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ABSTRACT 

The popularity of FPGAs is rapidly growing due to the unique 

advantages that they offer.  However, their distinctive features 

also raise new questions concerning the security and 

communication capabilities of an FPGA-based hardware platform.  

In this paper, we explore some of the limits of FPGA side-channel 

communication.  Specifically, we identify a previously 

unexplored capability that significantly increases both the 

potential benefits and risks associated with side-channel 

communication on an FPGA: an in-device receiver.  We designed 

and implemented three new communication mechanisms: speed 

modulation, timing modulation and pin hijacking.  These non-

traditional interfacing techniques have the potential to provide 

reliable communication with an estimated maximum bandwidth of 

3.3 bit/sec, 8 Kbits/sec, and 3.4 Mbits/sec, respectively.   

Categories and Subject Descriptors 

B.4.2 [Input/Output and Data Communications]: Input/Output 

Devices – channels and controllers 

General Terms 

Design, Security. 

Keywords 

FPGA, side-channel receiver, thermal, phase shift, DDR2, I2C. 

1. INTRODUCTION 
Prior work on side-channel communication has primarily focused 

on side-channel attacks [2][4][5][8][9][10].  Side-channel attacks 

gain information from systems that are assumed to be secure.  

However, these exploits do not rely on vulnerabilities in the 

frontline security protocols that are used, but rather on the fact 

that systems may emanate information via mechanisms that 

designers may not anticipate.  For example, hackers may be able 

to extract the key used by an encryption chip simply by closely 

monitoring the power consumption. 

That said, centering the discussion on side-channels as an 

unintentional source of information does not address two 

important considerations.  First, system developers may purposely 

want to implement side-channel communication.  For instance, 

ICs are often pin-limited and a normally out-of-band 

communication technique could add valuable I/O capacity [18].  

Similarly, such unconventional communication vectors may be 

able to fix board-level design errors or defects in I/O resources 

after fabrication and assembly.  Side-channels may even be used 

as a latent signature to watermark a system [3][6].   

The second issue that should be considered is the possibility of a 

side-channel receiver.  Although many prior research projects 

have investigated the information that may leave a device, to the 

best of our knowledge, no prior work has looked at feasible side-

channel mechanisms by which information may enter a device.  

Bi-directional communication is not only necessary for side-

channels to become generally applicable to the positive (white-

hat) uses previously mentioned, we must also consider its impact 

on the potential negative (black-hat) uses.  For example, Trojan 

covert channels are side-channels created by system developers to 

victimize end users [1][10].  Although an end user might believe 

that a system is only transmitting approved information (because 

they can monitor the in-band communications), the system may 

also be sending private data via a side-channel.  The addition of a 

side-channel receiver would enable much more sophisticated and 

stealthy attacks.  For instance, transmissions that are conditionally 

triggered would be far more difficult to detect than those that are 

either always on or statically triggered. 

The mechanisms and implications of side-channel communication 

are particularly important for the FPGA community.  This is 

because the inherent reprogrammability of FPGAs adds a new 

opportunity to use, or to fall victim to, a side-channel.  For 

example, although the board-level design of an FPGA-based 

system may be fixed early in the development cycle, the circuit 

within the FPGA itself can be updated at any point.  Thus, as 

compared to an ASIC-based system, it is easier to take advantage 

of the I/O and post-fabrication advantages offered by side-channel 

communication.  On the other hand, reprogrammability also may 

make FPGAs more vulnerable than ASICs to attack.  For instance, 

a Trojan covert channel does not have to be inserted at the level of 

the transistor layout, it can be added to a system firmware update. 

While FPGAs offer an entry point for side-channel 

communication late in the development process, they also present 

their own challenges to actually implementing a functional 

system.  Unlike ASICs, that can be customized to offer a wide 

range of different and finely-tuned structures (including arbitrary 

analog circuits), FPGAs have very specific pre-defined resources.  

These structures either may not be customizable or may only be 

modified within a given range / in specific increments.   

In this paper, we investigate techniques to communicate between 

an external transmitter and an FPGA-based side-channel receiver. 
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We present three general mechanisms of communication and 

demonstrate specific proof-of-concept implementations for each.  

Highlighted in Section 3, speed modulation techniques use a 

transmitter that can change the intrinsic operational speed of 

components inside an FPGA.  The focus of Section 4, timing 

modulation approaches communicate by modifying the delay of 

an FPGA’s I/O signals.  In Section 5, we discuss pin hijacking 

techniques in which we co-opt a wire already in use by an FPGA 

I/O signal to carry additional side-channel data.  We also discuss 

analytical models for their respective bandwidth to provide some 

measure of the associated functionality or risk. 

2. SIDE-CHANNEL EVALUATION 
Although we will demonstrate specific working examples of 

FPGA-based side-channel receivers, we would also like to get 

some idea of their more general potential.  The viability of any 

particular side-channel technique will largely hinge upon three 

factors: the difficulty or cost associated with building the external 

transmitter, the area required or constraints imposed building the 

receiver in the FPGA, and the maximum transfer rate that the 

channel can achieve. 

Unfortunately, the cost and convenience of implementing a 

transmitter or receiver is somewhat subjective and likely depends 

upon the details of the specific use-case.  Thus, while we can 

report factors such as the resource requirements of our proof-of-

concept implementations, the first two considerations that we 

mentioned above are largely qualitative.  On the other hand, we 

can analyze the data bandwidth potential much more objectively.   

As shown in Eq.  1, the maximum transfer rate in bits per second 

of a given communication mechanism (B) is limited by the 

number of unique symbols we can express (S), the sampling rate 

of the technique (F), and the number of independent channels that 

we can create (C).  As we describe each of the communication 

mechanisms in the following sections, we will also discuss how S, 

F, and C are affected by the specific characteristics of the various 

approaches. 

                (1) 

3. SPEED MODULATION 
In this section, we focus on communication side-channels in 

which a transmitter causes changes in the speed of the underlying 

logic inside an FPGA-based receiver.  One mechanism that such 

approaches can use is that the performance of any integrated 

circuit is affected by three factors: process, voltage, and 

temperature (PVT).  Although it may be difficult or impossible to 

externally modulate the technical process parameters and physical 

structures created on an FPGA during manufacturing, it is 

relatively easy to manipulate the supply voltage and temperature 

of the chip. 

Intentionally heating or cooling the chip is significant because, in 

typical operational ranges, there is an inverse relationship between 

the temperature and propagation delay of a transistor.  Increased 

temperature decreases the mobility of electrons and holes.  This 

results in the reduction of current, which in turn increase RC 

delay.  Similarly, changing the supply voltage of a chip also 

changes the propagation delay.  This is because, in traditional 

CMOS circuitry, the supply voltage determines the maximum 

drain-source voltage (Vds).  Increasing Vds increases the switching 

current, which, in turn, reduces RC delay. 
 

  

Figure 1: Block diagram of temperature modulation platform 

3.1 Case Study – Temperature Modulation 
In this paper, we concentrate on temperature modulation.  

Although theoretically either voltage or temperature could be used 

for communication, in practice it is likely easier to build a 

temperature transmitter.  This is for two reasons.  First, it may be 

non-trivial to find or build a power system that can actively 

modulate the voltage provided to the FPGA with sufficient 

accuracy.  Furthermore, such a system would probably require 

replacing or modifying the existing voltage regulators typically 

found on FPGA system boards.  As will be shown later, the 

thermal transmitter we built does not require any precision 

equipment to operate and any modifications made to the FPGA 

board itself are easily and fully reversible.   

To implement a temperature-based side-channel, we borrow a 

concept from [14]  and [17] and use a ring oscillator to detect 

changes in the temperature of the FPGA.  Figure 1 shows a block 

diagram of our initial testing platform.  A ring oscillator provides 

the clock for a counter (right side of Figure 1).  A separate 

counter, driven from a known frequency clock (left side of Figure 

1), is used to sample the ring oscillator counter at a fixed time 

interval.  As the speed of the ring oscillator increases or decreases 

in response to temperature, the sampled count will 

correspondingly increase or decrease.  These sampled values can 

be tracked over time to detect changes in temperature. 

While the frequency of any given ring oscillator depends upon 

temperature, how strongly and reliably it reacts to changes in 

temperature depends upon several factors: the physical 

characteristics of the FPGA, the number of stages in the oscillator, 

the relative placement/routing of the LUTs used, and the physical 

location of the oscillator within the FPGA.  As discussed in [14] 

and [17], these dependencies mean that painstaking chip-specific 

profiling and calibration is required before ring oscillators can be 

used as accurate thermometers.  However, such calibration is not 

necessary in our case when temperature is used as a means of 

communication.  This is because we can use changes in 

temperature rather than absolute values to denote symbols.  As 

will be shown later, this only requires very rough device family-

level profiling and calibration. 

3.2 Temperature Modulation Bandwidth 
As mentioned earlier, the maximum transfer rate that any 

communication mechanism can achieve is related to the number 

of communication symbols used (S), the sampling frequency (F), 

and the number of independent channels implemented (C). 

In the case of temperature modulation, STherm is the number of 

distinct changes in temperature level used for communication.  If 

we assume that an external transmitter can equally heat or cool the 

FPGA, we can assign half of the symbols to increases in 

temperature and half to decreases in temperature.  As shown in 

Eq. 2, the maximum number of usable symbols is defined by the  
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operational temperature range that is used (TRange) divided by the 

minimum change in temperature that the receiver can reliably 

detect (TΔMin).
1  As we will show later, the relationship between 

temperature and ring oscillator speed is highly linear.  Thus, the 

symbols can be evenly spaced within the temperature range used 

for communication. 

As shown in Eq. 3, the minimum discernable temperature change 

(TΔMin) is defined by the minimum change in ring oscillator speed 

we can reliably detect divided by how strongly the ring oscillator 

responds to changes in temperature.  The minimum discernable 

change in ring oscillator speed is related to the measurement error 

in the system (NTherm*σTherm).  This is an arbitrary constant noise 

margin factor multiplied by the maximum standard deviation in 

the speed of the ring oscillator when the temperature is held 

constant at any given point in the operational range, as measured 

by the sampled ring oscillator counter.  SlopeTherm is the average 

change in ring oscillator speed per degree. 

As shown in Eq. 4, the maximum sampling frequency (FTherm) is 

determined by the smaller of two rates.  The first term in Eq. 4 

(FΔCount) is the rate at which we can accurately detect changes in 

temperature – i.e. how long does the ring oscillator counter have 

to run before we can reliably discern if there was a change in 

temperature?  The second term in Eq. 4 (FΔTemp) is the rate at 

which we can change the temperature of the FPGA itself – i.e. 

considering physical factors, how quickly can heat flow between 

the transmitter and the packaged FPGA core? 

Shown in Eq. 5, the rate at which we can detect temperature 

changes (FΔCount) is equal to the minimum change in ring 

oscillator speed we expect to see between different symbols.  That 

is, if we want to detect an X Hz change in the frequency of a ring 

oscillator, the counter must run for 1/X seconds for the difference 

in the sampled count to be at least one.  Thus, we will be able to 

take a new measurement every 1/X seconds, or at a rate of X Hz. 

The rate at which we can change the temperature of the FPGA 

(FΔTemp) is determined by how quickly the transmitter can 

dissipate heat into or remove heat from the FPGA.  As described 

in [12], the heat transfer between an IC and an attached heatsink 

can be modeled by making an equivalent “thermal RC circuit”.  

By investigating the impulse response of this circuit, we can 

predict the temperature response of the FPGA as the thermal 

transmitter cycles, either heating or cooling. 

                                                                 

1 The accuracy, switching speed, and output quantization of the 

transmitter will also affect real-world performance.  However, for 

our analysis will assume that these issues will not be the limiting 

factor, given a well-designed transmitter. 

Looking at Eq. 6 and Eq.7, we can see the similarities between the 

more familiar electrical RC equation and the thermal RC equation, 

respectively.  In Eq.7, R is the thermal resistance of the FPGA 

package and the interface between the thermal transmitter and the 

FPGA package.  C is the thermal capacitance of the FPGA and its 

package.  P is the power that the transmitter can either generate or 

absorb.  TΔMax is the maximum change in temperature 

corresponding to any symbol used for communication.  

Rearranging this equation, we can solve for time and determine 

the minimum time required for the transmitter to overcome the 

FPGA’s thermal inertia and raise or lower the temperature by the 

maximum necessary amount.  Eq. 8 is Eq. 7 solved for the inverse 

of the time period. 

Finally, the maximum number of communication channels 

(CTherm) equals the number of independent temperature zones we 

can create on the FPGA.  For a variety of practical and 

mechanical reasons, we will assume that subdividing the FPGA is 

too difficult and CTherm equals one. 

4. TIMING MODULATION 
In this section, we focus on side-channel communication 

mechanisms in which a transmitter overlays its own data on top of 

an unrelated FPGA I/O signal. This is accomplished by phase 

shifting the signal or changing its delay.  These small differences 

in signal timing are interpreted by an FPGA-based receiver, 

separately from the data in the conventional signal that it is 

piggybacking upon.  One potential mechanism that timing 

modulation side-channels can exploit is a system-level design 

characteristic found in many devices: timing adaptive or self-

aligning I/O.  This key feature is included by developers when 

they cannot be certain, at design time, of the delay of the physical 

transmission pathway used to carry a signal. 

This same general timing issue manifests itself in many different 

ways.  For example, the uncertainty in delay could be at a macro 

or micro scale.  Similarly, the communication could involve either 

round-trip request/acknowledgements or purely uni-directional 

communication.  Regardless of the specifics, though, all of these 

situations require two features that also enable side-channel 

communication.  The first characteristic is that designers must use 

I/O protocols that allow for a range of different signal delays.  

This creates room for a side-channel transmitter to modulate the 

delay for communication, on top of whatever data the signal is 

carrying in the more conventional sense.  Second, these I/O 

protocols must include calibration or alignment capabilities to 

identify the amount of delay currently present in a signal.  This 

evaluation gives a side-channel receiver a direct way to extract the 

time-based information. 

As a simple example of uncertainty in coarse-grain two-way 

communication, consider a typical client/server network transfer.  

Because a client PC cannot predict the network latency for any 

packet to or from any server, the protocol must keep track of 

request flight times and allow for a fairly wide time-out window.  

Any network node between the client and server (or the server 

itself) could communicate with a latent receiver on the client by 

purposely adding delay or reordering packets to change the arrival 

time of the data at the client, beyond the variations that occur in 

the nominal case.  Notice that this modulation can be performed 

on either outgoing requests or incoming acknowledgments.  As 

long as the total round-trip delay of the data remains within legal 

bounds, the transfer is otherwise unaffected (we consider 

introducing errors an entirely different class of communication). 



 

Figure 2: Phase delay detection/re-alignment and phase delay 

modulation receiver 

 

 Figure 3: Aligning DQ using DQS and DQ/DQS misalignment 

 

Figure 4: Slew rate with respect to trace capacitance 

4.1 Case Study – Phase Delay Modulation 
In this paper, we explore the possibility of fine-grain timing 

modulation implemented on high speed communication lines.  

Specifically, we add a delay-based signal to a DDR2 memory 

interface.  We exploit a feature built into the interface that is 

intended to allow circuit designers to compensate for minor 

differences in timing due to board-level constraints, 

manufacturing variability, or unpredictable factors that change 

over time. 

A typical DDR2 memory interface consists of clock, control, 

address and data lines.  Precisely controlling the absolute and 

relative timing of these signals is critical due to the high switching 

rates that are used.  As explained in [7], the data (DQ) bus of a 

DDR2 module is separated into several smaller logical buses.  

Each of these buses also typically includes its own data strobe 

(DQS) line. Although the entire data bus theoretically operates off 

of a common clock, this global clock is only used for coarse-grain 

synchronization.  The precise alignment of the data in each of 

these smaller buses is performed with respect to its own DQS 

signal.  This smaller-scale DQ/DQS bundling is implemented to 

ease a variety design problems.  For example, only the board-level 

traces within each sub-bus need to be path-length matched, rather 

than all of the traces for the entire data bus. 

The lack of global bus synchronization means that when the 

FPGA receives incoming data from the DDR2 module, the data in 

each of the smaller DQ/DQS buses is potentially out of phase with 

respect to all of the others.  Thus, each of these buses needs to be 

individually re-aligned so that the data can be sampled by a single 

local clock on the FPGA.  As seen in Figure 2, the open-source 

memory controller [7] we used in our proof-of-concept system has 

on-board calibration and delay circuitry to perform this re-

alignment.  As seen in Figure 3, the controller determines the 

current phase delay on each DQ/DQS bus with respect to the 

FPGA clock by locating the rising edge of its DQS signal.  As 

seen in Figure 2, the DQ signals are sent through IDELAY blocks 

(fine-grain delay elements), so the calibration module can 

arbitrarily phase shift the input data by changing the setting of the 

IDELAY blocks.  As seen in Figure 3, the controller sets the 

IDELAY blocks so that the FPGA will sample the input data near 

the center of its valid window. 

One key characteristic of this alignment process is that, even 

during normal operation, the controller must periodically re-

evaluate the phase delay of the incoming DQ/DQS buses and 

adjust the IDELAY settings to maintain proper alignment with the 

FPGA clock.  This dynamic adjustment is required to handle 

factors that might change the signal timing during runtime, such 

as temperature (as discussed in Section 3). 

An external side-channel transmitter can also impose its own 

influence on the timing of I/O signals.  For example, Figure 4 

shows an RC circuit.  Increasing the capacitance on the output 

node increases the slew rate of the output signal.  Looking at the 

system from a digital standpoint, this delays the point at which the 

output crosses VH, the threshold voltage for an input logic “1”.  

The same holds true for the transition to VL, the threshold voltage 

for an input logic “0”.  Thus, when we add capacitance to a wire 

(at least up to some limit), it is perceived by any digital circuit that 

uses this signal as an input as an increase in timing skew. 

Applying this concept to the connection between an FPGA and a 

DDR2 module, a phase delay transmitter could modulate the 

capacitance on the board traces used by a DQ/DQS bus.  As 

shown in Figure 2, these changes in capacitance could be detected 

within the FPGA by monitoring the IDELAY settings.  As long as 

the added capacitance does not overwhelm the driver on the 

memory module, the conventional data transfer between the 

memory module and the FPGA would not be interrupted. 

4.2 Phase Delay Modulation Bandwidth 
When we look at the factors that determine the achievable 

bandwidth of a phase delay modulation communication channel, 

we can see parallels to our earlier analysis of temperature 

modulation channels.  For example, Eq. 9 is very similar to Eq. 2 

– i.e. the number of symbols that can be used (SPhase) is defined by 

the range of capacitance that can be added to an existing I/O trace 

by the transmitter (CRange) divided by the minimum capacitance 

that can be measured by the receiver, in the form of phase delay 
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(CΔmin).  However, unlike temperature modulation, phase delay 

communication must piggyback upon an existing I/O signal.  The 

characteristics of this signal heavily affect the transfer rate that 

can be achieved. 

The range of capacitance that can be used for phase delay 

communication (CRange) is determined by several factors: the  

frequency of the signal it is overlaid on and the physical attributes 

of the signal driver, the board-level trace, and the FPGA’s input 

pad.  If we model the connection between the driver on the DDR2 

module and the input pin of the FPGA as a simple RC circuit, we 

can illustrate the relationship between these terms.   

Eq. 10 is the basic voltage equation for an RC circuit (Eq. 6), 

solved for capacitance.  If we substitute a few variables into Eq. 

10, we get Eq. 11.  In this case, the maximum load capacitance  

that the memory module can drive without causing errors is CMax, 

or the sum of the maximum capacitance that can be added by the 

transmitter (CRange) and the inherent parasitic capacitance of the 

connection itself (CPara).  CMax is dependent upon the maximum 

timing skew that can be introduced (tΔmax), the drive voltage of the 

memory (Vdd), the voltage gap between a logic “1” and a logic “0” 

on the FPGA’s input pin (VH - VL), and the effective resistance of 

the memory module driver (RDrive).   

As shown in Eq. 12, the maximum allowable timing skew (tΔmax) 

is the minimum of two periods.  The first factor is ½ the period of 

the signal we are piggybacking upon (t1/2signal).  That is, if the 

input pad on the FPGA does not need any setup time, the input 

signal can reach VH just as the driver is switching from a logic “1” 

to a logic “0”.  On the other hand, the skew may be limited by 

some internal threshold built into the calibration logic within the 

communication controller (tΔThres).  For example, the DDR2 

controller that we use in our proof-of-concept system does sanity-

checking after the system is initially calibrated, somewhat limiting 

the maximum allowable skew after this point. 

Looking at Eq. 13, we can see that the minimum change in 

capacitance that can be detected by the receiver (CΔmin) is 

dependent upon (VH - VL), Vdd, and R, the same as Crange.  

However, it is also dependent upon the minimum phase delay that 

can be accurately measured (tΔmin).  As shown in Eq. 14, tΔmin is 

the minimum time quantum that the calibration system can 

implement (tminQuant) multiplied by an arbitrary constant noise 

margin factor (NPhase) times the maximum standard deviation in 

the phase delay when the capacitive load is held constant, as 

measured by the calibration circuitry (σPhase).  In most systems, 

tminQyuantum will be defined by the timing granularity of the I/O 

delay elements.  In the case of our proof-of-concept system, this is 

the minimum timestep of the IDELAY blocks.  (NPhase*σPhase) 

must be rounded up to the nearest integer because, by definition, 

we cannot detect or implement fractional tminQyuantum. 

Completing our bandwidth analysis, the maximum sampling 

frequency (FPhase) is equal to the rate at which recalibration is 

performed by the receiver.  The maximum number of 

communication channels (CPhase) is equal to the number of 

independently calibrated signals. 

5. PIN HIJACKING 
In this section we focus on side-channel communication 

mechanisms in which a transmitter inserts its own data onto an 

I/O wire that has already being used by another signal.  These 

communication techniques rely on the fact that there is often 

“dead time” in a signal or on a bus – i.e. time when the connection 

is not actively being used for communication.  A pin hijacking 

side-channel transmitter can listen for this idle time (or otherwise 

know when it will occur) and transmit its own data during this 

interval.  The side-channel can detect and capture the incoming 

data on the FPGA with its own receiver.  As with the timing 

modulation side-channels, this general concept can be applied on 

a macro or micro scale.  

As a simple example of micro-scale “idle time”, consider a typical 

connection between an external data source and a receiver inside 

an FPGA.  The source and destination must be synchronized, so 

the FPGA-based receiver might be designed to capture the input 

data on the rising edge of some common clock.  This signal likely 

wastes at least some portion of the intrinsic bandwidth of the 

underlying connection.  We say this because, unless the signal is 

running near the limit of the effective setup and hold times of the 

receiver, the receiver is “ignoring” the input for some portion of 

the clock period.  If the source driver and board-level traces had 

sufficient headroom to do so, the transmitter could send data on 

both the rising and falling edges of the clock.  Essentially, we can 

transmit in a double-data rate manner, but time-multiplex between 

the data from the original signal and data from an entirely new 

signal.  The original receiver would not perceive any difference, 

but we could add a new receiver to the FPGA that samples on the 

falling edge of the clock to capture the side-channel data.  This 

same general double-data rate concept can be extended to an N-

way data rate connection, only limited by the signaling capability 

of the physical connection. 

5.1 Case Study – I
2
C Interface Hijacking 

In this paper, we looked at a bus that displays very coarse-grain 

segments of idle time.  We built a pin hijacking communication 

side-channel on top of the dedicated I2C bus that connects the 

DDR2 memory controller on the FPGA with the Serial Presence 

Detect (SPD) chip on the memory module itself.  In addition to 

simply demonstrating the feasibility of a pin hijacking side-

channel, it also shows that such communication techniques do not 

require pure input data lines, but can be built from bi-directional 

pins as well. 

DDR2 memories generally contain an SPD EEPROM.  This chip 

stores timing information for the memory, including the 

maximum clock rate, CAS latency, required refresh rate, etc.  The 

SPD data is normally only accessed when the system is booting so 

that the FPGA can properly configure the memory controller.  

After this point, the I2C connection is typically left idle. 

The I2C protocol was first introduced by NXP [11].  The simplest 

I2C structure consists of a master node, a slave node and two open 

collector, bidirectional signals: the Serial Clock (SCL) line and 

the Serial Data (SDA) line.  The master node first initiates 

communication with the slave by actively driving the SCL and 



SDA lines.  It transmits control and address information, then 

relinquishes control of the SDA line.  The slave node listens for 

this data and, if it is responsible for the provided address, sends 

back an acknowledgement, actively driving SDA.  This 

establishes a connection between the master and slave until a stop 

signal is sent.  After the transfer is complete, the SCL and SDA 

lines return to a floating state.  Figure 5a shows the normal 

connection between the memory controller and the SPD module. 

Our side-channel connects an additional I2C master to the SDA 

and SCL lines and adds a small amount of logic to the memory 

controller that makes it first act as an I2C master (to obtain the 

timing information from the SPD module) and then as an I2C 

slave (to obtain data from the side-channel transmitter).  Figure 5b 

shows the modified system.  The side-channel transmitter merely 

waits for the memory controller to complete its transaction with 

the SPD module and go dormant.  After this point, the side-

channel transmitter can re-activate the bus and create a new 

connection between itself and the side-channel receiver.   

This same mechanism can be implemented on any standard 

interface that uses a high impedance state.  For example, the data 

pins of the DDR2 interface are generally tri-stated during normal 

operation.  During that time, it would be possible to set up a side-

channel with a very wide bus (64-bits or more) running at high 

speed.  As long as the side-channel has some sort of negotiation 

so that it can relinquish control of the bus when the rightful user 

wishes to read or write to the DDR2 memory, it will not impede 

normal operation.  Naturally, as the complexity of this sort of 

side-channel increases, so does the logic and power requirements 

for its implementation.  

5.2 Pin Hijacking Bandwidth 
As with any other digital signal, the number of symbols (SPinHijack) 

and channels (CPinHijack) of a pin-hijacking side-channel is 

determined by the characteristics of the wire or bus that it is based 

upon.  Similarly, so is the sampling rate.  However, unique to 

side-channel communication, we must take into account the 

fraction of time that the side-channel can actually communicate.  

As seen in Eq. 15, the effective sampling frequency (FPinHijack) is 

dictated by the maximum allowable clock rate of the basic 

channel (FChannel) multiplied by the fraction of time that the 

channel is typically unused (FracIdle). 

                               (15) 

6. Implementation and Results 
To demonstrate the feasibility of the three communication 

mechanisms introduced in this paper, we built proof-of-concept 

implementations.  All of the side-channel receivers were built on a 

Xilinx Virtex-5 XUPV5-LX110T prototype board.  All of the 

transmitters were built from materials easily obtained from an 

electronics parts supplier for less than roughly 100 USD. 

6.1 Temperature Modulation 
Our experimental thermal communication system is shown in 

Figure 6.  The external transmitter consists of a Peltier 

thermoelectric device, a standard benchtop power supply, and a 

water-cooled heatsink.  When a Peltier device is driven by a DC 

current, it actively pumps heat from one side of the device to the 

other.  When the Peltier device is cooling the FPGA, the amount 

of heat that it removes is proportional to the current provided by 

the power supply and how efficiently the heat is taken away from 

the other side of the device.  The water-cooled heatsink provides a  
 

 

Figure 5: SPD I2C connectivity 

 

Figure 6: Temperature modulation platform 

Table 1:  Experimentation variables 

# of stages 2, 3, 4, 5, 6, 8, 10, 14 and 20 

Physical Location 25 uniformly spaced locations 

Temperature -15 to 85°C, in 10° intervals 
 

 

Figure 7: N-Stage Ring Oscillator 

thermal mass into which the Peltier device can dump heat.  Peltier 

devices are sensitive to polarity and the transmitter can be 

switched from cooling the FPGA to heating it simply by reversing 

the power connection.  In this case, the mass of the heatsink 

provides a source of heat that can be driven into the FPGA.  

Although we used a water-cooled heatsink because it provided a 

very large thermal mass so that we could conduct extended 

heating and cooling experiments, a more conventional heatsink 

would likely be sufficient for a typical thermal transmitter. 

Based on our discussion in Section 3.2, how reliably we can 

measure the speed of a ring oscillator and how strongly it 

responds to changes in temperature play a key role in determining 

the achievable bandwidth of the system.  Thus, we performed a 

series of experiments to determine how the structure and location 

of the ring oscillator affects these considerations.   

As seen in Table 1, we varied the number of stages in the ring 

oscillator from 2 to 20.  As seen in Figure 7, the number of stages 

in the ring oscillator can be varied arbitrarily by using one inverter 

and inserting (N-1) buffers.  We also looked at the effect that 

location had on the ring oscillators.  To ensure the largest degree 

of consistency and the fastest operational speed, we hand-placed 

the ring logic as densely as possible and positioned the associated 

counter in an adjacent column.  Each CLB in the Virtex-5 

contains two slices, each slice contains four LUTs, and each of the 

LUTs can implement two independent one-input functions.  Thus, 

all of the ring oscillators that we looked at could fit into a  
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Figure 8: Standard deviation, thermal response and standard 

deviation/thermal response as a function of the 

# of ring oscillator stages 

Table 2:  Characteristics of top 3 ring oscillator candidates 

# Stages 20 10 8 

Avg. RO Freq @ 25°C (MHz) 62.06 119.9 142.0 

σTherm (MHz) 0.46 0.55 0.49 

Avg. SlopeTherm (MHz/°C) 0.037 0.073 0.085 

TΔMin (°C for NTherm=2) 0.93 1.09 0.97 

FΔCount (KHz for NTherm=2) 34.3 79.6 82.2 

FΔTemp (Hz for NTherm=2) 3.48 2.89 3.31 

BTherm (bits/sec) 3.48 2.89 3.31 
 

Table 3:  Resource requirements of thermal receiver  

Slices* 117 0.6% of LX110T 

6-Input LUTs* 295 0.4% of LX110T 

Registers 246 0.4% of LX110T 

PLL 1 
16% of LX110T  (assuming an 

independent PLL is used) 
*Assuming an 8-stage ring oscillator 

maximum of two CLBs, not including the counter.  To determine 

if there was any regional variation in performance across the chip 

(either due to manufacturing variation or a possible temperature 

gradient), we implemented 25 independent ring oscillator/counter 

pairs spread uniformly across the die in a 5x5 pattern.  The 

components within each of these instrumentation rigs had the 

same relative placement and routing. 

As seen in Figure 1, the duration that the ring oscillator counter 

runs between samples is determined by the reference clock 

frequency of the onboard PLL and the constant value used by the 

reference counter to trigger the sampling logic.  We used a 200 

MHz reference clock sampling every 65,535 (0xFFFF) clock 

cycles in our testing.  We measured each different type of ring 

oscillator at each of the 25 locations 4,096 times at temperatures 

between -15°C and 85°C. 

Even when comparing very preliminary ring oscillator testing 

results with an estimate based upon reasonable values for R, C, 

and P2, it is immediately clear that the sampling rate of the system 

is heavily dominated by how quickly we can change the 

temperature of the FPGA (FΔTemp).  As we will discuss later, while 

the ring oscillators can detect temperature changes on the order of 

                                                                 

2 From the information in [15] and [16], we estimate R, C, and P 

as 0.13 °C/W, 8.13 J/°C, 30 W, respectively.  The thermal 

capacitance is calculated assuming that the specific heat and 

density of the IC package are roughly equal to that of solid Al. 

1°C at a sampling rate on the order of kilohertz, the Peltier device 

requires hundreds of milliseconds to transfer enough heat into or 

out of the FPGA to discernibly change the temperature.  It is 

unlikely that the “drive capability” of the thermal transmitter will 

change drastically across smaller and larger devices.  This is 

because both the power that can be absorbed or emitted by the 

Peltier device and the thermal capacitance of the FPGA plus 

packaging are roughly proportional to the surface area of the chip. 

Similarly, the thermal resistance of the FPGA/Peltier interface is 

roughly inversely proportional to the surface area of the chip.  

Thus, looking at Eq. 8, the (R*C) and (P*R) terms will largely 

remain constant regardless of the size of the FPGA package. 

Since we now know that FTherm will be determined by FΔTemp, we 

can consider the relationship between the number of symbols 

(log2(STherm)) we have and the sampling frequency – i.e. we can 

try to maximize (log2(STherm) * FTherm).  While log2(STherm) grows 

linearly when TRange is doubled (assuming that TΔMin is fixed for a 

given ring oscillator), according to Eq. 8 FΔTemp shrinks super-

linearly when TΔMax is doubled.  Thus, the bandwidth of the 

system is highest when we minimize the maximum change in 

temperature used for communication.  This means that TΔMax 

should equal TΔMin.  By extension, this means that we should only 

use two symbols for communication (+/-TΔMin) and we should 

prioritize ring oscillators with the smallest variability and the 

largest thermal response (minimize σTherm/SlopeTherm). 

In Figure 8, we graph the results of our thermal modulation 

experiments.  The vertical axis represents either the maximum 

standard deviation of the ring oscillator speed across all 11 

temperatures and all 25 locations, the average thermal response 

(slope) across all locations, or the maximum standard deviation 

divided by the average slope, respective to the corresponding 

green, blue and red lines.  The horizontal axis represents the 

various ring topologies in increasing order of the number of 

stages.  Table 2 shows the various characteristics of the three ring 

oscillators with the smallest TΔMin.  We use these experimentally 

determined TΔMin values to calculate FΔTemp and, assuming that 

STherm and CTherm both equal one, the potential achievable 

bandwidth of a communication channel that uses one of these 

rings (BTherm).  

Looking at these results, we can draw several conclusions.  First, 

the variability in the speed ring oscillators (σTherm) decreases as the 

size of the ring oscillator grows.  This is likely because more 

stages allows the random jitter that is present in the delay of each 

individual stage to be averaged, creating a more uniform period 

overall.  Second, the thermal response (SlopeTherm) also decreases 

as a function of the number of stages.  This is somewhat 

surprising, although it may be caused by the fact that the delay 

along larger rings contains a greater fraction of interconnect to 

logic delay – i.e. the interconnect resources may be far less 

sensitive to temperature as compared to the LUTs.  No matter the 

cause of this phenomenon, since both σTherm and SlopeTherm 

decrease as a function of the number of oscillator stages, TΔMin is 

roughly constant when more than about eight stages are used.  A 

ring oscillator with eight stages is particularly attractive because it 

can be implemented entirely within a single Virtex-5 slice.  Since 

this represents the best combination of size and minimum TΔMin, 

we use this ring to report the resource requirements shown in  

Table 3. 

Lastly, unlike the FPGA-based thermometer systems in [14] and 

[17], none of the equations from Eq. 2 to Eq. 8 contain a reference 

to the absolute intrinsic operating frequency of the ring oscillator.  
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We are only concerned with the change in frequency as a function 

of temperature, or SlopeTherm.  If we combine this with the fact that 

we only use symbols represented by +/-TΔMin (and thus can use 

conservative positive and negative thresholds), we eliminate the 

need for chip-specific calibration.  Although larger noise margins 

may affect the achievable bandwidth to a certain degree, it is 

likely that very approximate testing can determine a reasonable 

range for SlopeTherm that can be used across an entire device 

family or possibly even all chips made with a given fabrication 

process. 

6.2 Phase Modulation 
The XUPV5 board has one DDR2 SO-DIMM socket with eight 

DQ/DQS sub-buses.  Every sub-bus contains one DQS signal that 

provides synchronization across eight DQ data signals.  Our 

proof-of-concept phase delay transmitter only adds capacitance to 

the DQS lines rather than all the signals in the DQ/DQS buses.  

This still creates perceived phase shift across the entire bus 

because, as discussed in Section 4, the calibration mechanism in 

the memory controller only examines the DQS signal when 

determining the phase delay of the bus.  We only modulate the 

capacitance on the DQS signals because it greatly simplifies the 

physical implementation of the transmitter.  Although adding 

delay unsymmetrically alters the strobe/data signal alignment, we 

found that we could add almost ¼ of a clock period of phase delay 

without causing read errors.  This is because, as shown in Figure 

3, the effective valid window for the data driven by the DDR2 

module is fairly wide, even when the memory interface is running 

at 200MHz (DDR2-800). 

Each DQS strobe is actually a differential signal that provides 

more reliable high-speed communication: DQS and its logical 

complement, DQS#.  As shown in Figure 9, there are two 

different capacitor topologies that can be used to add delay to the 

strobe signal.  On the left we show a “differential-mode” 

connection with two capacitors separately connecting DQS and 

DQS# to ground.  On the right we show a “common-mode” 

connection with one capacitor connected between the drivers.  In 

our early testing, we found that a single capacitor connected 

between the differential lines provided a much more significant 

loading effect as compared to the dual capacitor arrangement.  

This phenomenon is due to the fact that the common mode 

connection results in two active drivers pulling in opposite 

directions at all times, essentially doubling the change in voltage 

that the capacitor experiences during each transition.   

The “common-mode” connection topology also had an important 

advantage over the “differential-mode” technique – it simplified 

the construction of the phase delay transmitter because we did not 

have to build a ground plane and did not have to make as many 

connections to the SO-DIMM.  As we will discuss later, 

simplifying the structure of the transmitter greatly reduced the 

amount of error introduced into the system. 

Figure 10 shows our experimental phase modulation 

communication setup.  We built a phase delay transmitter by 

mounting a small perfboard on top of the DDR2 SO-DIMM on 

our FPGA board.  This allowed us to attach sockets to the DQS 

and DQS# pins of the memory module.  The red circles in Figure 

10 highlight the small wires soldered between the SO-DIMM and 

the perf-board.  We used these sockets to modulate the capacitive 

load on the strobe lines by manually swapping in and out discrete 

ceramic capacitors with different values.  As mentioned earlier, 

the effect of the attaching these various capacitors was measured 
 

 

Figure 9: Two capacitor topologies 

 

Figure 10: Phase modulation platform 

 
Figure 11: Phase shift as a function of capacitance 

Table 4:  Characteristics of phase modulation prototype 

σPhase 0.5771 IDELAY units (45.1 ps) 

tΔMin (NPhase=2) 3 IDELAY units (234.4 ps) 

tΔMax* 12 IDELAY units (937.5 ps) 

SPhase 2 

FPhase 1KHz 
Assuming that the system is not limited by the accuracy of the transmitter 
*Determined graphically 

Table 5:  Resource requirements of phase modulation receiver  

Slices 68 0.4% of LX110T 

6-Input LUTs 72 0.1% of LX110T 

Registers 132 0.2% of LX110T 
 

by looking at the change in IDELAY settings from the calibration 

circuitry in the FPGA. 

The results of our testing are shown in Figure 11 and Table 4.  

The phase shift detected by the calibration module was measured 

1,000 times on each DQS signal for each capacitance value.  We 

only experimented using five of the eight DQS strobes (0, 1, 2, 4, 

and 6) on the DDR2 memory.  This is because these signals were 

simply more readily accessible.  The memory slot on the XUPV5 

board is mounted parallel to the system board and the I/O pins for 

these strobe signals were located on the exposed side of the SO-

DIMM rather than the side facing the main PCB. 

Looking at Figure 11, we see that the phase shift increases 

approximately linearly as a function of the applied capacitance 

(notice, as the memory controller perceives more intrinsic phase 

delay on the strobe line, it shifts the data less using the IDELAY 
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blocks to achieve the same total phase delay).  This linear 

relationship is predicted by Eq. 10, if we solve for time rather than 

capacitance.  This confirmation gives us confidence that we can 

use the data from our experiments to determine relative trends 

between capacitance and phase shift.  That said, we did not apply 

this data directly to Eq. 9, Eq. 11, and Eq. 13 (the equations that 

involve specific values for the capacitance that is added to a 

signal).  Our uncertainty regarding plugging our experimental data 

directly into these equations is caused by the fact that there is a 

large and somewhat unpredictable difference between the 

capacitance that is physically applied to a wire in our 

experimental setup and the capacitance that is actually perceived 

by the DDR2 module and the FPGA. 

The effective capacitive load on the DDR2 drivers is heavily 

affected by the length of the wires used to connect the capacitors 

to the board-level traces.  This is because, due to the high clock 

frequency of the DDR2 interface, wire inductance is a significant 

concern.  In our initial testing, we found that leads as short as 

0.75” created enough inductance to completely isolate the 

capacitors from the board traces.  That is, no matter how large a 

capacitor we applied, there was no significant change in the signal 

phase.  In our prototype transmitter design, the wires between the 

SO-DIMM and the perf-board need to be at least 0.25” for 

mechanical reasons.  Furthermore, due to the fact it was 

constructed by hand, there is visible variation in the length of 

these connections.  Put together, these factors make it very 

difficult to determine exactly how much capacitance is actually 

perceived by the memory module and the FPGA.  A full 

implementation of a phase modulation communication system 

would need to address inductance.  Precise capacitors, a fully 

electronic switching network, and a more elegant method of 

attachment would be helpful to achieve consistent communication 

and maximum bandwidth.  

Despite our uncertainty regarding the exact applied capacitance, 

we can still use the results from our experiments to gain insight 

into the bandwidth potential of this approach – at the very least, 

this system represents a lower bound.  As seen in Table 4, the 

maximum standard deviation in the phase delay measured by the 

memory controller (σPhase) across all of our experiments was 0.58 

IDELAY units (one IDELAY unit is  tminQuantum, or 78.125ps).  If 

we assume NPhase equals three, by Eq. 14 the minimum phase 

delay that can be accurately measured (tΔmin) equals (3* tminQuantum) 

or 234.4ps.  Thus, looking at Figure 11, we are able to clearly 

distinguish at least two symbols: applying or not applying a 10pF 

capacitor.  Given two symbols of data per DQ/DQS bus and eight 

pairs of DQS lines3 in the test system, (log2(SPhase) * CPhase) equals 

8 bits. FPhase is equal to the recalibration rate of the memory 

controller.  The default setting in the memory controller from [7] 

is 1 KHz.  Thus, the maximum bandwidth into the chip would be 

8 Kbits per second.  Table 5 shows the resource requirements of 

the phase modulation receiver.  

6.3 Pin Hijacking 
Our proof-of concept implementation of a pin hijacking side-

channel is shown in Figure 12.   As discussed earlier, a 

conventional I2C slave is on the SPD chip on the DDR2 module.  

The dual-mode I2C master-turned-slave for our side-channel 

receiver is instantiated in the memory controller on the FPGA. 
 

                                                                 

3 A DDR2 DIMM (rather than SO-DIMM) has 16 DQ/DQS 

buses.  DIMMs with ECC add an additional two channels. 

 

Figure 12: Pin hijacking platform 

Table 6:  Resource requirements of pin hijacking receiver  

Slices 90 0.5% of LX110T 

6-Input LUTs 162 0.2% of LX110T 

Registers 86 0.1% of LX110T 
 

These two modules communicate via the onboard traces of the 

XUPV5 board. 

Although the side-channel transmitter I2C master would normally 

be implemented on a separate device, for simplicity sake we built 

it on the same FPGA as the rest of the system.  The I/O signals for 

the side-channel transmitter are fed through two GPIO pins of the 

XUPV5 board.  These are the red and yellow wires in Figure 12 

connecting the GPIO pins on the bottom side of the board with the 

DDR2 module board traces on the top side.  We tapped into the 

I2C signals of the DDR2 module using the same perfboard and 

socket technique described in Section 6.2.  These connections are 

highlighted with the blue circle in Figure 10. 

The number of symbols (SPinHijack) for an I2C connection is two – 

it is inherently binary since there is only one data wire, SDA.  As 

per the official specification of I2C, FChannel is between 100 KHz 

and 3.4 MHz, although modern devices are generally capable of 

communicating at a faster rate.  If the FPGA only queries the SPD 

timing data when the system is booted, the active time of this 

connection is amortized to zero.  Thus, FracIdle  is nearly one.  

Lastly, since we only have one I2C bus, the number of channels 

(CPinHijack) is one.  Thus, the maximum achievable bandwidth of 

our side-channel (BPinHijack) equals 3.4 Mbits per second.  The 

resource requirements for our pin hijacking side-channel receiver 

are shown in Table 6. 

Overall, the structure of the I2C interface helps us implement this 

type of signal hijacking in two ways.  First, the protocol has a 

built-in notion of addressing, so we can send data between the 

side-channel transmitter and receiver without activating other I2C 

slaves that might be attached to the bus.  Second, the protocol 

explicitly shuts out other I2C devices once a connection has been 

established, until the stop signal is sent.  This gives us the ability 

to transfer an infinite-sized payload without violating the bus 

protocol. 

7. Future Work 
Although we have demonstrated the feasibility of using speed 

modulation, timing modulation and pin-hijacking to communicate 

with an FPGA, there are still many issues that we would like to 

investigate looking forward. 

First, our prototype implementations showed that these 

communication mechanisms can transmit and receive a coherent 

signal.  However, we have not addressed the issues that surround 

how we might encode real data.  For example, our thermal 

modulation uses two symbols for communication, an increase or 

decrease in temperature.  However, we cannot use direct binary 

translation to encode data, because this cannot handle an input 



data stream with an unbalanced number of zeros and ones.  A 

straightforward technique to avoid runaway temperatures would 

be a return-to-zero encoding scheme, but might there be a more 

efficient solution? 

We would also like to look at how these communication 

techniques might interact with each other.  On one hand, different 

methods of information transfer might interact negatively with 

one another.  For example, variations in temperature might change 

the real-world noise margins for a communication channel that 

uses phase modulation.  On the other hand, combining different 

approaches into a hybrid mechanism may significantly increase 

the achievable bandwidth and/or the difficulty in detecting that a 

side-channel receiver is present. 

Along the same lines, we touched on the general concept of noise 

and how it could be introduced into the system by any number of 

factors – even simple things like the length of certain wires might 

be important.  Thus, communication errors are bound to occur.  

We would like to look at what kinds of error correction might best 

suit our side-channel communication mechanisms. 

Furthermore, much more extensive testing is required to 

determine the real-world operational limitations of these side-

channel mechanisms.  For example, our thermal receiver was not 

tested alongside a real working circuit.  While we assumed that 

the heat created by most host circuits would be relatively constant 

on the time-scale used by our thermal communication system (and 

thus would be a “DC” component to the temperature modulation), 

is there anything that can be done to lower the potential influence 

of the rest of the system?  Could an active feedback thermal 

transmitter help? 

Lastly, in this paper we considered the difficulties in creating 

side-channels.  However, we should also look at how we might 

break them.  For example, since side-channels might be used for 

nefarious purposes such as leaking private information, what 

countermeasures might be deployed to protect users?  On the 

other hand, if we use these techniques to watermark our IP, how 

might pirates try to obfuscate these identifiers? 

8. Conclusions 
It is unclear whether side-channel communication represents a 

benefit or a liability to system developers and end users.  While 

side-channels have been classically profiled as a security risk, they 

have the potential to add new unique capabilities to critical FPGA 

concerns.  Either way, though, the increasing popularity and the 

inherent flexibility of FPGAs puts them at the forefront of this 

discussion.  It is important that we expand our understanding of 

side-channels and explore potential mechanisms that might be used 

to implement them. 

In this paper we introduced three novel side-channel 

communication mechanisms: speed modulation, timing modulation 

and pin hijacking.  We used these approaches to highlight an aspect 

of side-channels that, to the best of our knowledge, has been 

previously unexplored: the potential of an FPGA-based side-

channel receiver.  A side-channel receiver is significant because, 

taken together with prior work on how FPGAs can emit side-

channel information, it enables two-way communication. 

Our experiments on prototype side-channel receivers demonstrated 

that we could achieve reliable and, potentially, high bandwidth 

communication with minimal overhead.  While there are still many 

issues we would like to address, these results prove that reliable bi-

directional side-channel communication is possible.  This leads the 

way to practical white-hat applications such as post-fabrication bug 

fixes and IP watermarking.  However, it also enables powerful 

black-hat attacks such as conditionally triggered covert channels. 
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