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Abstract
Interactive services, such as Web search, recommendations,
games, and finance, must respond quickly to satisfy cus-
tomers. Achieving this goal requires optimizing tail (e.g.,
99th+ percentile) latency. Although every server is multi-
core, parallelizing individual requests to reduce tail latency
is challenging because (1) service demand is unknown when
requests arrive; (2) blindly parallelizing all requests quickly
oversubscribes hardware resources; and (3) parallelizing the
numerous short requests will not improve tail latency.

This paper introduces Few-to-Many (FM) incremental
parallelization, which dynamically increases parallelism to
reduce tail latency. FM uses request service demand pro-
files and hardware parallelism in an offline phase to com-
pute a policy, represented as an interval table, which spec-
ifies when and how much software parallelism to add. At
runtime, FM adds parallelism as specified by the interval ta-
ble indexed by dynamic system load and request execution
time progress. The longer a request executes, the more paral-
lelism FM adds. We evaluate FM in Lucene, an open-source
enterprise search engine, and in Bing, a commercial Web
search engine. FM improves the 99th percentile response
time up to 32% in Lucene and up to 26% in Bing, compared
to prior state-of-the-art parallelization. Compared to running
requests sequentially in Bing, FM improves tail latency by a
factor of two. These results illustrate that incremental paral-
lelism is a powerful tool for reducing tail latency.

Categories and Subject Descriptors D.4.1 [Operating Sys-
tems]: Process Management–Threads
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1. Introduction
Interactive online services, such as Web search, financial
trading, games, and online social networks require consis-
tently low response times to attract and retain users [14,
33]. Interactive service providers therefore define strict tar-
gets for tail latencies — 99th percentile or higher response
times [9, 10, 17, 39] to deliver consistently fast responses to
user requests. The lower the tail latency, the more competi-
tive the service. Moreover, reducing each server’s tail latency
is critical when a request spans several servers and responses
are aggregated from these servers. In this case, the slower
servers typically dominate the response time [22].

Reducing tail latency is challenging, in part because re-
quests exhibit highly variable demand. For example in fi-
nance servers and Web search, most user search requests are
short, but a significant percentage are long [9, 17, 32]. Prior
work on search engines shows that in a distributed system,
the longest requests (99th-percentile execution times) are up
to a factor of 10⇥ larger than the average execution times,
and even 100⇥ larger than the median [9, 19]. While other
sources of variability, such as interference from other work-
loads, hardware variability, and network congestion, con-
tribute to tail latency, this prior work establishes long re-
quests in computationally intensive workloads are a primary
factor in tail latency. A critical component of reducing tail
latency is reducing the execution time of long requests.

This paper shows how to reduce tail latency with the judi-
cious use of parallelism at the level of an individual request.
We exploit the opportunity afforded by multicore hardware
and parallelism in these applications. However, simply paral-
lelizing all requests oversubscribes multicore resources, de-
grading average and tail latency on search workloads. We
therefore seek to parallelize only the long requests, which
contribute the most to tail latency. However, when a request
arrives, we do not know its service demand (and it is dif-
ficult to predict if the request is short or long [26]). Thus,
we determine demand as the request executes. We introduce
incremental parallelism to reduce tail latency, which dynam-



ically adds parallelism to an individual request based on the
requests’ progress and the system load.

Few-to-Many (FM) incremental parallelization targets in-
teractive services. It progressively increases parallelism by
increasing the number of worker threads for a request, from
1 to a given maximum, over the duration of its execution.
Short requests execute sequentially, saving resources, and
long requests execute in parallel, reducing tail latency. The
key challenge for dynamic parallelization is determining
when to increase the parallelism and by how much, as a func-
tion of hardware resources, parallelism efficiency, dynamic
load, and individual request progress.

FM has an offline and an online phase. The offline phase
takes as input a demand profile of requests with (1) their
individual sequential and parallel execution times, and (2)
hardware parallelism (core resources). We perform a scala-
bility analysis to determine a maximum degree of software
parallelism to introduce. Although the individual requests
submitted to a service change frequently, the demand pro-
file of these requests changes slowly [26, 32], making peri-
odic offline or online processing practical. The offline phase
computes a set of schedules that specify a time and degree of
parallelism to introduce based on dynamic load and request
progress. The algorithm that produces these schedules seeks
to fully utilize available hardware parallelism at all loads. At
low load, FM aggressively parallelizes requests. At moder-
ate to high load, FM runs short requests sequentially and in-
crementally adds parallelism to long requests to reduce their
tail latency. Online, each request self-schedules, adding par-
allelism to itself based on its current progress and the in-
stantaneous system load. Decentralized self-scheduling lim-
its synchronization costs and therefore improves scalability.

We implement FM in Lucene, an open-source Enter-
prise search engine, and Microsoft Bing, a commercial Web
search engine. On production request traces and service de-
mand profiles, FM reduces tail latency significantly. We
compare FM to fixed parallelism polices on a single server
and explore sensitivity to load and workload. FM improves
the 99th percentile latency by 32% in Lucene and 26%
in Bing, compared to state-of-the-art search parallelization
techniques [18, 19] because it dynamically adapts to instan-
taneous load. Compared to sequential processing, incremen-
tal parallelization reduces tail latency on a single server by a
factor of two. Bing engineers have already deployed incre-
mental parallelization on thousands of production servers.

Our results have implications for the total cost of owner-
ship (TCO) of large services. Given a target tail latency, FM
allows higher utilization of servers while meeting the latency
target. This higher utilization allows service providers to re-
duce their infrastructure costs. For example, our Bing results
show that the provider can leverage FM to service the same
user load with 42% fewer servers. This result is significant

because the infrastructure TCO of commercial services is
typically dominated by the cost of purchasing servers [9, 15].

This paper makes the following contributions.
• We introduce Few-to-Many (FM) incremental paral-

lelization for interactive services.
• We develop an FM scheduler that determines when

and how much parallelism to introduce based on max-
imum software parallelism, hardware parallelism, dy-
namic load, and individual request progress to optimize
tail latency.

• We evaluate our approach in open-source and commer-
cial search engines, using production workloads and ser-
vice demand profiles.

• We show substantial improvements in tail latency over
prior parallelization approaches that improve users’ expe-
riences and reduce service providers’ infrastructure cost.

Although we evaluate FM on search, the results apply to
other interactive services, such as online ads, financial rec-
ommendations, and games, that are computationally inten-
sive, have stable workload distributions, and are easy to par-
allelize incrementally [13, 21].

2. Background
This section overviews the characteristics and parallelism
opportunities of interactive services. It also discusses the
production service demand distributions and scalability
characteristics of our workloads. Section 3 shows how we
exploit these characteristics to reduce tail latency.

Characteristics Many interactive services, such as search,
financial trading, games, and social networking are compu-
tationally intensive [1, 13, 18, 28, 32]. To meet stringent
latency constraints, they are carefully engineered such that
(1) their working set fits in memory, since any disk access
may compromise responsiveness, and (2) although they may
frequently access memory, they are not memory-bandwidth
constrained.

As an example, consider Web search, which divides the
work among many worker servers that compute over a sub-
set of the data, and then a few servers aggregate the re-
sponses [3, 6]. In Bing Web search, each worker server has
10s of GBs of DRAM used for caching a partition of the
inverted index that maps search keywords to Web docu-
ments. This cache is designed to limit disk I/O [18]: the av-
erage amount of disk I/O is less than 0.3 KB/s. To attain re-
sponsiveness and avoid queuing delay, Bing provisions addi-
tional servers to ensure that workers operate at low to modest
loads [18]. The average queuing delay at a worker is 0.35 ms
even with high 70% CPU utilization. Network I/O is also a
small fraction of the overall request latency at 2.13 ms on av-
erage. CPU computation is the largest fraction of response
time at well over 70% and is even higher for long queries.
Consequently, reducing tail latency requires reducing com-
pute time.



Opportunity for parallelism Interactive services today
commonly exploit large-scale parallelism in two ways. (1)
They distribute the processing over hundreds or thousands
of servers at data center scale because they must process
requests over vast amounts of data that do not fit on a sin-
gle server. (2) At each server, they process multiple requests
concurrently. In this paper, we exploit parallelism in a third
complementary way. We explore intra-request parallelism
on a multicore server. In particular, we execute individ-
ual requests using concurrent threads on multiple cores to
reduce their execution time. Prior work demonstrates that
individual requests in interactive systems, such as search,
finance trading, and games are easily parallelized [13, 18].
In addition, these workloads are often amenable to dynamic
parallelism, in which the scheduler can vary the number
of worker threads per request during the request execution.
Dynamic parallelism is supported by many parallel libraries
and runtimes, such as Cilk Plus [5], TBB [7], TPL [25], and
Java [12]. We introduce incremental parallelism, a new form
of dynamic parallelism that incrementally increases the par-
allelism degree for individual requests. Section 6.1 and 7.1
demonstrate how to implement incremental parallelism on
enterprise search and Web search services.

Demand distributions and scalability To motivate our ap-
proach, we study the demand distributions and scalability of
Lucene and Bing, our two evaluation systems. However, our
approach is more generally applicable than these workloads,
because other interactive services have similar demand and
parallelism characteristics [13, 21]. We gather production
user requests for both Bing and Lucene and measure the se-
quential and parallel execution times for each request exe-
cuting alone on a single server. (Sections 6 and 7 describe
the methodologies and systems in more detail.)

Figure 1(a) shows the service demand distribution of 30K
requests for the Bing Index Server Nodes (ISN). The x-axis
is the execution time in 5 ms bins and y-axis is the frequency
of requests in each bin. Most requests are short, with more
than 85% taking below 15 ms. A few requests are very long,
up to 200 ms. The gap between the median and the 99th per-
centile is a factor of 27⇥. The slight rise in frequency at 200
ms is because the server terminates any request at 200 ms
and returns its partial results. We observe that these work-
load characteristics are fairly consistent across hundreds of
ISN servers with different partitions of the index.

Figure 1(b) presents Bing parallelism efficiency, i.e., the
speedup of requests with different parallelization degrees for
all requests, the longest 5%, and the shortest 5%. Long re-
quests have over 2 times speedup with 3 threads. In contrast,
short requests have limited speedup, a factor of 1.2 with 3
threads. These results show that at degrees higher than 4,
additional parallelism does not lead to speed up.

Similarly, Figure 2(a) shows the service demand his-
togram of 10K Wikipedia search requests for Lucene in 20
ms bins and Figure 2(b) shows the parallelism efficiency.
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Figure 1: Bing demand distribution and average speedup.
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Figure 2: Lucene demand distribution and average speedup.

Again, we observe many short requests and few long re-
quests. The maximum number of requests are in the bin
around 90 ms and the median service demand is 186 ms.
Since the ratio of short to long requests is high, parallelizing
the long requests has the potential to reduce tail latency. Fig-
ure 2(b) shows that on average, requests exhibit almost linear
speedup for parallelism degree 2. Parallelism is slightly less
effective for 2 to 4 degrees and is not effective for 5 or more
degrees.

Both workloads show diminishing effectiveness of paral-
lelism and motivates limiting the maximum degree of par-
allelism. Both also show that parallelism is most effective
on long requests, which suggests devoting parallel hardware
resources to long requests instead of short ones. Moreover,
long requests impact tail latency the most.

3. Rationale Behind FM Parallelism
This section discusses the intuition and theory behind FM
incremental parallelism and requirements for implementing
it effectively.

3.1 Intuition Behind FM Incremental Parallelism
A simple approach to using intra-request parallelism is to use
a fixed number of worker threads for each request. Depend-
ing on the number of threads per request, fixed parallelism
would either oversubscribe resources at high systems loads
or underutilize them under light loads. To see an example of
oversubscription and its impact on response times, consider
Figure 3. The figure shows the mean and 99th percentile re-
sponse times of Lucene as a function of load when all re-
quests run with 1 worker thread (SEQ) and 4 worker threads
(FIX-4). (See Section 6 for our methodology.) Clearly, using
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4 threads for all requests reduces tail latency well with low
load, but gets progressively worse with higher load. In fact,
using 4 threads becomes worse than 1 thread around 42 re-
quests per second (RPS). Henceforth, we focus on the range
30 to 48 RPS, since the latency is typically flat below 30 RPS
and too high beyond 48 RPS.

Another problem with fixed parallelism is that it targets
all requests equally. However, long requests have a greater
impact on tail latency than short ones. We prefer to paral-
lelize long requests, but it is difficult to predict if a request
will be long or short [26]. Fortunately, requests in many in-
teractive services are amenable to incremental paralleliza-
tion. By dynamically increasing the degree of parallelism
as a request executes, long requests will exploit more par-
allelism than short requests. This insight is the key rationale
behind FM incremental parallelization.

3.2 Theoretical Foundation of FM Parallelization
Intuitively, FM parallelization increases the probability that
short requests will finish with less parallelism, which saves
resources, while it assigns long requests more parallelism,
which reduces tail latency. This section presents the theo-
retical foundation behind this intuition. Theorem 1 shows
that, given a tail latency constraint, the optimal policy that
minimizes average resource usage assigns parallelism to re-
quests in non-decreasing order. In other words, to minimize
resource usage under a latency constraint, if a request ever
changes its parallelism, it will only increase, transitioning
from few to many degrees of parallelism. The theorem makes

two assumptions. (1) We do not know if a request is long or
short a priori, but we know the service demand distribution,
i.e., the distribution of sequential request execution times
(see Figure 2(a) for an example). (2) Each request exhibits
sublinear speedup, i.e., parallelism efficiency decreases with
increase in parallelism degree, as we showed in the previous
section and is true for many workloads.

THEOREM 1. Given a request service demand distribution
and a sublinear parallelism speedup function, to meet a tail
latency constraint, an optimal policy that minimizes aver-
age resource usage assigns parallelism to requests in non-
decreasing order.

Proof. Please see Appendix.

Intuitively, Theorem 1 means that given an optimal schedule
that first adds and then removes parallelism, there exists an
equivalent schedule which only adds parallelism. We exploit
this theorem to limit our offline search to finding an optimal
few-to-many schedule. The dual problem of Theorem 1 also
holds: given a fixed amount of resources, few-to-many min-
imizes latency. For a server system where each request gets
a limited amount of resources, FM minimizes tail latency.

3.3 Practical and Effective FM Parallelization
The simplest approach to incremental parallelism is to sim-
ply add parallelism periodically, e.g., add one thread to each
request after a fixed time interval. Unfortunately, this ap-
proach does a poor job of controlling the total parallelism
(resource usage and contention), regardless of the interval
length. Figure 4 illustrates this problem by comparing the
99th percentile tail latency of Lucene when simply adding
parallelism at fixed 20, 100, and 500 ms intervals with exe-
cuting each request with 1 thread and 4 threads, as a function
of load. The figure shows that increasing parallelism dynam-
ically does reduce tail latency more than fixed parallelism
at medium and high loads. Short requests use fewer than 4
threads, and thus limit oversubscription of resources. How-
ever, no fixed interval is ideal across the entire load spec-
trum. The shorter the interval, the higher the tail latency at
high load. Conversely, the longer the interval, the higher the
tail latency at low load. These results suggest that FM par-
allelization can be effective, but to select intervals correctly
FM must carefully consider the system load. Fundamentally,
the main requirements for effective incremental paralleliza-
tion are the following.

FM scheduling must efficiently utilize resources. When
the load is low (no resource contention), FM should be
aggressive and choose shorter intervals to better utilize
the hardware resources. At high load (high contention), it
must be conservative and choose longer intervals to apply
parallelism more selectively to just the longest requests.
We observe that maintaining a fixed overall number of
software threads is a good way to control hardware re-
source utilization as the load varies.



FM scheduling must consider workload characteristics.
FM must consider the distribution of the service demand.
For example, if the vast majority of requests take less than
100 ms, an interval of 100 ms will not exploit much par-
allelism. Moreover, FM must consider any overhead due
to parallelism. With lower overhead, we choose smaller
intervals, parallelizing requests more aggressively. With
higher overhead, we choose larger intervals, parallelizing
requests more conservatively to avoid wasting resources.

FM scheduling must consider scalability of the workload.
When speedups tail off at high degrees, adding more par-
allelism is a less effective use of hardware resources. FM
thus limits parallelism to an effective maximum.

4. Few-to-Many Incremental Parallelization
This section describes Few-to-Many (FM) incremental par-
allelization for a single server. Our goal is to reduce tail la-
tency. The FM scheduler achieves this goal by exploiting all
hardware parallelism and judiciously adding software par-
allelism. FM has two phases. (1) An offline analysis phase
produces an interval table. (2) An online dynamic phase
schedules requests by indexing the interval table. FM com-
putes the interval table offline using as inputs the maximum
software parallelism per request, hardware parallelism, and
service demand profiles of sequential and parallel execution
times. The interval table specifies when during the execution
of a request to add parallelism and how much, as a function
of load and request progress. At runtime, the service demand
of each request is unknown. FM thus monitors the progress
of each request and the total load, and then at the specified
intervals, it adds software parallelism to the request. FM is
decentralized and each request self-schedules. FM aggres-
sively introduces parallelism under light load, but under high
load, it makes efficient use of resources by judiciously exe-
cuting short requests sequentially and long requests in paral-
lel. The following key insights lead to an efficient solution.

Favoring long requests FM gives more parallelism to long
requests. At moderate to high loads, FM assigns only one
thread to each new request. Short requests thus execute se-
quentially, only ever consuming one thread. As long re-
quests continue to execute, FM assigns them more paral-
lelism (software threads). FM performs admission control.
At moderate to high load, it may delay adding a new request
in favor of adding parallelism to existing requests. Since new
requests are more likely short, FM optimizes for tail latency.

Judicious use of hardware parallelism FM explicitly con-
trols total load, neither undersubscribing nor oversubscrib-
ing hardware resources. Undersubscribing causes resources
to needlessly sit idle when they could be reducing tail la-
tency. Oversubscribing increases contention and thus tail la-
tency, since independent requests and parallel tasks within
the same request may interfere, competing for the same re-
sources. Thus, FM slightly oversubscribes the hardware, be-
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cause threads may occasionally block for synchronization or
more rarely I/O. When software parallelism (threads) on oc-
casion exceeds the hardware parallelism (cores), we boost
the oldest threads priorities, so they complete without inter-
ference from younger requests. FM thus matches software
parallelism to hardware parallelism.

Judicious use of software parallelism Since parallelism
introduces overhead and has diminishing returns, the degree
to which software parallelism can reduce tail latency is a
function of the service, hardware, and workload. Based on
workload speedup efficiency, the service provider specifies
a maximum amount of software parallelism per request that
will deliver a target tail latency.

4.1 Offline Analysis
Our offline analysis takes as input a request demand profile,
maximum software parallelism, and target hardware paral-
lelism. It outputs an interval table indexed by load and each
request’s current processing time.

Example Consider the simple example in Figure 5 that
uses the notation defined in Table 1. Short and long requests
occur with equal probability. The sequential execution time
of short requests is 50 ms and long requests is 150 ms. With
parallelism degree 3, both short and long requests obtain a
speedup of 2. Assume 6 cores for hardware parallelism and
50 ms intervals for simplicity. The resulting interval table
consists of 4 rows indexed by the number of instantaneous
requests q

r

. For 1 or 2 requests, the pair t = 0, d3 specifies
that at time t = 0 every request starts immediately with
parallelism d3 degree 3, resulting in tail latency of 75 ms
for long requests. Average total parallelism is 3 times active
requests q

r

. If q
r

= 3, then t = 0, d1, so short requests run
sequentially. With t

0 = 50, d3, long requests run sequentially
until 50 ms, when parallelism degree increases to 3. Long
requests finish 50 ms later with a speedup of 2 and a tail
latency of 100 ms. The average parallelism per request is
(1 ⇥ 50 + 1 ⇥ 50 + 3 ⇥ 50)/(50 + 100) = 1.67 since the
numbers of short and long requests are equal. With 7 or more
requests (q

r

� 7), t = e1, d1 indicates that new requests
must wait until another request exits and then start executing
sequentially.

Interval table Formally, we compute a function f : R !
I, where R is the set of all potential instantaneous requests



in the system and I is a table indexed by q

r

2 R with each
q

r

corresponding to one interval selection (or schedule) �.
A schedule � consists of pairs (t

i

, d

j

), which specify that at
load q

r

when a request reaches time t

i

, execute it with par-
allelism degree d

j

. If t0 = 0, the request immediately starts
executing. If t0 > 0, the interval table is specifying admis-
sion control and the request must wait to begin its execution
until the specified time. If t0 = e1, the request must wait un-
til another request exits to begin its execution. For example,
f(3) = {(t0 = 0, d1), (t1 = 50, d3)} in Figure 5 speci-
fies that all requests start executing immediately with one
thread and after a request executes for 50 ms (t1 = 50, d3),
all requests execute with 3 degrees of software parallelism.
Load changes dynamically at runtime. A particular request
will consult different entries in the interval table during its
execution.

Interval selection algorithm We formulate interval selec-
tion as an offline search problem, which takes as inputs the
request demand profile, maximum software parallelism, tar-
get hardware parallelism target

p

, and parallelism speedup.
The profiled sequential and parallel request demand and par-
allelism speedup are collected offline. The maximum soft-
ware parallelism per request is selected based on the par-
allelism efficiency of requests, to limit the parallelism de-
gree to the amount effective at speeding up long requests.
We select the target hardware parallelism target

p

to moder-
ately oversubscribe the hardware threads through profiling.
The search algorithm enumerates potential policies that sat-
isfy target

p

, i.e., schedules that use all available hardware
resources, and then chooses ones that minimize tail latency.

To ease the presentation, we introduce an intermediate
representation of a schedule as S = {v0, v1, ..., vn�1}: a
request starts its first thread at time v0, and adds parallelism
from d

i

to d

i+1 after interval v
i+1. It is easy to see that any

schedule � has an alternative but equivalent representation
as S . For example, for � = {(t0 = 0, d1), (t1 = 50, d3)},
the equivalent S = {0, 50, 0} when the maximum software
parallelism n = 3.

The interval selection algorithm has two parts. First, Fig-
ure 6 shows the mathematical formulation for computing
parallelism and latency of requests for a given interval se-
lection (schedule) S and load q

r

. Equation (1) computes the
total time a request takes given the time it spends in its se-
quential portion (if any) and time it takes in each parallel
interval (if any). Equation (2) computes the request average
parallelism under the schedule. Equation (3) computes the
total parallelism of the system when there are q

r

requests.
Equation (4) and Equation (5) calculate the average and tail
latency of the requests under the schedule.

Second, we enumerate all loads and all potential sched-
ules, evaluate if they satisfy the parallelism target target

p

,
and compute tail and mean latency. If multiple schedules
have the same minimum tail latency, we choose the one that
minimizes the mean. Figure 7 shows the pseudocode for this

Symbol Definition

r 2 R Request profiles
seq

r

Sequential runtime of request r
d

n

Max degree n of software parallelism
s

r

(d
j

) Speedup of r with d

j

, j  n,
8r, s

r

(1) = 1
q

r

Instantaneous number of requests
target

p

Target hardware parallelism

� = {(t0, dj), (t1, dj+1)..., (tk, dn)}, t

i

< t

i+1, d
j

< d

j+1

schedule, at t
i

increase parallelism to
degree d

i

S = {v0, v1, ..., vn�1}, intermediate representation of schedule �
start request at time v0, and add paral-
lelism d

i

to d

i+1 after interval v
i

time
r

(S) Execution time of r with schedule S
ap

r

(S) Average parallelism of r with S
ap

R

(S, q
r

) Total average parallelism of q

r

of R
requests with S

time

R

(S,mean) Average latency of requests from R

with S
time

R

(S,� � tail) �-tail latency of R with S at 99th-
percentile latency with � = 0.99

Table 1: Symbols and definitions for interval selection.

search process. For each potential system load q

r

, ranging
from one request to the maximum system capacity, we gen-
erate all candidate schedules S . Each component interval of
a candidate schedule v

i

2 S will take a value from 0 to y,
where y is the maximum request length in the workload. We
choose the schedules whose total average parallelism of all
concurrent requests does not exceed the target hardware par-
allelism target

p

, so we avoid oversubscribing the system. It
is also important algorithmically: the formulation in Figure
6 calculates the request latency assuming all software paral-
lelism nicely maps to hardware resources, which no longer
holds when the total software parallelism exceeds target

p

.
Note that we do not need a lower bound on total parallelism.
While optimizing tail latency, we will find schedules with to-
tal parallelism close to target

p

, maximizing the utilization of
all resources to reduce tail latency. Moreover, if we include
a lower bound of target

p

, we may not find a feasible sched-
ule to meet it under light load, e.g., there is only one request
with maximum software parallelism 4, but target

p

= 20.
From Figure 7, we can easily derive the complexity of

interval table construction as

(y/step)n ⇥ req

max

⇥ |R| .

This search problem is rather compute intensive. We take
several steps to make it faster. First, we search in steps. If
a target tail latency is in the range of 100 ms, then we limit
the intervals to steps of 10 ms. Second, we only search for
intervals in the range of the lifetime of the longest request.
For example, when searching for intervals to increase par-
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L is execution times timer(S) of all requests r 2 R in non-
decreasing order.

Figure 6: Mathematical formulation of average parallelism,
mean and tail latency for interval S .

allelism from 1 to 4, we only search where the sum of all
3 intervals is less than the lifetime of a request. Third, if
some interval does not satisfy target

p

for lower number of
requests, it will not satisfy the target

p

, for any higher num-
ber of requests. For accuracy, we use individual request pro-
files for Bing and Lucene. This process takes about four to
six hours, as we process 10K - 100K requests one by one
for each schedule. We may further reduce the search time by
grouping requests into demand distribution bins with their
frequencies, which reduces our computation time to a few
minutes. The offline analysis can run daily, weekly, or at any
other coarse granularity, as dictated by the characteristics of
the workload.

Admission control Optimizing for target
p

does not di-
rectly control the number of active requests in the system.
In particular, at high load, we want to determine whether
to admit a request or to increase parallelism of the exist-
ing requests. Our search algorithm explicitly explores this
case by enumerating non-zero values for the first interval
(v0). Furthermore at very high load, if the search returns the
maximum value of v0 = y, then the schedule specifies a
new request must wait for one to exit and then starts exe-
cuting with parallelism degree 1. We denote this schedule as
(e1, d1) in an interval table.

Input: req
max

, Maximum number of simultaneous requests
Input: y, step Maximum time interval and interval step values
for q

r

:= 1 to req

max

step 1 do

min

tl

= min

ml

= inf Minimum tail and mean latency
result = �

for v0 = 0 to y step step do

for v1 = 0 to y step step do

...

for v

n�1 = 0 to y step step do

S = (v0, v1, ..., vn�1)
if ap

R

(S, q
r
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)
min

tl

= tail,min

ml

= mean, result = S
Add result to interval table entry q

r

Figure 7: Pseudocode for interval table construction.

4.2 Online Scheduling
The online FM scheduler is invoked when new requests
enter the system and requests terminate. Each request self-
schedules itself periodically based on a scheduling quanta,
e.g., every 5 or 10 ms. If FM detects oversubscription of
hardware parallelism, it boosts the priority of all the threads
executing a long request to insure its quick completion.

FM tracks the load by computing the number of requests
in the system in a synchronized variable and uses this num-
ber to index the interval table. This simple method has sev-
eral advantages. First, the number of requests is fast and easy
to compute compared to other indicators, such as CPU uti-
lization. Second, in contrast with coarse-grained load indica-
tors, such as RPS, it measures the instantaneous load. FM ex-
ploits instantaneous spare resources to avoid transient over-
loading. Third, FM self-corrects quickly. If the number of re-
quests increases due to transient load, FM will index a higher
row in the table, which has larger interval values and will in-
troduce parallelism more conservatively. Similarly, when the
number of requests decreases, FM will promptly introduce
more parallelism for longer requests, as specified by a lower
row in the table, which has shorter intervals.

Each time a request enters, FM computes the load, con-
sults the interval table, and either starts or queues the re-
quest. When a request leaves, FM computes the load and
starts a queued request (if one exists). After a request starts,
it self-schedules, regularly examining the current load and
its progress at the periods defined by the scheduling quanta.
Each self-scheduling request indexes the interval table by
the instantaneous load and if it has reached the next inter-
val, adds parallelism accordingly. We choose relatively short
scheduling quanta, less than the interval size in the table, be-
cause if requests leave the system, then FM can react quickly
to add more parallelism. FM self-scheduling increases scal-
ability of the scheduler by limiting synchronization.



FM will on occasion oversubscribe the hardware re-
sources at high load because we choose a target hardware
parallelism that exceeds the number of cores. This choice en-
sures that FM fully utilizes hardware resources when threads
are occasionally blocked on synchronization, I/O, or ter-
minating, but under high load will degrade tail latency if
long requests must share resources with short requests. For
example, operating systems generally implement a round
robin scheduling to give equal resources to all the threads.
To mitigate this issue, we implement selective thread boost-
ing. Boosting increases the priority of all threads executing
a single long request. We ensure that the number of boosted
threads is always less than the number of cores by using
a synchronized shared variable to count the total number of
boosted threads. We only boost a request when increasing its
parallelism to the maximum degree and when the resulting
total number of boosted threads will be less than the number
of cores. This mechanism instructs the OS to schedule these
threads whenever they are ready. The longer requests will
thus finish faster, which improves tail latency.

5. Evaluation
The next two sections evaluate the FM algorithm in two set-
tings. We implement the offline table construction algorithm
using around 100 lines of Python that we use for both sys-
tems. We compare both systems to the prior state-of-the-art
parallelization approaches and find that FM substantially im-
proves tail latencies over these approaches. We compare FM
to the following schedulers.

Sequential (SEQ) Each request executes sequentially.
Fixed parallelism (FIX-N) Each request executes with a

predefined fixed parallelism degree of N .
Adaptive (Adaptive) This scheduler [18] selects the paral-

lelism degree for a request based on load when the re-
quest first enters the system. The parallelism degree re-
mains constant.

Request Clairvoyant (RC) This scheduler is oracular, be-
cause it is given all requests’ sequential execution times.
It is an upper bound on predictive scheduling [19], which
estimates request length. It selects a parallelism degree
for long requests when they enter the system based on a
threshold and executes other requests sequentially. The
parallelism degree is constant.

SEQ and FIX-N are reference points, and Adaptive is the
prior state-of-the-art for exploiting parallelism in interactive
services. RC assumes perfect prediction of request length,
but does not adapt to load. An algorithm for an optimal
scheduler is unknown and at least NP hard. It is harder than
bin packing, since it may divide jobs. It also requires knowl-
edge of future request arrivals. We configure FM to use in-
stantaneous load and each requests’ progress to add paral-
lelism and, when necessary, to use selective thread priority
boosting. Because FM dynamically adapts to total load, it

is significantly better than RC, which only considers the de-
mand of individual requests when they enter the system.

6. Lucene Enterprise Search
This section presents our experimental evaluation of FM
in Lucene. Apache Lucene [1] is an open-source Enter-
prise search engine. We configure it to execute on a sin-
gle server with a corpus of 33+ million Wikipedia English
Web pages [27, 38]. We use 10K search requests from the
Lucene nightly regression tests as input to our offline phase
and 2K search requests for running the experiments. While
the nightly tests use a range of request types, we use the term
requests. The client issues requests in random order follow-
ing a Poisson distribution in an open loop. We vary the sys-
tem load by changing the average arrival rate expressed as
RPS. The index size is 10 GB and it fits in the memory of
our server. Figure 2 shows the service demand distribution
and the speedup profile of the workload.

6.1 Methodology
Implementation We execute 10K requests in isolation
with different degrees of parallelism and gather their execu-
tion times. Each time is an average of at least 10 executions.
For a specific parallelism degree, we compute the speedup
of all requests and the average speedup across all requests.
The sequential execution times and speedups of all requests
constitute the input to the offline phase. Since the online
module of FM implements admission control and assigns
work to threads, we implement it within the Lucene request
scheduler. Lucene is implemented in Java and we implement
the scheduler in Lucene in roughly 1000 lines of Java code.

We make minor changes to the existing Lucene code base.
Lucene arranges its index into segments. To add parallelism,
we simply divide up the work for an individual request by
these segments. We do not change how Lucene’s default
mechanisms create its index and maintain the segments. We
note that this type of data organization is common to many
services and makes implementing incremental parallelism
simple. We extend Lucene to execute each request in par-
allel by adding a Java ExecutorService instance. We use the
ThreadPoolExecutor class that implements ExecutorService
and that configures the number of threads in the thread pool.
Each main thread retrieves a request from a shared queue and
processes the request. The main thread self-schedules peri-
odically (every 5 ms) and checks the system load. As speci-
fied by the interval table, it increases parallelism of a request
by adding threads. FM adds a thread by simply changing
a field of ThreadPoolExecutor. Lucene starts a new thread
that works on a new segment and synchronizes it with other
worker threads.

Hardware We use a server with two 8-core Intel 64-bit
Xeon processors (2.30 GHz) and turn off hyperthreading.
(Reasoning about job interference with hyperthreading to-
gether with parallelism is beyond the scope of this pa-



n

r

t0 t1 t2 t3

6 0, d4
7 0, d3 75, d4
8 0, d2 25, d3 150, d4
9 0, d2 50, d3 150, d4

10 0, d1 25, d2 100, d3 175, d4
11 0, d1 25, d2 125, d3 175, d4
12 0, d1 75, d2 150, d3 200, d4
13 0, d1 100, d2 175, d3 225, d4
14 10, d1 110, d2 210, d3 235, d4
15 30, d1 130, d2 205, d3 255, d4
16 40, d1 140, d2 240, d3 265, d4
17 60, d1 160, d2 245, d3 285, d4
18 60, d1 185, d2 260, d3 310, d4
19 70, d1 195, d2 270, d3 320, d4
20 70, d1 220, d2 295, d3 370, d4
21 80, d1 255, d2 305, d3 375, d4
22 80, d1 280, d2 330, d3 380, d4
23 90, d1 290, d2 365, d3 415, d4
24 90, d1 315, d2 390, d3 440, d4

�25 e1, d1 315, d2 390, d3 440, d4

Table 2: Lucene interval table in milliseconds for 99th per-
centile latency with target

p

= 24 threads and maximum par-
allelism n = 4. When t0 = e1, FM waits for a request to
complete and then admits one waiting request. Each entry
specifies execution thus far and parallelism d

k

to add.

per [32].) The server has 64 GB of memory and runs Win-
dows 8. Out of the available 16 cores, we use 15 cores to run
our experiments and 1 core to run the client that generates
requests. We empirically set the target hardware parallelism,
target

p

= 24. We explored several values for target
p

and
observed only small differences for target

p

2 [20, 28].
We report the 99th percentile latency, average latency, and

CPU utilization of different policies. Latency includes both
queuing delay and execution time. We use Java NanoTime
for fine-grain time measurements. Our reported tail latency
is the 99th percentile of the response times of all requests
and the mean is the average response time measured over
the 2K requests under various loads.

Interval selection for FM Table 2 shows the intervals gen-
erated by the offline phase for a target parallelism of 24. The
table is indexed by the number or requests in the system, our
metric for system load. Each column shows the time in ms
at which FM adds parallelism. We use a step size of 5 ms
to generate the interval table. As discussed in Section 4.1,
the second column is for admission control. New requests
must wait for this time before they start processing. When
the load is very low (less than 6 requests), FM starts each re-
quest with parallelism degree 4. At other low loads (7 to 13
requests), FM starts a new request whenever it arrives and
adds parallelism following the corresponding row. Finally,
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Figure 8: Lucene latency compared to fixed parallelism.

as load increases (more than 14 requests), FM delays new
requests and uses longer intervals to add parallelism.

6.2 Results
Comparison to fixed parallelism policies We compare FM
to sequential execution (SEQ) and a fixed degree of paral-
lelism for each request (FIX-2 and FIX-4). Figures 8(a) and
8(b) show the 99th percentile and mean latency. FM has con-
sistently lower tail and average latency than the other poli-
cies. At low load, many cores are available; FM is close to
but better than FIX-4. Here FM aggressively parallelizes al-
most all requests with 4 threads (as shown in Table 2, row
n

r

<= 6). Occasional request bursts and short requests re-
duce intra-request parallelism on occasion even at low load.
At high load, FM uses thread boosting and instantaneous
load to carefully manage the degree of parallelism per re-
quest. At a medium load (40 RPS), FIX-4 is already worse
than FIX-2. In contrast, FM reduces the 99th percentile la-
tency by 33% and mean latency by 29% compared to FIX-2.
At high load (43 RPS), FM reduces the 99th percentile and
mean latency by 40% and 20%, respectively.

FM characteristics We now examine the parallelism de-
gree and number of threads in FM. Figure 9(a) shows the
average parallelism degree for all requests, the longest 5%,
and the shortest 5%. At low load, FM assigns a high paral-
lelism degree (almost 4) to all requests. As load increases,
FM becomes less aggressive and assigns requests less par-
allelism. On average however, long requests have a higher
degree of parallelism than short requests. At high load (47
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Figure 9: Lucene breakdown of parallelism degree by requests and total number of threads in the system.
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Figure 10: Lucene latency comparison with Adaptive and Predictive policies (a,b). Effect of thread priority boosting (c).

RPS), short requests mostly run sequentially with an aver-
age parallelism degree of 1.29 and long requests run with
an average degree of 3. These results show that FM adapts
parallelism to the system load and favors running longer re-
quests with higher parallelism than shorter requests.

We select four RPS values, (31, 36, 40, 45) to represent
(“Very low”, “Low”, “Medium” and “High”) loads. Figure
9(b) shows the parallelism degree distributions over all re-
quests. At very low load, most requests run with degree 4.
At high load, 19% of the requests finish sequentially and
41% finish with degree 3 or less. At high load, a request that
runs with parallelism degree 4 would have run with a lower
parallelism degree for part of its execution. Short requests
are thus likely to complete sequentially, which is the most
efficient way to execute them, saving processing resources
for parallelizing longer requests.

We report the average number of threads in the system
and CPU utilization in Figure 9(c). The average number of
threads is between 17 and 25, which is close to our target of
24. CPU utilization increases with load. At very high load
(48 RPS), CPU utilization is almost 100% and the average
number of threads is 25.

Comparison to the state-of-the-art policies We compare
FM to state-of-the-art “Adaptive” and perfect prediction
“RC” polices described in Section 5. For RC, we execute
short requests sequentially and long requests with paral-
lelism degree 4. We experimentally search for the best

threshold to divide requests between short and long requests.
This threshold is 225 ms.

Figure 10(a) and 10(b) show the 99th percentile latency
and mean latency. FM performs consistently better than
Adaptive and RC. At low load, FM executes most requests
with high degrees of parallelism. Adaptive aggressively runs
all requests with high degrees, but does not differentiate be-
tween long and short requests. RC misses the opportunity
to parallelize requests shorter than its threshold. At medium
load (40 RPS), FM reduces the 99th percentile latency by
32% and 22% compared to Adaptive and RC, respectively.
Adaptive has higher latency than RC because it executes
short requests in parallel, while RC runs short requests se-
quentially. At high load (43 RPS), RC is worse than Adap-
tive because it does not adapt to high load by reducing paral-
lelism. At this load, FM reduces the tail latency by 30% and
38% compared to Adaptive and RC, respectively.

FM reduces the tail latency more than Adaptive and RC
for three reasons. First, both Adaptive and RC select the par-
allelism degree at the start and do not dynamically adapt. FM
has an extra degree of freedom. It may dynamically increase
the parallelism of each individual request. Second, FM fa-
vors longer requests with additional parallelism, and shorter
requests are more likely to execute sequentially especially
under high load. In contrast, Adaptive does not differentiate
between short and long requests, and RC, despite being clair-
voyant of the request service demand, uses a static threshold,
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Figure 11: 99th percentile latency for the last 100 requests in
a 500-request quanta, while varying the load in Lucene.

fixed parallelism degree, and ignores system load. Third, FM
exploits thread boosting to further reduce the tail latency.

Selective thread priority boosting To study benefits of
boosting, we disable thread boosting in FM and add it to
a fixed parallelism configuration. Since the average paral-
lelism of FM ranges from 2.2 to 3.8 (Figure 9(a)), we select
fixed degree 3 (FIX-3) and compare FM with FIX-3 with
boosting. Figure 10(c) shows the 99th percentile latencies.
Selective thread priority boosting improves the tail latency
for both FM and FIX-3. In particular, thread priority boost-
ing reduces the tail latency of FM by 12% at 40 RPS, and
by 16% at 43 RPS. Selective thread priority boosting en-
sures that short requests do not interfere with long requests,
reducing tail latency.

Load variation To study the effect of load variation and
burstiness on tail latency, we configure the client to vary
the request submission rate in quick succession. The client
varies load in four quanta: high (45 RPS) to low (30 RPS) to
high (45 RPS) to low (30 RPS). The client submits 500 re-
quests in each quanta. Figure 11 compares 99th percentile
latencies of the last 100 requests in each quanta for FM,
SEQ, FIX-2, and FIX-4. The performance of SEQ is usu-
ally the worst, but is slightly better than FIX-4 at the begin-
ning of a load burst. FM adapts well to changes in load and
consistently achieves the best tail latency. FIX-4 is the most
aggressive and performs almost as well as FM at low load,
but performs substantially worse during the load burst. Com-
paring FIX-2 and FIX-4, we see that FIX-2 performs better
than FIX-4 during the high load quanta, but worse at low
load. This experiment shows that FM is stable, responding
quickly and smoothly to highly variable load. FM tunes its
scheduling policy to the load to reduce tail latency.

7. Bing Web Search
This section presents our evaluation of FM in the index
servers of Microsoft Bing Web search with a production in-
dex and query log. The Bing index serving system consists
of aggregators and index serving nodes (ISNs). An entire
index, containing information about billions of Web docu-
ments, is document-sharded [3] and distributed among hun-
dreds of ISNs. When a user sends a request and the result is
not cached, the aggregator propagates the request to all ISNs
hosting the index. Each ISN searches its fragment of the in-
dex and returns the top-k most relevant results to the aggre-
gator. Because Bing is compute-bound at the ISN servers
(see Section 2), a long latency at any ISN manifests as a
slow response [9]. To reduce the total tail latency, each ISN
must reduce its tail latency. For example, assuming the ag-
gregator has 10 ISNs, if we want to process 90% of user
requests within 100 ms, then each ISN needs to reply within
100 ms with probability around 0.99. In other words, for a
total latency of 100 ms at the 90th-percentile response time,
the response time of each ISN must be at most 100 ms at
the 99th-percentile. These results motivate our evaluation of
Bing on an individual server.

7.1 Methodology
Implementation We implement FM in the Bing request
dispatch code. To eliminate thread creation time, we use a
thread pool. Bing organizes its indexes in groups and thus
adding incremental parallelism is not onerous. We configure
two servers. One server is the index server, which executes
requests. A second server is the aggregator, which sends re-
quests to the index server by replaying a trace containing
30K Bing production user requests from 2013. We vary sys-
tem load by changing the average request arrival rate in RPS.
This version of FM does not perform thread boosting. FM
uses a target number of threads, target

p

= 16, a slightly
higher number than the 12 available cores (see below). As
Section 2 showed, the efficiency of parallelism drops signif-
icantly at degree 4, thus we configure FM to increase the
parallelism degree of a request up to 3.

Hardware and OS For the index service, we use a server
with two 2.27 GHz 6-core Intel 64-bit Xeon processors and
32 GB of main memory with Windows Server 2012. The
ISN manages a 160 GB index partition on an SSD, and uses
17 GB of its memory to cache index pages from the SSD.

7.2 Results
We compare FM to fixed parallelism with degree 3 (FIX-3),
Adaptive, and SEQ. The production version of FIX-3 applies
load protection: it parallelizes each request using degree 3
when the total number of requests in the system is less than
30. Otherwise, it runs requests sequentially.

Figure 12 presents the 99th-percentile latency over differ-
ent loads. These experimental results show that FM consis-
tently has the lowest tail latency. In particular, it effectively
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Figure 12: Bing comparisons and parallelism.

reduces the tail latency at moderate to high load. For exam-
ple, up to 260 RPS, FM exhibits a 99th percentile latency
of 100 ms. In contrast after 150 RPS, FIX-3 has latencies of
over 200 ms because it oversubscribes the resources, paral-
lelizing all requests regardless of system load and the request
length. FM also performs better than Adaptive at all load lev-
els. For example, at 180 RPS, the tail latency reduction over
Adaptive is 26% and at 260 RPS, the improvement is 24%.
FM reduces the tail latency more than Adaptive because it
runs long requests with higher parallelism degrees than short
requests. These results show that FM enables the provider to
service the same load with 42% fewer servers compared to
Adaptive for a target tail latency of 120 ms.

To study FM parallelism, we select two representative
load values: 200 RPS for “Low” and 280 RPS for “High”
load. Figure 12(b) shows the distribution of parallelism per
request. Figure 12(c) shows total threads, which are under-
utilized at low load and match the target load of 16 at high
load, as expected. Comparing low to high load, FM uses
less intra-request parallelism as load (system parallelism) in-
creases. About 35% of requests execute sequentially at low
load, whereas over 50% are sequential at high load.

8. Related Work
This section compares incremental parallelism to related
work on parallelism for minimizing latency.

Parallelizing a single job to reduce latency. Many sys-
tems adapt parallelism to run-time variability and hardware
characteristics [4, 8, 20, 23, 24, 30, 34, 36]. They focus on
the execution of a single job to reduce execution time and
improve energy efficiency. However, they do not consider
a server system running concurrent jobs. Simply applying
parallelism to minimize the execution time of every single
job will not minimize the response time for concurrent jobs.
Our work focuses on a server environment with many re-
quests where parallelizing one request may affect others. We
choose the degree of parallelism for a request based on both
its impact on the request itself and on other requests.

Parallelization in a multiprogrammed environment for re-
ducing mean response time. Adaptively sharing resources
among parallel jobs has been studied empirically [11, 29]
and theoretically [2, 16]. However, these studies focus on a
multiprogrammed environment, in which jobs have different
characteristics unknown a priori to the scheduler. The sched-
uler learns the job characteristics and adjusts the degree of
parallelism as the job executes. In contrast, interactive re-
quests in server systems share characteristics that we de-
scribe in Section 2 and then exploit. For example, the request
service demand distribution and parallelism efficiency are
stable over time, and therefore we profile them and use the
results to improve scheduling decisions. Moreover, as many
requests complete quickly, the scheduler must act quickly.
We perform offline processing so that FM makes efficient
online decisions. Finally, this prior work focuses only on
reducing mean response time, whereas FM reduces tail la-
tency, which requires different techniques.

Parallelization in interactive server systems for reducing
mean and tail response time. Adaptive resource alloca-
tion for server systems [35, 37] focuses on allocating re-
sources dynamically to different components of the server,
while still executing each request sequentially. Raman et al.
proposed an API and runtime system for dynamic paral-
lelism [31], in which developers express parallelism options
and goals, such as minimizing mean response time. The run-
time dynamically chooses the degree of parallelism to meet
the goals, and does not change it during the execution of the
requests. Jeon et al. [18] proposed a dynamic parallelization
algorithm to reduce the average response time of Web search
queries. The algorithm decides the degree of parallelism for
each request before the request starts, based on the system
load and the average speedup of the requests. Neither ap-
proach [18, 31] targets tail latencies. Moreover, since the
service demand of each request is typically unknown before
the request starts, these approaches cannot differentiate long
requests from short ones. Thus, they oversubscribe resources
under moderate or high load, and are ineffective at reducing



the tail latency. We implement the “Adaptive” algorithm [18]
in Section 6, and show FM provides lower tail latency.

To specifically reduce tail latency, Jeon et al. [19] pre-
dict service demand of Web search requests using machine
learning and parallelize the requests predicted to be long, re-
gardless of the system load and workload characteristics. FM
considers all of these factors, as well as instantaneous load to
deliver better results. Even with a perfect predictor, the “Re-
quest Clairvoyant” (RC) approach does not outperform FM
as shown in Section 6. RC provides an upper-bound on the
performance of the predictive technique [19], but it is hard
to predict the request service demand in many applications.
FM performs better than RC, across all loads, because it con-
tinually adapts to total load without requiring prediction.

9. Conclusion
This paper introduces a new parallelization strategy called
Few-to-Many (FM) incremental parallelism for reducing
high-percentile latency in interactive services. FM uses the
demand distribution and a target hardware parallelism to de-
termine dynamically when and how many software threads
to add to each request. At runtime, it uses system load and
request progress to add parallelism, adapting each request in-
dividually. We implement FM in two search engines, Lucene
and Bing, and evaluate it using production request traces and
service demand profiles. Our results show that FM can sig-
nificantly reduce tail latencies, and help service providers to
reduce their infrastructure costs.

These results and our experience suggest that FM should
be extremely useful in practice. In fact, Bing engineers have
already deployed a basic version of FM in the production
Bing system on thousands of servers.

A. Appendix: Proof of Theorem 1
Suppose a request needs to meet a �-th percentile latency of
d. We show any optimal policy that minimizes the average
resource usage assigns parallelism in non-decreasing order
up to the latency constraint at time d. (Requests that take
longer than d are in higher percentiles and, thus, may be
completed with any degree of parallelism.)

We denote the service demand CDF of request sequen-
tial execution times as F and speedup with parallelism i as
s

i

. As requests have sublinear speedup, the parallelism ef-
ficiency decreases with increasing parallelism degree, i.e.,
s

i

/i > s

j

/j, if i < j. Using F , we find the �-th percentile
service demand of requests, denoted as w, i.e., w = F

�1(�).
For a schedule to meet �-th percentile latency of d, we want
to ensure the �-th percentile longest request can be com-
pleted by d, i.e., a work amount w is completed by d.

Let’s denote S as a schedule that specifies how we paral-
lelize a request. For a given piece of work at the x-th cycle
where x 2 (0, w], and a schedule S , if S(x) = i, this work
is parallelized using degree i. The speed to process the work
is therefore sS(x) = s

i

. We write the resource usage mini-

mization problem as,

minS
R
w

0 [1� F (x)]⇥ S(x)
sS(x)dx (6)

s.t.
R
w

0
1

sS(x)dx  d . (7)

Here, the integral in the objective function 6 computes the
expected amount of resources a request consumes up to work
w and latency d. Constraint 7 guarantees that the processing
time of the �-th percentile request is bounded by d.

We now prove the theorem by contradiction. Suppose that
there is an optimal schedule S 0 that gives higher parallelism
to a request earlier and later decreases its parallelism. Thus,
there exist x1 and x2 such that 0  x1 < x1 + dx 
x2 < x2 + dx  w and S 0(x0

1) > S 0(x0
2), where x

0
1 2

[x1, x1 + dx], x0
2 2 [x2, x2 + dx] and dx is a sufficiently

small positive number.
Since we assume sublinear speedup, i.e., s

i

/i > s

j

/j if
i < j, the following inequality holds:

[1� F (x0
1)]⇥


S 0(x0

1)

sS0(x0
1)

� S 0(x0
2)

sS0(x0
2)

�

+[1� F (x0
2)]⇥


S 0(x0

2)

sS0(x0
2)

� S 0(x0
1)

sS0(x0
1)

�

=


S 0(x0

1)

sS0(x0
1)

� S 0(x0
2)

sS0(x0
2)

�
⇥ [F (x0

2)� F (x0
1)] > 0

Thus, [1� F (x0
1)]⇥

S0(x0
1)

sS0 (x0
1)

+ [1� F (x0
2)]⇥

S0(x0
2)

sS0 (x0
2)
] >

[1�F (x0
1)]⇥

S0(x0
2)

sS0 (x0
2)
+[1�F (x0

2)]⇥
S0(x0

1)
sS0 (x0

1)
]. Following the

optimization objective in Eqn. 6, the expected resource us-
age is reduced by exchanging the order of parallelism degree
between the x

0
1-th cycle and the x

0
2-th cycle, while keeping

the rest of the schedule S 0 unchanged. This contradicts the
assumption that S 0 minimizes Eqn. 6 and therefore proves
Theorem 1.

Acknowledgements We thank Xi Yang for helping us with
the implementation and configuration of Lucene. We thank
our shepherd, Jason Flinn, anonymous reviewers, and Jing Li
for their helpful comments and suggestions. We thank Gregg
McKnight for his feedback and support of this work.

References
[1] Apache Lucene. http://lucene.apache.org/. Retreived

July 2014.
[2] N. Bansal, K. Dhamdhere, and A. Sinha. Non-clairvoyant

scheduling for minimizing mean slowdown. Algorithmica, 40
(4):305–318, 2004.

[3] L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet:
The google cluster architecture. IEEE Micro, 23(2):22–28,
2003.

[4] F. Blagojevic, D. S. Nikolopoulos, A. Stamatakis, C. D.
Antonopoulos, and M. Curtis-Maury. Runtime scheduling of
dynamic parallelism on accelerator-based multi-core systems.
Parallel Computing, 33(10-11):700–719, 2007.



[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. Journal of Parallel and Distributed Comput-
ing, 37(1):55 – 69, 1996.

[6] B. Cahoon, K. S. McKinley, and Z. Lu. Evaluating the per-
formance of distributed architectures for information retrieval
using a variety of workloads. ACM Transactions on Informa-
tion Systems (TOIS), 18(1):1–43, 2000.

[7] G. Contreras and M. Martonosi. Characterizing and improv-
ing the performance of intel threading building blocks. In
IEEE International Symposium on Workload Characteriza-
tion (IISWC), pages 57–66, 2008.

[8] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S.
Nikolopoulos. Online power-performance adaptation of mul-
tithreaded programs using hardware event-based prediction.
In ACM International Conference on Supercomputing (ICS),
pages 157–166, 2006.

[9] J. Dean and L. A. Barroso. The tail at scale. Communications
of the ACM, 56(2):74–80, 2013.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 205–220, 2007.

[11] D. Feitelson. A Survey of Scheduling in Multiprogrammed
Parallel Systems. Research report. IBM T.J. Watson Research
Center, 1994.

[12] B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D. Holmes, and
D. Lea. Java Concurrency in Practice. Addison Wesley
Professional, 2006.

[13] R. Guida. Parallelizing a computationally intensive financial
R application with zircon technology. In The R User Confer-
ence, 2010.

[14] J. Hamilton. The cost of latency, 2009. http://per-

spectives.mvdirona.com/2009/10/31/-

TheCostOfLatency.aspx.

[15] J. Hamilton. Overall data center costs, 2010.
http://perspectives.mvdirona.com/2010/09/18-

/OverallDataCenterCosts.aspx.

[16] Y. He, W.-J. Hsu, and C. E. Leiserson. Provably efficient on-
line non-clairvoyant adaptive scheduling. IEEE Transactions
on Parallel and Distributed Systems, 19(9):1263–1279, 2008.

[17] Y. He, S. Elnikety, J. Larus, and C. Yan. Zeta: Scheduling in-
teractive services with partial execution. In ACM Symposium
on Cloud Computing (SOCC), page 12, 2012.

[18] M. Jeon, Y. He, S. Elnikety, A. L. Cox, and S. Rixner. Adap-
tive parallelism for web search. In ACM European Conference
on Computer Systems (EuroSys), pages 155–168, 2013.

[19] M. Jeon, S. Kim, S.-W. Hwang, Y. He, S. Elnikety, A. L.
Cox, and S. Rixner. Predictive parallelization: taming tail
latencies in web search. In ACM Conference on Research and
Development in Information Retrieval (SIGIR), pages 253–
262, 2014.

[20] C. Jung, D. Lim, J. Lee, and S. Han. Adaptive execution tech-
niques for SMT multiprocessor architectures. In ACM Sym-

posium on Principles and Practice of Parallel Programming
(PPoPP), pages 236–246, 2005.

[21] A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David,
J. P. Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari,
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