to provide a full secure DBMS. For

example, in our taxonomy, TrustedDB [3] is a loosely-

coupled architecture. TrustedDB utilizes an IBM 4764

secure cryptographic processor running Linux and SQLite.

The complexity of this type of TM creates two problems.

 First, as mentioned in Section 2, the need for a full OS

and DBMS has security implications due to the system

complexity. Second, as a secure, fully self-contained

system, the TM naturally has limited computational and

storage resources. The high functionality requirements of a

loosely-coupled architecture seriously stretch the TM’s

capabilities. For example, the onboard memory in the 4764

is very limited. Thus, to allow the TM to work on

realistically-sized databases, TrustedDB stores all database

pages in the primary untrusted DBMS (sensitive values are

encrypted, so this does not create a security issue). As the

TM processes queries, it requests database pages from the

untrusted system.

 In general, this arrangement leads to an inefficient use

of both the precious secure computational power in the TM

and the bandwidth between the TM and the outside world.

This limits the achievable performance in high-throughput

cloud applications. For example, aside from the essential

cryptographic and data manipulation operations in queries

that must run in the TM, the TM in a loosely-coupled

architecture also parses queries, manages database pages,

manages requests for database pages (only some of the data

within a given page may actually be used), manages change

logs, etc.. None of these operations manipulate ciphertext

values and, thus, could be run in an untrusted system.

 This brings us to the tightly-coupled architecture used in

our work, Cipherbase. Here, the TM only contains

expression evaluation functionality. Expression evaluation

is the lowest-level database computational abstraction and

is the part of SQL Server responsible for actually

manipulating basic data types. This includes computations

such as comparison, arithmetic and SQL intrinsic functions

(MIN, MAX, etc.). SQL Server compiles all queries into a

series of these simple expressions. In a conventional SQL

Server installation, a logically separate data storage engine

fetches and feeds the appropriate database pages to a simple

expression interpreter that performs the necessary

computation. The Cipherbase tightly-coupled architecture

piggybacks on this existing computational model,

augmenting conventional expression evaluation on plaintext

in the untrusted DBMS with secure expression evaluation

on ciphertext in the TM.

 This type of tightly-coupled architecture has two

specific advantages. First, the TM is comparatively simple,

only implementing a small set of processing primitives.

This greatly reduces the complexity of the TM and allows

us to build a dedicated platform that can be provably

secure. Second, the TM is highly efficient, both in terms of

computational resources and bandwidth. During runtime,

the TM only processes those operations that explicitly

require access to the real values contained in encrypted

fields. That is, all data management and staging tasks are

offloaded to the comparatively cheap and plentiful

computational resources in the untrusted DBMS.

Furthermore, only values that the TM explicitly needs to

read are transferred by the untrusted DBMS, conserving

bandwidth to the outside world.

 At the same time, to implement a tightly-coupled

architecture also requires non-trivial changes to the existing

untrusted DBMS codebase. Although for brevity we will

not discuss the necessary modifications in detail here,

briefly, the complication stems from the fact that the

distribution of operations now occurs at a very fine-grained

level. This redefines the basic operating procedures of

expression evaluation, going beyond the capabilities of

existing external hooks (e.g. user-defined functions) to

achieve appropriate integration and acceptable

performance. That said, considering the very high

efficiency and security that is achievable, we have elected

to implement a tightly-coupled architecture.

3.2. Securing the FPGA

Regardless as to how the system divides work between the

trusted and untrusted components, client confidence in the

system as a whole hinges upon the security of the TM.

Beyond the fact that the Cipherbase TM is a purpose-built

circuit and, thus, naturally more resistant to hacking than

pure software, it is important that 1) the FPGA is loaded

with a known and trusted bitstream and 2) the device can be

uniquely identified by remote clients.

 The use of FPGAs as a trusted cloud computing

platform has been discussed in prior work [4]. Here, we rely

on many of the same basic concepts: a trusted third-party

 authority, standard FPGA bitstream protection

hardware/techniques, and standard public-key infrastructure

and key exchange mechanisms.

 As shown in Fig. 5, this process begins with a third-

party authority, trusted by both the cloud operator and

customers. The trusted authority generates an AES

bitstream encryption key unique to a particular FPGA (or

equivalent group of FPGAs). This key is then uploaded into

the device, privately and before it is deployed in the cloud.

The trusted authority then creates a unique RSA

public/private key pair for each FPGA and inserts the

private key into the bitstream representing the TM. This

new binary is then encrypted and signed with the

corresponding FPGA’s bitstream encryption key. This

protected bitstream is then transferred to non-volatile

memory on the appropriate FPGA board inside the cloud.

Finally, the public identity of the FPGA is published using

standard public-key infrastructure (PKI).

 This process ensures security in several ways. First,

both the cloud operator and clients trust the signing

authority to validate the logic inside the TM bitstream (i.e.

that it does exactly what is intended – nothing more and

nothing less). Second, since the bitstream is signed, we can

guarantee that this binary will load onto the FPGA

unaltered. Any alterations to the signed bitstream will be

detected during startup and cause the FPGA to fail the

loading process. Third, since the bitstream (and thus the

private RSA key inside) is encrypted, the identity of the

FPGA cannot be stolen. When a client looks up the public

key of a particular device and initiates communication, they

are certain that they are truly connecting with the intended

trusted recipient.

 Before moving on, note that in some scenarios, the

trusted authority could be the cloud service provider itself.

That is, customers may trust the cloud provider as an

organization to build and install the TM, but may not carry

this faith to individual cloud administrators.

Non- Volatile
Memory

FPGA

D
ed

ic
at

ed

R
es

o
u

rc
es

Onboard Boot Logic

Onboard Key Memory
Untrusted Machine

SQL
Server

Master Key

Queries

Encrypted Results
Encrypted Prog.

Stack
Machine

Batch Management

Key
Managmt

P
ro

gr
am

m
ab

le
 L

o
gi

c
R

eg
io

n
 /

 T
M

Enc. Results

Enc. Cells
Enc. Prog.

Key
Vault

DB
Storage

Trusted Authority

Client Machine

Generate AES key

Encrypt &
sign binary

Fig. 5. Database coprocessor details

Table 1. SQL Operations and TM Primitives

SQL Operation (Plaintext) Primitives in TM

SELECT …. WHERE A = 5 Dec(A) = Dec(5)

SELECT A+B WHERE … Enc(Dec(A) + Dec(B))

SELECT … WHERE

T1.a = T2.b …

Hash(Dec(A)),Hash(Dec(B))

Dec(A) = Dec(B)

3.3. Trusted Module Design

As discussed in Section 3.1, we only need to implement

expression evaluation in a tightly-coupled secure

coprocessor to support general-purpose query processing.

In Table 1, we provide a few examples of basic expression

evaluation operations in SQL. In the left column, we show

a plaintext query and in the right column we show the

corresponding primitives that would execute in the TM if

the operation were performed on encrypted data. For

instance, for a SELECT query with a predicate (A = 5)

where column A is encrypted, the TM evaluates the

comparison between the encrypted column and the

corresponding encrypted constant. Similarly for computing

(A+B), the TM decrypts both columns, adds them and then

re-encrypts the result. Finally, for the join predicate

between tables T1 and T2, the query processor would match

records in the two tables. The TM decrypts the values,

hashes the join attributes, and then checks for equality. For

a more detailed set of primitive examples, refer to [1].

 SQL Server implements expression evaluation using a

stack machine, compiling all tasks into database primitive

programs that implement queries and sub-queries.

Cipherbase leverages this existing computational

abstraction. We built a stack machine in the FPGA-based

TM that mirrors the “virtual machine” that traditionally

runs in SQL Server. As a research prototype, our current

hardware implementation does not support the complete

suite of SQL stack operations, which number in the few

hundreds. However, as we will see in Section 5, our

implementation is sufficient to allow us to explore the

potential (and potential pitfalls) of a full end-to-end secure

database application for transactional workloads.

 Fig. 5 depicts the different components of the complete

Cipherbase system. Each Cipherbase server runs a modified

SQL Server instance that has access to a TM. The first

client (the database owner) sets up a schema for their

database to indicate the format, including which fields are

to be protected with encryption. This schema is signed and

then installed into SQL Server and distributed among users

of the database. Other clients can then connect to this SQL

Server instance to upload data.

 In the simplest execution model, this data is encrypted

by clients before being loaded into SQL Server. In this case,

the database owner defines a fixed cryptographic key for

particular encrypted fields when defining the schema. This

key is shared to other users and uploaded to the TM.

Although the database owner and other clients can only

communicate with the TM through the untrusted DBMS,

clients can securely send keys to the TM by encrypting their

keys with the TM’s public key. These wrapped keys will

then only be accessible to the TM, which can decrypt the

client’s keys with its private key. Notice that these wrapped

keys are safe regardless as to how they are transmitted.

Wrapped keys can even be cached by SQL Server in a key

vault for later re-transmission to the TM.

 At this point, the system is ready to service queries. To

run queries, clients must first modify some of their normal

SQL queries to reflect when they need manipulate

encrypted fields. Although we will describe an example of

this in more detail in the next section, specifically, these

modified queries call out to stack programs that run on the

TM. These programs are encrypted and signed so that they

are protected in transit. When received by SQL Server,

these programs are sent to the TM and cached for later

reuse. When the untrusted DBMS executes queries or sub-

queries over encrypted data, it packs the appropriate

ciphertext together with a program ID, referring to which

trusted program to execute on the data. This forms a work

unit, ready for transmission to the TM. Multiple such work

units are aggregated by the untrusted DBMS for batched

transfer and execution.

 Notice that the use of Cipherbase is largely transparent

to clients (i.e. they do not have to modify their current

applications to use Cipherbase). This is accomplished by

installing a thin “shim” program on the client. This shim

would be responsible for managing keys,

encrypting/decrypting transmissions to and from the cloud,

and converting queries to reflect the encrypted database

schema.

 Also notice that Cipherbase does not address the issue

of correctness. For example, a malicious attacker could

duplicate/withhold queries or insert random ciphertext. The

issue of correctness is orthogonal to the primary focus of

this paper (i.e. incorrect behavior is acceptable as long as no

secrets are leaked). The problems of database validation

and verification have been studied in the context of

conventional databases and much of this work can be

extended to a distributed system such as Cipherbase.

4. END-TO-END EXAMPLE

In this section we describe the operation of Cipherbase with

an example query from the banking application discussed in

Section 2. Consider the following plaintext SQL query:

UPDATE Accounts

SET AcctBal = AcctBal + :TransAmt

WHERE AcctID = :ID

 This update takes two input parameters: ID, the account

to be updated, and TransAmt, the amount of a transaction.

Assume that the Accounts table has the schema (AcctID,

AcctBal) associating each account with a balance.

 With Cipherbase, we can specify the encryption for

each attribute separately – see [1] and [2] for more details.

For the purpose of this example, assume the table encrypts

AcctID using deterministic encryption (e.g. AES-ECB

mode) and AcctBal using stronger, non-deterministic

encryption (e.g. AES-CBC mode). TransAmt arrives from

the client encrypted. Cipherbase executes the update query

with the following series of operations:

1) The untrusted DBMS looks up the ID record using an

index (the AcctID column is encrypted using

deterministic encryption which preserves equality,

eliminating the need to access plaintext).

2) The untrusted DBMS fetches the encrypted AcctBal

value for this row.

3) The untrusted DBMS sends AcctBal, TransAmt and the

appropriate wrapped encryption key to the trusted

module. The trusted module executes the following

program, returning the result to the untrusted DBMS:

a) PUSH AcctBal

b) PUSH key

c) DECRYPT

d) PUSH TransAmt

e) PUSH key

f) DECRYPT

g) ADD

h) PUSH key

i) ENCRYPT

j) POP

4) The untrusted DBMS updates the table with the

encrypted AcctBal result and writes a log record to

persist the effect of this operation.

5. EXPERIMENTS AND RESULTS

We built two proof-of-concept Cipherbase platforms in

which SQL Server communicates with an FPGA-based TM

either via Gigabit Ethernet or x4 PCIe v2.0. Although PCIe

is a faster, lower latency transport mechanism, an Ethernet

solution would more easily allow multiple cloud DBMS

machines to share a single TM.

 The FPGA resource requirements for these two

prototypes are shown in Table 2. Although our existing test

platform TMs do not implement the full suite of SQL stack

machine operations, the current resource utilization is very

low – the core database processor uses less than 5% of the

available V6LX240T. Thus, we believe that there is

sufficient headroom to expand the functionality of the

system in the future. The core database processor in both

platforms is clocked at 125MHz.

 We compare the performance of Cipherbase running on

fully encrypted data against the performance of unmodified

SQL Server running on plaintext data. All tests were

performed on a Windows Server 2008 machine with dual

2.0GHz Intel Xeon E5-2650 processors (for a total of 32

logical cores) and 64GB of DDR3 RAM.

 The goal of this evaluation is to understand the

overhead of using encryption with the Cipherbase

architecture. Our current system design and evaluation is

focused on transactional workloads; such workloads are

update intensive and each transaction (or query) touches a

small number of records. In contrast, analytical workloads

are read-oriented and each query typically touches a large

number of records. Such workloads present new

optimization opportunities and we plan to explore this space

in future work.

 TPC-A Benchmark: To evaluate Cipherbase, we use

an industry standard TPC-A benchmark [6]. While simple,

this benchmark is fairly representational of transactional

workloads. Briefly, the benchmark models a bank with 10

branches. Each branch has 10 tellers and 100,000 customer

accounts. Each account, teller, and branch has a

corresponding balance field in the database. Every

transaction in the benchmark performs a deposit or

withdrawal from a random customer account. Each

customer account update is then also reflected in the

corresponding teller and branch balances.

 For the encrypted version of the benchmark, we assume

that all fields are encrypted as described in Section 4. Since

the primary key fields (i.e. AcctID) are encrypted using

deterministic encryption, indexing is performed outside the

FPGA co-processor. All other fields are encrypted using

strong non-deterministic encryption, and so the three

balance updates required to process every transaction occur

within the FPGA.

 The primary evaluation metric for the benchmark is the

number of transactions per second (TPS) the system is able

to sustain. In our evaluation, a driver program running on

the same machine as SQL Server issues customer

transactions. The number of concurrent threads in the driver

program represents the maximum number of simultaneous

transactions that can be requested. This is a control

parameter in the benchmark and for all our experiments we

varied the number of driver threads from 1 to 500 (until the

TPS reached a maximum).

 TPC-A Relative Performance to Plaintext: Fig. 6

compares the TPS for the plaintext (PT) and two ciphertext

(CT-PCIe and CT-Ethernet) database systems. In all our

graphs, TPS values are normalized to the maximum

throughput achieved for a given benchmark
1
. All numbers

are warm numbers (i.e. the database is entirely cached in

main memory and the system does not need to read values

off of the hard drive). This is the most challenging scenario

for our system, since the I/O overhead in many common

workloads will mask performance shortcomings in the

processing engine.

 Fig. 6 shows that for this benchmark, the PCIe and

Ethernet-based Cipherbase implementations achieve a peak

throughput of 0.83x and 0.80x the maximum plaintext

Table 2. Resource Utilization (V6 LX240T).

 LUTs FF BRAM DSP

Full System -

Ethernet

9.1K

(6.0%)

6.1K

(2.0%)

67

(16.1%)

4

(0.5%)

Full System - PCIe
21.5K

(14.3%)

20.7K

(6.9%)

102

(24.5%)

4

(0.5%)

∙ Ethernet

Infrastructure

1.9K

(1.3%)

1.1K

(3.6%)

51

(12.2%)

0

(0.0%)

∙ PCIe Infrastructure
14.3K

(9.5%)

15.7K

(5.2%)

86

(20.7%)

0

(0.0%)

∙ DB Proc.
7.2K

(4.8%)

5.0K

(1.7%)

16

(3.8%)

4

(0.5%)

1
 Due to a DeWitt Clause, we are unable to report any absolute

performance numbers and must use normalized comparisons.

0

0.2

0.4

0.6

0.8

1

1 5 10 50 100 500

Tr
an

sa
ct

io
ns

 P
er

 S
ec

 (T
PS

)

Number of Driver Threads

PT CT-PCIe CT-Ethernet
Fig. 6. Performance for original TPC-A, normalized to peak plaintext
throughput

0

0.2

0.4

0.6

0.8

1

1 5 10 50 100 500 1 5 10 50 100 500

10 Branches 1000 Branches

Tr
an

sa
ct

io
ns

 P
er

 S
ec

 (T
PS

)

Benchmark Size, Number of Driver Threads

PT CT-PCIe CT-Ethernet

Maximum TPS achieved
by original unscaled

benchmark = 0.17

Fig. 7. Performance for original #branches=10 and scaled #branches

=1000 TPC-A benchmark, normalized to peak plaintext 1000 branch
throughput

0

0.2

0.4

0.6

0.8

1

1 101 201 301 401

Tr
an

sa
ct

io
ns

 P
er

 S
ec

 (T
PS

)

Batch Size

CT-PCIe CT-Ethernet

Maximum TPS achieved
by scaled 1000 branch

benchmark = 0.08

Maximum TPS achieved
by original 10 branch

benchmark = 0.01

Fig. 8. TM processing performance with pre-packed data

database performance, respectively. Thus, the throughput

degradation compared to plaintext processing is (1.0-

0.83=17%) and (1.0-0.80=20%), respectively.

Although this is an acceptable penalty, especially given

that the robust security of Cipherbase dramatically changes

the fundamental functionality of the system, we would like

to examine what issues contribute to this overhead.

There are two issues that penalize the performance of

Cipherbase. First, Cipherbase simply handles more data

than an insecure SQL instance. Rather than using a single

32-bit plaintext word to represent a balance, each

encrypted field expands by a factor of four to a 128-bit

AES block. In future work we plan to mitigate this data

expansion.

A second issue that causes the measured Cipherbase

overhead in this test is insufficient concurrent work. Each

secure operation must call out to the external TM. Thus,

the latency of this processing is naturally higher than if we

remained in-processor. Although this added delay is

relatively small (on the order of microseconds), it is

incurred along a very fundamental part of the database’s

processing path. If we do not have a sufficient level of

concurrency to amortize the latency to the TM, the host

DBMS will be underutilized, waiting for data to return

before processing can continue.

Although we expect the level of concurrency to be very

high in most large-scale cloud applications, the original

TPC-A benchmark has an unusually low degree of

concurrency. Recall that there are only 10 bank branches

and that each customer transaction also updates both the

teller and branch balances. To maintain correct behavior in

the face of simultaneous transaction requests, SQL Server

must lock the respective customer account, teller or branch

balance when it is being modified. This prevents new

transactions for a particular value to proceed. Thus,

regardless as to how many driver threads are present, on

average no more than 30 operations can be serviced at a

given time (10 accounts, 10 tellers, and all 10 branches).

Benchmark Scaling: To test the theory that the

previously measured performance of Cipherbase is

artificially low in the TPC-A benchmark due to limited

effective concurrency, we repeated the previous

experiment. Here, we scale the benchmark to contain 1000

branches (again, each with 10 tellers and 100,000 customer

accounts). In this scaled benchmark, the system could

theoretically processes up to 3000 operations concurrently

(updates to 1000 customer accounts, 1000 tellers and all

1000 branches). As shown in Fig. 7, the increased level of

concurrency dramatically improves performance. For

example, the maximum throughput for even the

conventional plaintext system increases by a factor of

(1/0.17=5.9x), indicating that the system was indeed

starved for parallel work and spinning on locked fields.

Cipherbase also benefits from the increased

concurrency. The PCIe-based Cipherbase implementation

now achieves a peak of 0.87x the maximum plaintext

database performance. This reduces the overhead of this

implementation to (1.0-0.87=13%). At the same time, the

added concurrency accentuates the performance difference

between the PCIe and Ethernet based systems. The

Ethernet implementation achieves 0.77x the maximum

plaintext performance, for a penalty of (1.0-0.77=23%).

Measuring TM Utilization: One last question we have

regarding the performance of Cipherbase is the utilization

of the FPGA itself. As mentioned earlier, the clock rate of

the TM is very low compared to that of the primary

processor. Although there are many operation performed

by the DBMS to fetch and stage data, log transactions, etc.,

the system could be computationally limited by the TM.

Thus, we developed a standalone executable

independent of SQL Server to examine the load on the TM.

This program produces a series of N TPC-A compliant

queries. It then repeatedly sends this series of computations

to the TM and receives the results. Since this system relies

on pre-packed data with no operational load beyond

sending and receiving data from the TM, this simulates the

maximum computational load on the FPGA for this

benchmark if the rest of the untrusted DBMS processing

were infinitely fast.

As shown in Fig. 8, the maximum achievable

throughput of hardware by itself is very high and the TM is

dramatically underutilized when running in conjunction

with SQL Server. The maximum measured TPS of the

original live-running plaintext TPC-A benchmark is only

(0.01/1.0=1%) of the maximum measured capabilities of

the PCIe Cipherbase system and (0.01/0.62=1.6%) that of

the Ethernet Cipherbase system. Similarly, the maximum

measured TPS of the live-running plaintext scaled TPC-A

benchmark is only (0.08/1.0=8%) of the capabilities of the

PCIe Cipherbase system and (0.08/0.62 =13%) that of the

Ethernet Cipherbase system.

6. CONCLUSIONS & FUTURE WORK

In this paper, we outline a new architecture for servicing

database applications efficiently in the cloud. Our system

leverages a novel secure database coprocessor that provides

an important security guarantee – any sensitive data in the

database will be decrypted only in a trusted module. We

presented the design of an FPGA-based specialized

database stack machine with a modest footprint, only

needing to implement expression evaluation in the trusted

processor.

 We have integrated a prototype of this processor with a

commercial DBMS and our preliminary performance

evaluation on transactional workloads indicates that this

architecture can provide performance very close to that of a

conventional insecure system. Furthermore, our

experiments shows that a single database installation is not

capable of saturating the computational capabilities of the

TM for a TPC-A style workload – there are simply too

many non-processing oriented tasks required to stage and

track the various operations. This finding has three

implications.

First, this suggests that multiple database instances may

be able to share a single TM for similar workloads (e.g.

one FPGA per rack of conventional servers). This would

amortize the cost of additional hardware among more

customers or more work. Second, the system has

considerable performance headroom. This is important for

future work as we migrate to benchmarks with more

complex secure processing needs. Third, this suggests that

a tightly-coupled architecture is able to achieve better

performance as compared to a loosely-coupled

architecture. Cipherbase offloads non-processing oriented

database operations to highly scalable cloud host

machines. If these extraneous database operations needed

to run on the comparatively scarce resources of the TM,

the overall performance of the system would likely be

lower.

 Looking to the future, we are in the process of

evaluating the performance of the system for other

workloads, such as analytical queries. Beyond this, we are

also exploring further optimizations to better integrate the

trusted co-processor with the untrusted DBMS software

stack.

7. REFERENCES

[1] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik, D.

Kossman, R. Ramamurthy, P. Upadhyaya, R. Venkatesan.

Orthogonal Security with Cipherbase. CIDR 2013.

[2] A. Arasu, S. Blanas, K. Eguro, M. Joglekar, R. Kaushik, D.

Kossman, R. Ramamurthy, P. Upadhyaya, R. Venkatesan.

Engineering Performance and Security with Cipherbase.

IEEE Data Engineering Bulletin 35(4) 2012. 65-72.

[3] S.Bajaj, R.Sion. TrustedDB: A Hardware based Outsourced

Database Engine. VLDB 2011 Vol. 4, 1359-62.

[4] K.Eguro, R.Venkatesan. FPGAs for Trusted Cloud

Computing. FPL 2011. 63-70

[5] C. Gentry. A Fully Homomorphic Encryption Scheme.

Ph.D. Thesis, Stanford University, 2009.

[6] J. Gray. The Benchmark Handbook for Database and

Transaction Systems. Morgan Kaufmann 1993.

[7] P. Paillier. Public-Key Cryptosystems Based on Composite

Degree Residuosity Classes. EUROCRYPT 1999. 223-38.

[8] R. Popa, C. Redfield, N. Zeldovich, H. Balakrishnan.

CryptDB: Protecting Confidentiality with Encrypted Query

Processing. SOSP 2011. 85-100.

[9] SQL Server Transparent Data Encryption.

http://msdn.microsoft.com/en-us/library/bb934049.aspx

[10] Oracle Transparent Data Encryption.

http://www.oracle.com/technetwork/database/options/advan

ced-security/

[11] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,

P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M.

Norrish, T. Sewell, H. Tuch, S. Winwood “seL4: formal

verification of an OS kernel” SOSP 2009. 207-20.

[12] An SME perspective on cloud computing. European

Network and Information Security Agency, 2009.

[13] Amazon AWS Case Studies,

http://aws.amazon.com/solutions/case-studies

