
FPGA Side-Channel Receivers

Ji Sun
University of Alberta

Edmonton, AB, Canada

ji.sun@ualberta.ca

Ray Bittner
Microsoft Research
Redmond, WA, USA

raybit@microsoft.com

Ken Eguro
Microsoft Research
Redmond, WA, USA

eguro@microsoft.com

ABSTRACT

The popularity of FPGAs is rapidly growing due to the unique

advantages that they offer. However, their distinctive features

also raise new questions concerning the security and

communication capabilities of an FPGA-based hardware platform.

In this paper, we explore some of the limits of FPGA side-channel

communication. Specifically, we identify a previously

unexplored capability that significantly increases both the

potential benefits and risks associated with side-channel

communication on an FPGA: an in-device receiver. We designed

and implemented three new communication mechanisms: speed

modulation, timing modulation and pin hijacking. These non-

traditional interfacing techniques have the potential to provide

reliable communication with an estimated maximum bandwidth of

3.3 bit/sec, 8 Kbits/sec, and 3.4 Mbits/sec, respectively.

Categories and Subject Descriptors

B.4.2 [Input/Output and Data Communications]: Input/Output

Devices – channels and controllers

General Terms

Design, Security.

Keywords

FPGA, side-channel receiver, thermal, phase shift, DDR2, I2C.

1. INTRODUCTION
Prior work on side-channel communication has primarily focused

on side-channel attacks [2][4][5][8][9][10]. Side-channel attacks

gain information from systems that are assumed to be secure.

However, these exploits do not rely on vulnerabilities in the

frontline security protocols that are used, but rather on the fact

that systems may emanate information via mechanisms that

designers may not anticipate. For example, hackers may be able

to extract the key used by an encryption chip simply by closely

monitoring the power consumption.

That said, centering the discussion on side-channels as an

unintentional source of information does not address two

important considerations. First, system developers may purposely

want to implement side-channel communication. For instance,

ICs are often pin-limited and a normally out-of-band

communication technique could add valuable I/O capacity [18].

Similarly, such unconventional communication vectors may be

able to fix board-level design errors or defects in I/O resources

after fabrication and assembly. Side-channels may even be used

as a latent signature to watermark a system [3][6].

The second issue that should be considered is the possibility of a

side-channel receiver. Although many prior research projects

have investigated the information that may leave a device, to the

best of our knowledge, no prior work has looked at feasible side-

channel mechanisms by which information may enter a device.

Bi-directional communication is not only necessary for side-

channels to become generally applicable to the positive (white-

hat) uses previously mentioned, we must also consider its impact

on the potential negative (black-hat) uses. For example, Trojan

covert channels are side-channels created by system developers to

victimize end users [1][10]. Although an end user might believe

that a system is only transmitting approved information (because

they can monitor the in-band communications), the system may

also be sending private data via a side-channel. The addition of a

side-channel receiver would enable much more sophisticated and

stealthy attacks. For instance, transmissions that are conditionally

triggered would be far more difficult to detect than those that are

either always on or statically triggered.

The mechanisms and implications of side-channel communication

are particularly important for the FPGA community. This is

because the inherent reprogrammability of FPGAs adds a new

opportunity to use, or to fall victim to, a side-channel. For

example, although the board-level design of an FPGA-based

system may be fixed early in the development cycle, the circuit

within the FPGA itself can be updated at any point. Thus, as

compared to an ASIC-based system, it is easier to take advantage

of the I/O and post-fabrication advantages offered by side-channel

communication. On the other hand, reprogrammability also may

make FPGAs more vulnerable than ASICs to attack. For instance,

a Trojan covert channel does not have to be inserted at the level of

the transistor layout, it can be added to a system firmware update.

While FPGAs offer an entry point for side-channel

communication late in the development process, they also present

their own challenges to actually implementing a functional

system. Unlike ASICs, that can be customized to offer a wide

range of different and finely-tuned structures (including arbitrary

analog circuits), FPGAs have very specific pre-defined resources.

These structures either may not be customizable or may only be

modified within a given range / in specific increments.

In this paper, we investigate techniques to communicate between

an external transmitter and an FPGA-based side-channel receiver.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

FPGA’11, February 27–March 1, 2011, Monterey, California, USA.
Copyright 2011 ACM 978-1-4503-0554-9/11/02...$10.00.

We present three general mechanisms of communication and

demonstrate specific proof-of-concept implementations for each.

Highlighted in Section 3, speed modulation techniques use a

transmitter that can change the intrinsic operational speed of

components inside an FPGA. The focus of Section 4, timing

modulation approaches communicate by modifying the delay of

an FPGA’s I/O signals. In Section 5, we discuss pin hijacking

techniques in which we co-opt a wire already in use by an FPGA

I/O signal to carry additional side-channel data. We also discuss

analytical models for their respective bandwidth to provide some

measure of the associated functionality or risk.

2. SIDE-CHANNEL EVALUATION
Although we will demonstrate specific working examples of

FPGA-based side-channel receivers, we would also like to get

some idea of their more general potential. The viability of any

particular side-channel technique will largely hinge upon three

factors: the difficulty or cost associated with building the external

transmitter, the area required or constraints imposed building the

receiver in the FPGA, and the maximum transfer rate that the

channel can achieve.

Unfortunately, the cost and convenience of implementing a

transmitter or receiver is somewhat subjective and likely depends

upon the details of the specific use-case. Thus, while we can

report factors such as the resource requirements of our proof-of-

concept implementations, the first two considerations that we

mentioned above are largely qualitative. On the other hand, we

can analyze the data bandwidth potential much more objectively.

As shown in Eq. 1, the maximum transfer rate in bits per second

of a given communication mechanism (B) is limited by the

number of unique symbols we can express (S), the sampling rate

of the technique (F), and the number of independent channels that

we can create (C). As we describe each of the communication

mechanisms in the following sections, we will also discuss how S,

F, and C are affected by the specific characteristics of the various

approaches.

 (1)

3. SPEED MODULATION
In this section, we focus on communication side-channels in

which a transmitter causes changes in the speed of the underlying

logic inside an FPGA-based receiver. One mechanism that such

approaches can use is that the performance of any integrated

circuit is affected by three factors: process, voltage, and

temperature (PVT). Although it may be difficult or impossible to

externally modulate the technical process parameters and physical

structures created on an FPGA during manufacturing, it is

relatively easy to manipulate the supply voltage and temperature

of the chip.

Intentionally heating or cooling the chip is significant because, in

typical operational ranges, there is an inverse relationship between

the temperature and propagation delay of a transistor. Increased

temperature decreases the mobility of electrons and holes. This

results in the reduction of current, which in turn increase RC

delay. Similarly, changing the supply voltage of a chip also

changes the propagation delay. This is because, in traditional

CMOS circuitry, the supply voltage determines the maximum

drain-source voltage (Vds). Increasing Vds increases the switching

current, which, in turn, reduces RC delay.

Figure 1: Block diagram of temperature modulation platform

3.1 Case Study – Temperature Modulation
In this paper, we concentrate on temperature modulation.

Although theoretically either voltage or temperature could be used

for communication, in practice it is likely easier to build a

temperature transmitter. This is for two reasons. First, it may be

non-trivial to find or build a power system that can actively

modulate the voltage provided to the FPGA with sufficient

accuracy. Furthermore, such a system would probably require

replacing or modifying the existing voltage regulators typically

found on FPGA system boards. As will be shown later, the

thermal transmitter we built does not require any precision

equipment to operate and any modifications made to the FPGA

board itself are easily and fully reversible.

To implement a temperature-based side-channel, we borrow a

concept from [14] and [17] and use a ring oscillator to detect

changes in the temperature of the FPGA. Figure 1 shows a block

diagram of our initial testing platform. A ring oscillator provides

the clock for a counter (right side of Figure 1). A separate

counter, driven from a known frequency clock (left side of Figure

1), is used to sample the ring oscillator counter at a fixed time

interval. As the speed of the ring oscillator increases or decreases

in response to temperature, the sampled count will

correspondingly increase or decrease. These sampled values can

be tracked over time to detect changes in temperature.

While the frequency of any given ring oscillator depends upon

temperature, how strongly and reliably it reacts to changes in

temperature depends upon several factors: the physical

characteristics of the FPGA, the number of stages in the oscillator,

the relative placement/routing of the LUTs used, and the physical

location of the oscillator within the FPGA. As discussed in [14]

and [17], these dependencies mean that painstaking chip-specific

profiling and calibration is required before ring oscillators can be

used as accurate thermometers. However, such calibration is not

necessary in our case when temperature is used as a means of

communication. This is because we can use changes in

temperature rather than absolute values to denote symbols. As

will be shown later, this only requires very rough device family-

level profiling and calibration.

3.2 Temperature Modulation Bandwidth
As mentioned earlier, the maximum transfer rate that any

communication mechanism can achieve is related to the number

of communication symbols used (S), the sampling frequency (F),

and the number of independent channels implemented (C).

In the case of temperature modulation, STherm is the number of

distinct changes in temperature level used for communication. If

we assume that an external transmitter can equally heat or cool the

FPGA, we can assign half of the symbols to increases in

temperature and half to decreases in temperature. As shown in

Eq. 2, the maximum number of usable symbols is defined by the

On-Chip
PLL

PLL
Counter

Constant
Sampling
Interval

Ring
Oscillator

Ring
Oscillator
Counter

ChipScope

 ⁄ (2)

 ⁄ (3)

 (4)

 (5)

 (⁄) (6)

 (⁄) (7)

 ((

 ⁄))

 (8)

operational temperature range that is used (TRange) divided by the

minimum change in temperature that the receiver can reliably

detect (TΔMin).
1 As we will show later, the relationship between

temperature and ring oscillator speed is highly linear. Thus, the

symbols can be evenly spaced within the temperature range used

for communication.

As shown in Eq. 3, the minimum discernable temperature change

(TΔMin) is defined by the minimum change in ring oscillator speed

we can reliably detect divided by how strongly the ring oscillator

responds to changes in temperature. The minimum discernable

change in ring oscillator speed is related to the measurement error

in the system (NTherm*σTherm). This is an arbitrary constant noise

margin factor multiplied by the maximum standard deviation in

the speed of the ring oscillator when the temperature is held

constant at any given point in the operational range, as measured

by the sampled ring oscillator counter. SlopeTherm is the average

change in ring oscillator speed per degree.

As shown in Eq. 4, the maximum sampling frequency (FTherm) is

determined by the smaller of two rates. The first term in Eq. 4

(FΔCount) is the rate at which we can accurately detect changes in

temperature – i.e. how long does the ring oscillator counter have

to run before we can reliably discern if there was a change in

temperature? The second term in Eq. 4 (FΔTemp) is the rate at

which we can change the temperature of the FPGA itself – i.e.

considering physical factors, how quickly can heat flow between

the transmitter and the packaged FPGA core?

Shown in Eq. 5, the rate at which we can detect temperature

changes (FΔCount) is equal to the minimum change in ring

oscillator speed we expect to see between different symbols. That

is, if we want to detect an X Hz change in the frequency of a ring

oscillator, the counter must run for 1/X seconds for the difference

in the sampled count to be at least one. Thus, we will be able to

take a new measurement every 1/X seconds, or at a rate of X Hz.

The rate at which we can change the temperature of the FPGA

(FΔTemp) is determined by how quickly the transmitter can

dissipate heat into or remove heat from the FPGA. As described

in [12], the heat transfer between an IC and an attached heatsink

can be modeled by making an equivalent “thermal RC circuit”.

By investigating the impulse response of this circuit, we can

predict the temperature response of the FPGA as the thermal

transmitter cycles, either heating or cooling.

1 The accuracy, switching speed, and output quantization of the

transmitter will also affect real-world performance. However, for

our analysis will assume that these issues will not be the limiting

factor, given a well-designed transmitter.

Looking at Eq. 6 and Eq.7, we can see the similarities between the

more familiar electrical RC equation and the thermal RC equation,

respectively. In Eq.7, R is the thermal resistance of the FPGA

package and the interface between the thermal transmitter and the

FPGA package. C is the thermal capacitance of the FPGA and its

package. P is the power that the transmitter can either generate or

absorb. TΔMax is the maximum change in temperature

corresponding to any symbol used for communication.

Rearranging this equation, we can solve for time and determine

the minimum time required for the transmitter to overcome the

FPGA’s thermal inertia and raise or lower the temperature by the

maximum necessary amount. Eq. 8 is Eq. 7 solved for the inverse

of the time period.

Finally, the maximum number of communication channels

(CTherm) equals the number of independent temperature zones we

can create on the FPGA. For a variety of practical and

mechanical reasons, we will assume that subdividing the FPGA is

too difficult and CTherm equals one.

4. TIMING MODULATION
In this section, we focus on side-channel communication

mechanisms in which a transmitter overlays its own data on top of

an unrelated FPGA I/O signal. This is accomplished by phase

shifting the signal or changing its delay. These small differences

in signal timing are interpreted by an FPGA-based receiver,

separately from the data in the conventional signal that it is

piggybacking upon. One potential mechanism that timing

modulation side-channels can exploit is a system-level design

characteristic found in many devices: timing adaptive or self-

aligning I/O. This key feature is included by developers when

they cannot be certain, at design time, of the delay of the physical

transmission pathway used to carry a signal.

This same general timing issue manifests itself in many different

ways. For example, the uncertainty in delay could be at a macro

or micro scale. Similarly, the communication could involve either

round-trip request/acknowledgements or purely uni-directional

communication. Regardless of the specifics, though, all of these

situations require two features that also enable side-channel

communication. The first characteristic is that designers must use

I/O protocols that allow for a range of different signal delays.

This creates room for a side-channel transmitter to modulate the

delay for communication, on top of whatever data the signal is

carrying in the more conventional sense. Second, these I/O

protocols must include calibration or alignment capabilities to

identify the amount of delay currently present in a signal. This

evaluation gives a side-channel receiver a direct way to extract the

time-based information.

As a simple example of uncertainty in coarse-grain two-way

communication, consider a typical client/server network transfer.

Because a client PC cannot predict the network latency for any

packet to or from any server, the protocol must keep track of

request flight times and allow for a fairly wide time-out window.

Any network node between the client and server (or the server

itself) could communicate with a latent receiver on the client by

purposely adding delay or reordering packets to change the arrival

time of the data at the client, beyond the variations that occur in

the nominal case. Notice that this modulation can be performed

on either outgoing requests or incoming acknowledgments. As

long as the total round-trip delay of the data remains within legal

bounds, the transfer is otherwise unaffected (we consider

introducing errors an entirely different class of communication).

Figure 2: Phase delay detection/re-alignment and phase delay

modulation receiver

 Figure 3: Aligning DQ using DQS and DQ/DQS misalignment

Figure 4: Slew rate with respect to trace capacitance

4.1 Case Study – Phase Delay Modulation
In this paper, we explore the possibility of fine-grain timing

modulation implemented on high speed communication lines.

Specifically, we add a delay-based signal to a DDR2 memory

interface. We exploit a feature built into the interface that is

intended to allow circuit designers to compensate for minor

differences in timing due to board-level constraints,

manufacturing variability, or unpredictable factors that change

over time.

A typical DDR2 memory interface consists of clock, control,

address and data lines. Precisely controlling the absolute and

relative timing of these signals is critical due to the high switching

rates that are used. As explained in [7], the data (DQ) bus of a

DDR2 module is separated into several smaller logical buses.

Each of these buses also typically includes its own data strobe

(DQS) line. Although the entire data bus theoretically operates off

of a common clock, this global clock is only used for coarse-grain

synchronization. The precise alignment of the data in each of

these smaller buses is performed with respect to its own DQS

signal. This smaller-scale DQ/DQS bundling is implemented to

ease a variety design problems. For example, only the board-level

traces within each sub-bus need to be path-length matched, rather

than all of the traces for the entire data bus.

The lack of global bus synchronization means that when the

FPGA receives incoming data from the DDR2 module, the data in

each of the smaller DQ/DQS buses is potentially out of phase with

respect to all of the others. Thus, each of these buses needs to be

individually re-aligned so that the data can be sampled by a single

local clock on the FPGA. As seen in Figure 2, the open-source

memory controller [7] we used in our proof-of-concept system has

on-board calibration and delay circuitry to perform this re-

alignment. As seen in Figure 3, the controller determines the

current phase delay on each DQ/DQS bus with respect to the

FPGA clock by locating the rising edge of its DQS signal. As

seen in Figure 2, the DQ signals are sent through IDELAY blocks

(fine-grain delay elements), so the calibration module can

arbitrarily phase shift the input data by changing the setting of the

IDELAY blocks. As seen in Figure 3, the controller sets the

IDELAY blocks so that the FPGA will sample the input data near

the center of its valid window.

One key characteristic of this alignment process is that, even

during normal operation, the controller must periodically re-

evaluate the phase delay of the incoming DQ/DQS buses and

adjust the IDELAY settings to maintain proper alignment with the

FPGA clock. This dynamic adjustment is required to handle

factors that might change the signal timing during runtime, such

as temperature (as discussed in Section 3).

An external side-channel transmitter can also impose its own

influence on the timing of I/O signals. For example, Figure 4

shows an RC circuit. Increasing the capacitance on the output

node increases the slew rate of the output signal. Looking at the

system from a digital standpoint, this delays the point at which the

output crosses VH, the threshold voltage for an input logic “1”.

The same holds true for the transition to VL, the threshold voltage

for an input logic “0”. Thus, when we add capacitance to a wire

(at least up to some limit), it is perceived by any digital circuit that

uses this signal as an input as an increase in timing skew.

Applying this concept to the connection between an FPGA and a

DDR2 module, a phase delay transmitter could modulate the

capacitance on the board traces used by a DQ/DQS bus. As

shown in Figure 2, these changes in capacitance could be detected

within the FPGA by monitoring the IDELAY settings. As long as

the added capacitance does not overwhelm the driver on the

memory module, the conventional data transfer between the

memory module and the FPGA would not be interrupted.

4.2 Phase Delay Modulation Bandwidth
When we look at the factors that determine the achievable

bandwidth of a phase delay modulation communication channel,

we can see parallels to our earlier analysis of temperature

modulation channels. For example, Eq. 9 is very similar to Eq. 2

– i.e. the number of symbols that can be used (SPhase) is defined by

the range of capacitance that can be added to an existing I/O trace

by the transmitter (CRange) divided by the minimum capacitance

that can be measured by the receiver, in the form of phase delay

IDELAY

IDDR

Calibration
Module

IDELAY

IDDR

Side-Channel
Receiver[0]

Read Data[M][0]

DDR2 DQS[0] DDR2 DQ[M][0]

DDR2 Controller

IDELAY

IDDR

IDELAY

IDDR

Read Data[M][N]

DDR2 DQS[N] DDR2 DQ[M][N]

...

Side-Channel
Receiver[N]

...

...

FPGA Clock

Adjusted
Received DQ

Received
DQS

Received DQ

Shift DQ signal by FPGA to DQS
phase delay + ¼ clock period

FPGA Clock Samples at middle of valid windowValid Uncertain

detect edge

R

C

VIN VOUT

VH

VL

VH

VL

VH

VL

VH

VL

(A)

(B)

(C)

(D)

tskew

tskew

fail

 ⁄ (9)

 (

 ⁄)
 (10)

 (

⁄)

 (11)

 (
 ⁄) (12)

 (

⁄)

 (13)

 ⌈ ⌉ (14)

(CΔmin). However, unlike temperature modulation, phase delay

communication must piggyback upon an existing I/O signal. The

characteristics of this signal heavily affect the transfer rate that

can be achieved.

The range of capacitance that can be used for phase delay

communication (CRange) is determined by several factors: the

frequency of the signal it is overlaid on and the physical attributes

of the signal driver, the board-level trace, and the FPGA’s input

pad. If we model the connection between the driver on the DDR2

module and the input pin of the FPGA as a simple RC circuit, we

can illustrate the relationship between these terms.

Eq. 10 is the basic voltage equation for an RC circuit (Eq. 6),

solved for capacitance. If we substitute a few variables into Eq.

10, we get Eq. 11. In this case, the maximum load capacitance

that the memory module can drive without causing errors is CMax,

or the sum of the maximum capacitance that can be added by the

transmitter (CRange) and the inherent parasitic capacitance of the

connection itself (CPara). CMax is dependent upon the maximum

timing skew that can be introduced (tΔmax), the drive voltage of the

memory (Vdd), the voltage gap between a logic “1” and a logic “0”

on the FPGA’s input pin (VH - VL), and the effective resistance of

the memory module driver (RDrive).

As shown in Eq. 12, the maximum allowable timing skew (tΔmax)

is the minimum of two periods. The first factor is ½ the period of

the signal we are piggybacking upon (t1/2signal). That is, if the

input pad on the FPGA does not need any setup time, the input

signal can reach VH just as the driver is switching from a logic “1”

to a logic “0”. On the other hand, the skew may be limited by

some internal threshold built into the calibration logic within the

communication controller (tΔThres). For example, the DDR2

controller that we use in our proof-of-concept system does sanity-

checking after the system is initially calibrated, somewhat limiting

the maximum allowable skew after this point.

Looking at Eq. 13, we can see that the minimum change in

capacitance that can be detected by the receiver (CΔmin) is

dependent upon (VH - VL), Vdd, and R, the same as Crange.

However, it is also dependent upon the minimum phase delay that

can be accurately measured (tΔmin). As shown in Eq. 14, tΔmin is

the minimum time quantum that the calibration system can

implement (tminQuant) multiplied by an arbitrary constant noise

margin factor (NPhase) times the maximum standard deviation in

the phase delay when the capacitive load is held constant, as

measured by the calibration circuitry (σPhase). In most systems,

tminQyuantum will be defined by the timing granularity of the I/O

delay elements. In the case of our proof-of-concept system, this is

the minimum timestep of the IDELAY blocks. (NPhase*σPhase)

must be rounded up to the nearest integer because, by definition,

we cannot detect or implement fractional tminQyuantum.

Completing our bandwidth analysis, the maximum sampling

frequency (FPhase) is equal to the rate at which recalibration is

performed by the receiver. The maximum number of

communication channels (CPhase) is equal to the number of

independently calibrated signals.

5. PIN HIJACKING
In this section we focus on side-channel communication

mechanisms in which a transmitter inserts its own data onto an

I/O wire that has already being used by another signal. These

communication techniques rely on the fact that there is often

“dead time” in a signal or on a bus – i.e. time when the connection

is not actively being used for communication. A pin hijacking

side-channel transmitter can listen for this idle time (or otherwise

know when it will occur) and transmit its own data during this

interval. The side-channel can detect and capture the incoming

data on the FPGA with its own receiver. As with the timing

modulation side-channels, this general concept can be applied on

a macro or micro scale.

As a simple example of micro-scale “idle time”, consider a typical

connection between an external data source and a receiver inside

an FPGA. The source and destination must be synchronized, so

the FPGA-based receiver might be designed to capture the input

data on the rising edge of some common clock. This signal likely

wastes at least some portion of the intrinsic bandwidth of the

underlying connection. We say this because, unless the signal is

running near the limit of the effective setup and hold times of the

receiver, the receiver is “ignoring” the input for some portion of

the clock period. If the source driver and board-level traces had

sufficient headroom to do so, the transmitter could send data on

both the rising and falling edges of the clock. Essentially, we can

transmit in a double-data rate manner, but time-multiplex between

the data from the original signal and data from an entirely new

signal. The original receiver would not perceive any difference,

but we could add a new receiver to the FPGA that samples on the

falling edge of the clock to capture the side-channel data. This

same general double-data rate concept can be extended to an N-

way data rate connection, only limited by the signaling capability

of the physical connection.

5.1 Case Study – I
2
C Interface Hijacking

In this paper, we looked at a bus that displays very coarse-grain

segments of idle time. We built a pin hijacking communication

side-channel on top of the dedicated I2C bus that connects the

DDR2 memory controller on the FPGA with the Serial Presence

Detect (SPD) chip on the memory module itself. In addition to

simply demonstrating the feasibility of a pin hijacking side-

channel, it also shows that such communication techniques do not

require pure input data lines, but can be built from bi-directional

pins as well.

DDR2 memories generally contain an SPD EEPROM. This chip

stores timing information for the memory, including the

maximum clock rate, CAS latency, required refresh rate, etc. The

SPD data is normally only accessed when the system is booting so

that the FPGA can properly configure the memory controller.

After this point, the I2C connection is typically left idle.

The I2C protocol was first introduced by NXP [11]. The simplest

I2C structure consists of a master node, a slave node and two open

collector, bidirectional signals: the Serial Clock (SCL) line and

the Serial Data (SDA) line. The master node first initiates

communication with the slave by actively driving the SCL and

SDA lines. It transmits control and address information, then

relinquishes control of the SDA line. The slave node listens for

this data and, if it is responsible for the provided address, sends

back an acknowledgement, actively driving SDA. This

establishes a connection between the master and slave until a stop

signal is sent. After the transfer is complete, the SCL and SDA

lines return to a floating state. Figure 5a shows the normal

connection between the memory controller and the SPD module.

Our side-channel connects an additional I2C master to the SDA

and SCL lines and adds a small amount of logic to the memory

controller that makes it first act as an I2C master (to obtain the

timing information from the SPD module) and then as an I2C

slave (to obtain data from the side-channel transmitter). Figure 5b

shows the modified system. The side-channel transmitter merely

waits for the memory controller to complete its transaction with

the SPD module and go dormant. After this point, the side-

channel transmitter can re-activate the bus and create a new

connection between itself and the side-channel receiver.

This same mechanism can be implemented on any standard

interface that uses a high impedance state. For example, the data

pins of the DDR2 interface are generally tri-stated during normal

operation. During that time, it would be possible to set up a side-

channel with a very wide bus (64-bits or more) running at high

speed. As long as the side-channel has some sort of negotiation

so that it can relinquish control of the bus when the rightful user

wishes to read or write to the DDR2 memory, it will not impede

normal operation. Naturally, as the complexity of this sort of

side-channel increases, so does the logic and power requirements

for its implementation.

5.2 Pin Hijacking Bandwidth
As with any other digital signal, the number of symbols (SPinHijack)

and channels (CPinHijack) of a pin-hijacking side-channel is

determined by the characteristics of the wire or bus that it is based

upon. Similarly, so is the sampling rate. However, unique to

side-channel communication, we must take into account the

fraction of time that the side-channel can actually communicate.

As seen in Eq. 15, the effective sampling frequency (FPinHijack) is

dictated by the maximum allowable clock rate of the basic

channel (FChannel) multiplied by the fraction of time that the

channel is typically unused (FracIdle).

 (15)

6. Implementation and Results
To demonstrate the feasibility of the three communication

mechanisms introduced in this paper, we built proof-of-concept

implementations. All of the side-channel receivers were built on a

Xilinx Virtex-5 XUPV5-LX110T prototype board. All of the

transmitters were built from materials easily obtained from an

electronics parts supplier for less than roughly 100 USD.

6.1 Temperature Modulation
Our experimental thermal communication system is shown in

Figure 6. The external transmitter consists of a Peltier

thermoelectric device, a standard benchtop power supply, and a

water-cooled heatsink. When a Peltier device is driven by a DC

current, it actively pumps heat from one side of the device to the

other. When the Peltier device is cooling the FPGA, the amount

of heat that it removes is proportional to the current provided by

the power supply and how efficiently the heat is taken away from

the other side of the device. The water-cooled heatsink provides a

Figure 5: SPD I2C connectivity

Figure 6: Temperature modulation platform

Table 1: Experimentation variables

of stages 2, 3, 4, 5, 6, 8, 10, 14 and 20

Physical Location 25 uniformly spaced locations

Temperature -15 to 85°C, in 10° intervals

Figure 7: N-Stage Ring Oscillator

thermal mass into which the Peltier device can dump heat. Peltier

devices are sensitive to polarity and the transmitter can be

switched from cooling the FPGA to heating it simply by reversing

the power connection. In this case, the mass of the heatsink

provides a source of heat that can be driven into the FPGA.

Although we used a water-cooled heatsink because it provided a

very large thermal mass so that we could conduct extended

heating and cooling experiments, a more conventional heatsink

would likely be sufficient for a typical thermal transmitter.

Based on our discussion in Section 3.2, how reliably we can

measure the speed of a ring oscillator and how strongly it

responds to changes in temperature play a key role in determining

the achievable bandwidth of the system. Thus, we performed a

series of experiments to determine how the structure and location

of the ring oscillator affects these considerations.

As seen in Table 1, we varied the number of stages in the ring

oscillator from 2 to 20. As seen in Figure 7, the number of stages

in the ring oscillator can be varied arbitrarily by using one inverter

and inserting (N-1) buffers. We also looked at the effect that

location had on the ring oscillators. To ensure the largest degree

of consistency and the fastest operational speed, we hand-placed

the ring logic as densely as possible and positioned the associated

counter in an adjacent column. Each CLB in the Virtex-5

contains two slices, each slice contains four LUTs, and each of the

LUTs can implement two independent one-input functions. Thus,

all of the ring oscillators that we looked at could fit into a

(a) System boot up

FPGA
I2C Master

Memory SPD
I2C Slave

ID = 7’b1010000

(b) Side-Channel Active

SCL SDA

FPGA
I2C Slave

ID = 7’b1010110

Memory SPD
I2C Slave

ID = 7’b1010000

SCL

SDA Added
Side-Channel

I2C Master

LUT
(Buffer) ... LUT

(Buffer)
LUT

(Inverter)

Figure 8: Standard deviation, thermal response and standard

deviation/thermal response as a function of the

of ring oscillator stages

Table 2: Characteristics of top 3 ring oscillator candidates

Stages 20 10 8

Avg. RO Freq @ 25°C (MHz) 62.06 119.9 142.0

σTherm (MHz) 0.46 0.55 0.49

Avg. SlopeTherm (MHz/°C) 0.037 0.073 0.085

TΔMin (°C for NTherm=2) 0.93 1.09 0.97

FΔCount (KHz for NTherm=2) 34.3 79.6 82.2

FΔTemp (Hz for NTherm=2) 3.48 2.89 3.31

BTherm (bits/sec) 3.48 2.89 3.31

Table 3: Resource requirements of thermal receiver

Slices* 117 0.6% of LX110T

6-Input LUTs* 295 0.4% of LX110T

Registers 246 0.4% of LX110T

PLL 1
16% of LX110T (assuming an

independent PLL is used)
*Assuming an 8-stage ring oscillator

maximum of two CLBs, not including the counter. To determine

if there was any regional variation in performance across the chip

(either due to manufacturing variation or a possible temperature

gradient), we implemented 25 independent ring oscillator/counter

pairs spread uniformly across the die in a 5x5 pattern. The

components within each of these instrumentation rigs had the

same relative placement and routing.

As seen in Figure 1, the duration that the ring oscillator counter

runs between samples is determined by the reference clock

frequency of the onboard PLL and the constant value used by the

reference counter to trigger the sampling logic. We used a 200

MHz reference clock sampling every 65,535 (0xFFFF) clock

cycles in our testing. We measured each different type of ring

oscillator at each of the 25 locations 4,096 times at temperatures

between -15°C and 85°C.

Even when comparing very preliminary ring oscillator testing

results with an estimate based upon reasonable values for R, C,

and P2, it is immediately clear that the sampling rate of the system

is heavily dominated by how quickly we can change the

temperature of the FPGA (FΔTemp). As we will discuss later, while

the ring oscillators can detect temperature changes on the order of

2 From the information in [15] and [16], we estimate R, C, and P

as 0.13 °C/W, 8.13 J/°C, 30 W, respectively. The thermal

capacitance is calculated assuming that the specific heat and

density of the IC package are roughly equal to that of solid Al.

1°C at a sampling rate on the order of kilohertz, the Peltier device

requires hundreds of milliseconds to transfer enough heat into or

out of the FPGA to discernibly change the temperature. It is

unlikely that the “drive capability” of the thermal transmitter will

change drastically across smaller and larger devices. This is

because both the power that can be absorbed or emitted by the

Peltier device and the thermal capacitance of the FPGA plus

packaging are roughly proportional to the surface area of the chip.

Similarly, the thermal resistance of the FPGA/Peltier interface is

roughly inversely proportional to the surface area of the chip.

Thus, looking at Eq. 8, the (R*C) and (P*R) terms will largely

remain constant regardless of the size of the FPGA package.

Since we now know that FTherm will be determined by FΔTemp, we

can consider the relationship between the number of symbols

(log2(STherm)) we have and the sampling frequency – i.e. we can

try to maximize (log2(STherm) * FTherm). While log2(STherm) grows

linearly when TRange is doubled (assuming that TΔMin is fixed for a

given ring oscillator), according to Eq. 8 FΔTemp shrinks super-

linearly when TΔMax is doubled. Thus, the bandwidth of the

system is highest when we minimize the maximum change in

temperature used for communication. This means that TΔMax

should equal TΔMin. By extension, this means that we should only

use two symbols for communication (+/-TΔMin) and we should

prioritize ring oscillators with the smallest variability and the

largest thermal response (minimize σTherm/SlopeTherm).

In Figure 8, we graph the results of our thermal modulation

experiments. The vertical axis represents either the maximum

standard deviation of the ring oscillator speed across all 11

temperatures and all 25 locations, the average thermal response

(slope) across all locations, or the maximum standard deviation

divided by the average slope, respective to the corresponding

green, blue and red lines. The horizontal axis represents the

various ring topologies in increasing order of the number of

stages. Table 2 shows the various characteristics of the three ring

oscillators with the smallest TΔMin. We use these experimentally

determined TΔMin values to calculate FΔTemp and, assuming that

STherm and CTherm both equal one, the potential achievable

bandwidth of a communication channel that uses one of these

rings (BTherm).

Looking at these results, we can draw several conclusions. First,

the variability in the speed ring oscillators (σTherm) decreases as the

size of the ring oscillator grows. This is likely because more

stages allows the random jitter that is present in the delay of each

individual stage to be averaged, creating a more uniform period

overall. Second, the thermal response (SlopeTherm) also decreases

as a function of the number of stages. This is somewhat

surprising, although it may be caused by the fact that the delay

along larger rings contains a greater fraction of interconnect to

logic delay – i.e. the interconnect resources may be far less

sensitive to temperature as compared to the LUTs. No matter the

cause of this phenomenon, since both σTherm and SlopeTherm

decrease as a function of the number of oscillator stages, TΔMin is

roughly constant when more than about eight stages are used. A

ring oscillator with eight stages is particularly attractive because it

can be implemented entirely within a single Virtex-5 slice. Since

this represents the best combination of size and minimum TΔMin,

we use this ring to report the resource requirements shown in

Table 3.

Lastly, unlike the FPGA-based thermometer systems in [14] and

[17], none of the equations from Eq. 2 to Eq. 8 contain a reference

to the absolute intrinsic operating frequency of the ring oscillator.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25

Si
gm

a/
Sl

o
p

e
 (

°C
)

Sl
o

p
e

 (
M

H
z/

°C
)

o
r

Si
gm

a(
M

H
z)

Stages

Sigma, Slope & Sigma/Slope

Sigma

Slope

Sigma/Slope

We are only concerned with the change in frequency as a function

of temperature, or SlopeTherm. If we combine this with the fact that

we only use symbols represented by +/-TΔMin (and thus can use

conservative positive and negative thresholds), we eliminate the

need for chip-specific calibration. Although larger noise margins

may affect the achievable bandwidth to a certain degree, it is

likely that very approximate testing can determine a reasonable

range for SlopeTherm that can be used across an entire device

family or possibly even all chips made with a given fabrication

process.

6.2 Phase Modulation
The XUPV5 board has one DDR2 SO-DIMM socket with eight

DQ/DQS sub-buses. Every sub-bus contains one DQS signal that

provides synchronization across eight DQ data signals. Our

proof-of-concept phase delay transmitter only adds capacitance to

the DQS lines rather than all the signals in the DQ/DQS buses.

This still creates perceived phase shift across the entire bus

because, as discussed in Section 4, the calibration mechanism in

the memory controller only examines the DQS signal when

determining the phase delay of the bus. We only modulate the

capacitance on the DQS signals because it greatly simplifies the

physical implementation of the transmitter. Although adding

delay unsymmetrically alters the strobe/data signal alignment, we

found that we could add almost ¼ of a clock period of phase delay

without causing read errors. This is because, as shown in Figure

3, the effective valid window for the data driven by the DDR2

module is fairly wide, even when the memory interface is running

at 200MHz (DDR2-800).

Each DQS strobe is actually a differential signal that provides

more reliable high-speed communication: DQS and its logical

complement, DQS#. As shown in Figure 9, there are two

different capacitor topologies that can be used to add delay to the

strobe signal. On the left we show a “differential-mode”

connection with two capacitors separately connecting DQS and

DQS# to ground. On the right we show a “common-mode”

connection with one capacitor connected between the drivers. In

our early testing, we found that a single capacitor connected

between the differential lines provided a much more significant

loading effect as compared to the dual capacitor arrangement.

This phenomenon is due to the fact that the common mode

connection results in two active drivers pulling in opposite

directions at all times, essentially doubling the change in voltage

that the capacitor experiences during each transition.

The “common-mode” connection topology also had an important

advantage over the “differential-mode” technique – it simplified

the construction of the phase delay transmitter because we did not

have to build a ground plane and did not have to make as many

connections to the SO-DIMM. As we will discuss later,

simplifying the structure of the transmitter greatly reduced the

amount of error introduced into the system.

Figure 10 shows our experimental phase modulation

communication setup. We built a phase delay transmitter by

mounting a small perfboard on top of the DDR2 SO-DIMM on

our FPGA board. This allowed us to attach sockets to the DQS

and DQS# pins of the memory module. The red circles in Figure

10 highlight the small wires soldered between the SO-DIMM and

the perf-board. We used these sockets to modulate the capacitive

load on the strobe lines by manually swapping in and out discrete

ceramic capacitors with different values. As mentioned earlier,

the effect of the attaching these various capacitors was measured

Figure 9: Two capacitor topologies

Figure 10: Phase modulation platform

Figure 11: Phase shift as a function of capacitance

Table 4: Characteristics of phase modulation prototype

σPhase 0.5771 IDELAY units (45.1 ps)

tΔMin (NPhase=2) 3 IDELAY units (234.4 ps)

tΔMax* 12 IDELAY units (937.5 ps)

SPhase 2

FPhase 1KHz
Assuming that the system is not limited by the accuracy of the transmitter
*Determined graphically

Table 5: Resource requirements of phase modulation receiver

Slices 68 0.4% of LX110T

6-Input LUTs 72 0.1% of LX110T

Registers 132 0.2% of LX110T

by looking at the change in IDELAY settings from the calibration

circuitry in the FPGA.

The results of our testing are shown in Figure 11 and Table 4.

The phase shift detected by the calibration module was measured

1,000 times on each DQS signal for each capacitance value. We

only experimented using five of the eight DQS strobes (0, 1, 2, 4,

and 6) on the DDR2 memory. This is because these signals were

simply more readily accessible. The memory slot on the XUPV5

board is mounted parallel to the system board and the I/O pins for

these strobe signals were located on the exposed side of the SO-

DIMM rather than the side facing the main PCB.

Looking at Figure 11, we see that the phase shift increases

approximately linearly as a function of the applied capacitance

(notice, as the memory controller perceives more intrinsic phase

delay on the strobe line, it shifts the data less using the IDELAY

DDR2 Memory Module

DQSxDQSx#VSS VSSDQSxDQSx#VSS VSS

C C C

24

26

28

30

32

34

36

38

40

0 5 10 15 20 25

A
vg

. I
D

EL
A

Y
 V

al
u

e

Added Capacitance (pF)

DQS0

DQS1

DQS2

DQS4

DQS6

blocks to achieve the same total phase delay). This linear

relationship is predicted by Eq. 10, if we solve for time rather than

capacitance. This confirmation gives us confidence that we can

use the data from our experiments to determine relative trends

between capacitance and phase shift. That said, we did not apply

this data directly to Eq. 9, Eq. 11, and Eq. 13 (the equations that

involve specific values for the capacitance that is added to a

signal). Our uncertainty regarding plugging our experimental data

directly into these equations is caused by the fact that there is a

large and somewhat unpredictable difference between the

capacitance that is physically applied to a wire in our

experimental setup and the capacitance that is actually perceived

by the DDR2 module and the FPGA.

The effective capacitive load on the DDR2 drivers is heavily

affected by the length of the wires used to connect the capacitors

to the board-level traces. This is because, due to the high clock

frequency of the DDR2 interface, wire inductance is a significant

concern. In our initial testing, we found that leads as short as

0.75” created enough inductance to completely isolate the

capacitors from the board traces. That is, no matter how large a

capacitor we applied, there was no significant change in the signal

phase. In our prototype transmitter design, the wires between the

SO-DIMM and the perf-board need to be at least 0.25” for

mechanical reasons. Furthermore, due to the fact it was

constructed by hand, there is visible variation in the length of

these connections. Put together, these factors make it very

difficult to determine exactly how much capacitance is actually

perceived by the memory module and the FPGA. A full

implementation of a phase modulation communication system

would need to address inductance. Precise capacitors, a fully

electronic switching network, and a more elegant method of

attachment would be helpful to achieve consistent communication

and maximum bandwidth.

Despite our uncertainty regarding the exact applied capacitance,

we can still use the results from our experiments to gain insight

into the bandwidth potential of this approach – at the very least,

this system represents a lower bound. As seen in Table 4, the

maximum standard deviation in the phase delay measured by the

memory controller (σPhase) across all of our experiments was 0.58

IDELAY units (one IDELAY unit is tminQuantum, or 78.125ps). If

we assume NPhase equals three, by Eq. 14 the minimum phase

delay that can be accurately measured (tΔmin) equals (3* tminQuantum)

or 234.4ps. Thus, looking at Figure 11, we are able to clearly

distinguish at least two symbols: applying or not applying a 10pF

capacitor. Given two symbols of data per DQ/DQS bus and eight

pairs of DQS lines3 in the test system, (log2(SPhase) * CPhase) equals

8 bits. FPhase is equal to the recalibration rate of the memory

controller. The default setting in the memory controller from [7]

is 1 KHz. Thus, the maximum bandwidth into the chip would be

8 Kbits per second. Table 5 shows the resource requirements of

the phase modulation receiver.

6.3 Pin Hijacking
Our proof-of concept implementation of a pin hijacking side-

channel is shown in Figure 12. As discussed earlier, a

conventional I2C slave is on the SPD chip on the DDR2 module.

The dual-mode I2C master-turned-slave for our side-channel

receiver is instantiated in the memory controller on the FPGA.

3 A DDR2 DIMM (rather than SO-DIMM) has 16 DQ/DQS

buses. DIMMs with ECC add an additional two channels.

Figure 12: Pin hijacking platform

Table 6: Resource requirements of pin hijacking receiver

Slices 90 0.5% of LX110T

6-Input LUTs 162 0.2% of LX110T

Registers 86 0.1% of LX110T

These two modules communicate via the onboard traces of the

XUPV5 board.

Although the side-channel transmitter I2C master would normally

be implemented on a separate device, for simplicity sake we built

it on the same FPGA as the rest of the system. The I/O signals for

the side-channel transmitter are fed through two GPIO pins of the

XUPV5 board. These are the red and yellow wires in Figure 12

connecting the GPIO pins on the bottom side of the board with the

DDR2 module board traces on the top side. We tapped into the

I2C signals of the DDR2 module using the same perfboard and

socket technique described in Section 6.2. These connections are

highlighted with the blue circle in Figure 10.

The number of symbols (SPinHijack) for an I2C connection is two –

it is inherently binary since there is only one data wire, SDA. As

per the official specification of I2C, FChannel is between 100 KHz

and 3.4 MHz, although modern devices are generally capable of

communicating at a faster rate. If the FPGA only queries the SPD

timing data when the system is booted, the active time of this

connection is amortized to zero. Thus, FracIdle is nearly one.

Lastly, since we only have one I2C bus, the number of channels

(CPinHijack) is one. Thus, the maximum achievable bandwidth of

our side-channel (BPinHijack) equals 3.4 Mbits per second. The

resource requirements for our pin hijacking side-channel receiver

are shown in Table 6.

Overall, the structure of the I2C interface helps us implement this

type of signal hijacking in two ways. First, the protocol has a

built-in notion of addressing, so we can send data between the

side-channel transmitter and receiver without activating other I2C

slaves that might be attached to the bus. Second, the protocol

explicitly shuts out other I2C devices once a connection has been

established, until the stop signal is sent. This gives us the ability

to transfer an infinite-sized payload without violating the bus

protocol.

7. Future Work
Although we have demonstrated the feasibility of using speed

modulation, timing modulation and pin-hijacking to communicate

with an FPGA, there are still many issues that we would like to

investigate looking forward.

First, our prototype implementations showed that these

communication mechanisms can transmit and receive a coherent

signal. However, we have not addressed the issues that surround

how we might encode real data. For example, our thermal

modulation uses two symbols for communication, an increase or

decrease in temperature. However, we cannot use direct binary

translation to encode data, because this cannot handle an input

data stream with an unbalanced number of zeros and ones. A

straightforward technique to avoid runaway temperatures would

be a return-to-zero encoding scheme, but might there be a more

efficient solution?

We would also like to look at how these communication

techniques might interact with each other. On one hand, different

methods of information transfer might interact negatively with

one another. For example, variations in temperature might change

the real-world noise margins for a communication channel that

uses phase modulation. On the other hand, combining different

approaches into a hybrid mechanism may significantly increase

the achievable bandwidth and/or the difficulty in detecting that a

side-channel receiver is present.

Along the same lines, we touched on the general concept of noise

and how it could be introduced into the system by any number of

factors – even simple things like the length of certain wires might

be important. Thus, communication errors are bound to occur.

We would like to look at what kinds of error correction might best

suit our side-channel communication mechanisms.

Furthermore, much more extensive testing is required to

determine the real-world operational limitations of these side-

channel mechanisms. For example, our thermal receiver was not

tested alongside a real working circuit. While we assumed that

the heat created by most host circuits would be relatively constant

on the time-scale used by our thermal communication system (and

thus would be a “DC” component to the temperature modulation),

is there anything that can be done to lower the potential influence

of the rest of the system? Could an active feedback thermal

transmitter help?

Lastly, in this paper we considered the difficulties in creating

side-channels. However, we should also look at how we might

break them. For example, since side-channels might be used for

nefarious purposes such as leaking private information, what

countermeasures might be deployed to protect users? On the

other hand, if we use these techniques to watermark our IP, how

might pirates try to obfuscate these identifiers?

8. Conclusions
It is unclear whether side-channel communication represents a

benefit or a liability to system developers and end users. While

side-channels have been classically profiled as a security risk, they

have the potential to add new unique capabilities to critical FPGA

concerns. Either way, though, the increasing popularity and the

inherent flexibility of FPGAs puts them at the forefront of this

discussion. It is important that we expand our understanding of

side-channels and explore potential mechanisms that might be used

to implement them.

In this paper we introduced three novel side-channel

communication mechanisms: speed modulation, timing modulation

and pin hijacking. We used these approaches to highlight an aspect

of side-channels that, to the best of our knowledge, has been

previously unexplored: the potential of an FPGA-based side-

channel receiver. A side-channel receiver is significant because,

taken together with prior work on how FPGAs can emit side-

channel information, it enables two-way communication.

Our experiments on prototype side-channel receivers demonstrated

that we could achieve reliable and, potentially, high bandwidth

communication with minimal overhead. While there are still many

issues we would like to address, these results prove that reliable bi-

directional side-channel communication is possible. This leads the

way to practical white-hat applications such as post-fabrication bug

fixes and IP watermarking. However, it also enables powerful

black-hat attacks such as conditionally triggered covert channels.

9. References
[1] Adamov, A., Saprykin, A., Melnik, D. and Lukashenko, O.

The problem of Hardware Trojans detection in System-on-

Chip. International Conference of CAD Systems in

Microelectronics 2009. 178 – 179.

[2] Agrawal, D., Archambeault, B., Rao, J. R. and Rohatgi, P. The

EM Side–Channel(s):Attacks and Assessment Methodologies.

International Workshop on Cryptographic Hardware and

Embedded Systems 2002.

[3] Agrawal, D., Baktır, S., Karakoyunlu, D., Rohatgi, P. and

Sunar, B. Trojan Detection using IC Fingerprinting. IEEE

Symposium on Security and Privacy. 296 – 310.

[4] Bar-El, H. “Introduction to Side-channel Attacks,” White

Paper, http://www.discretix.com

[5] Bar-El, H., Choukri, H., Naccache, D., Tunstall, M. and

Whelan, C. The Sorcerer’s Apprentice Guide to Fault Attacks.

Proceeding of IEEE, Vol. 94, No. 2, (Feb. 2006), 370 – 382.

[6] Becker, G. T., Kasper, M. and Paar, C. 2010. Side-Channel

based Watermarks for IP Protection. International Workshop

on Constructive Side-Channel Analysis and Secure Design

2010.

[7] Bittner, R. The Speedy DDR2 Controller For FPGAs.

International Conference on Engineering of Reconfigurable

Systems & Algorithms. 2009.

[8] Chari, S., Rao, J. R. and Rohatgi, P. 2002 Template Attacks.

International Workshop on Cryptographic Hardware and

Embedded Systems 2002

[9] Collins, D. DARPA "TRUST in IC's" Effort. Microsystems

Technology Symposium Enabling the Future. 2007.

[10] De Mulder, E., Buysschaert, P., Ors, S.B., Delmotte, P.,

Preneel, B., Vandenbosch, G. and Verbauwhede, I.

Electromagnetic Analysis Attack on an FPGA Implementation

of an Elliptic Curve Cryptosystem. International Conference

on Computer as a Tool. EUROCON 2005. 1879 – 1882.

[11] The I2C-bus Specification Version 2.1. NXP, Jan. 2000.

[12] Lenz, M., Striedl, G. and Fröhler, U. 2000. Thermal

Resistance: Theory and Practice. Infineon Technologies AG.

(Jan. 2000)

[13] Lin, L., Kasper, M., Güneysu, T., Paar, C. and Burleson, W.

Trojan Side-Channels: Lightweight Hardware Trojans through

Side-Channel Engineering. International Workshop on

Cryptographic Hardware and Embedded Systems 2009. 382 –

395.

[14] Lopez-Buedo, S., Garrido, J. and Boemo, E. I. Dynamically

Inserting, Operating, and Eliminating Thermal Sensors of

FPGA-Based Systems. IEEE Transactions on Components

and Packaging Technologies, Vol. 25, No. 4, (Dec. 2002), 561

– 566.

[15] Virtex-5 FPGA Packaging and Pinout Specification UG195

(v4.7). Xilinx Inc., Dec. 2009.

[16] Part Number CP85338, datasheet, V-Infinity Inc., Aug. 2009

[17] Zick, K. M. and Hayes, J. P. On-line sensing for healthier

FPGA systems. International Symposium on Field

Programmable Gate Arrays. 2010. 239 – 248.

[18] Ziener, F., Baueregger, F. and Teich, J. Using the Power Side

Channel of FPGAs for Communication. International

Symposium on Field Programmable Custom Computing

Machines. 2010. 237-244.

