
Flight Data Recorder: Monitoring Persistent-State
Interactions to Improve Systems Management

Chad Verbowski, Emre Kıcıman, Arunvijay Kumar, Brad Daniels,
Shan Lu‡, Juhan Lee*, Yi-Min Wang, Roussi Roussev†

Microsoft Research, †Florida Institute of Technology, ‡U. of Illinois at Urbana-Champaign, *Microsoft MSN

Abstract
Mismanagement of the persistent state of a system—all the executable files, configuration settings and other data

that govern how a system functions—causes reliability problems, security vulnerabilities, and drives up operation
costs. Recent research traces persistent state interactions—how state is read, modified, etc.—to help
troubleshooting, change management and malware mitigation, but has been limited by the difficulty of collecting,
storing, and analyzing the 10s to 100s of millions of daily events that occur on a single machine, much less the
1000s or more machines in many computing environments.

We present the Flight Data Recorder (FDR) that enables always-on tracing, storage and analysis of persistent
state interactions. FDR uses a domain-specific log format, tailored to observed file system workloads and common
systems management queries. Our lossless log format compresses logs to only 0.5-0.9 bytes per interaction. In this
log format, 1000 machine-days of logs—over 25 billion events—can be analyzed in less than 30 minutes. We report
on our deployment of FDR to 207 production machines at MSN, and show that a single centralized collection
machine can potentially scale to collecting and analyzing the complete records of persistent state interactions from
4000+ machines. Furthermore, our tracing technology is shipping as part of the Windows Vista OS.

1. Introduction
Misconfigurations and other persistent state (PS)

problems are among the primary causes of failures and
security vulnerabilities across a wide variety of
systems, from individual desktop machines to large-
scale Internet services. MSN, a large Internet service,
finds that, in one of their services running a 7000
machine system, 70% of problems not solved by
rebooting were related to PS corruptions, while only
30% were hardware failures. In [24], Oppenheimer et
al. find that configuration errors are the largest category
of operator mistakes that lead to downtime in Internet
services. Studies of wide-area networks show that
misconfigurations cause 3 out of 4 BGP routing
announcements, and are also a significant cause of extra
load on DNS root servers [4,22]. Our own analysis of
call logs from a large software company’s internal help
desk, responsible for managing corporate desktops,
found that a plurality of their calls (28%) were PS
related.1 Furthermore, most reported security
compromises are against known vulnerabilities—
administrators are wary of patching their systems
because they do not know the state of their systems and
cannot predict the impact of a change [1,26,34].

PS management is the process of maintaining the
“correctness” of critical program files and settings to
avoid the misconfigurations and inconsistencies that
cause these reliability and security problems. Recent

1 The other calls were related to hardware problems (17%),

software bugs (15%), design problems (6%), “how to” calls
(9%) and unclassified calls (12%). 19% not classified.

work has shown that selectively logging how processes
running on a system interact with PS (e.g., read, write,
create, delete) can be an important tool for quickly
troubleshooting configuration problems, managing the
impact of software patches, analyzing hacker break-ins,
and detecting malicious websites exploiting web
browsers [17,35-37]. Unfortunately, each of these
techniques is limited by the current infeasibility of
collecting and analyzing the complete logs of 10s to
100s of millions of events generated by a single
machine, much less the 1000s of machines in even a
medium-sized computing and IT environments.

There are three desired attributes in a tracing and
analysis infrastructure. First is low performance
overhead on the monitored client, such that it is feasible
to always be collecting complete information for use by
systems management tools. The second desired
attribute is an efficient method to store data, so that we
can collect logs from many machines over an extended
period to provide a breadth and historical depth of data
when managing systems. Finally, the analysis of these
large volumes of data has to be scalable, so that we can
monitor, analyze and manage today’s large computing
environments. Unfortunately, while many tracers have
provided low-overhead, none of the state-of-the-art
technologies for “always-on” tracing of PS interactions
provide for efficient storage and analysis.

We present the Flight-Data Recorder (FDR), a high-
performance, always-on tracer that provides complete
records of PS interactions. Our primary contribution is
a domain-specific, queryable and compressed log file
format, designed to exploit workload characteristics of

PS interactions and key aspects of common-case
queries—primarily that most systems management
tasks are looking for “the needle in the haystack,”
searching for a small subset of PS interactions that meet
well-defined criteria. The result is a highly efficient log
format, requiring only 0.47-0.91 bytes per interaction,
that supports the analysis of 1000 machine-days of logs,
over 25 billion events, in less than 30 minutes.

We evaluate FDR’s performance overhead,
compression rates, query performance, and scalability.
We also report our experiences with a deployment of
FDR to monitor 207 production servers at various MSN
sites. We describe how always-on tracing and analysis
improve our ability to do after-the-fact queries on hard-
to-reproduce incidents, provide insight into on-going
system behaviors, and help administrators scalably
manage large-scale systems such as IT environments
and Internet service clusters.

In the next section, we discuss related work and the
strengths and weaknesses of current approaches to
tracing systems. We present FDR’s architecture and
log format design in sections 3 and 4, and evaluate the
system in Section 5. Section 6 presents several analysis
techniques that show how PS interactions can help
systems management tasks like troubleshooting and
change management. In Section 7, we discuss the
implications of this work, and then conclude.

Throughout the paper, we use the term PS entries to
refer to files and folders within the file system, as well
as their equivalents within structured files such as the
Windows Registry. A PS interaction is any kind of
access, such as an open, read, write, close or delete
operation.

2. Related Work
In this section, we discuss related research and

common tools for tracing system behaviors. We
discuss related work on analyzing and applying these
traces to solve systems problems in Section 6. Table 1
compares the log-sizes and performance overhead of
FDR and other systems described in this section for
which we had data available [33,11,21,20,40].

The tools closest in mechanics to FDR are file system
workload tracers. While, to our knowledge, FDR is the
first attempt to analyze PS interactions to improve
systems management, many past efforts have analyzed
file system workload traces with the goal of optimizing
disk layout, replication, etc. to improve I/O system
performance [3,9,12,15,25,28,29,33]. Tracers based on
some form of kernel instrumentation, like FDR and
DTrace [30], can record complete information. While
some tracers have had reasonable performance
overheads, their main limitation has been a lack of
support for efficient queries and the large log sizes.
Tracers based on sniffing network file system traffic,
such as NFS workload tracers [12,29] avoid any client-

perceived performance penalties, but sacrifice visibility
into requests satisfied by local caches as well as
visibility of the process making a request.

Complete versioning file systems, such as CVFS [31]
and WayBack [8] record separate versions of files for
every write to the file system. While such file systems
have been used as a tool in configuration debugging
[39], they do not capture file reads, or details of the
processes and users that are changing files. The
Repairable File Service (RFS) logs file versioning
information and also tracks information-flow through
files and processes to analyze system intrusions [40].

In [33], Vogels declares analysis of his 190M trace
records to be a “significant problem,” and uses data
warehousing techniques to analyze his data. The
Forensix project, tracing system calls, also records logs
in a standard database to achieve queryability [13].
However, Forensix’s client-side performance overhead
and their query performance (analyzing 7 machine-days
of logs in 8-11 minutes) make it an unattractive option
for large-scale production environments.

A very different approach to tracing a system’s
behavior is to record the nondeterministic events that
affect the system, and combine this trace with virtual
machine-based replay support. While this provides
finer-grained and more detailed information about all
the behaviors of a system than does FDR, this extra
information can come at a high cost: ReVirt reports
workload-dependent slowdowns up to 70% [11]. More
significantly, arbitrary queries are not supported
without replaying the execution of the virtual machine,
taking time proportional to its original execution.

While, to our knowledge, we are the first to
investigate domain-specific compression techniques for
PS interaction or file system workload traces, there has
been related work in the area on optimizing or
compressing program CPU instruction traces [5,19], as
well as work to support data compression within
general-purpose databases [6].

Table 1: Performance overhead and log sizes for
related tracers. VTrace, Vogel and RFS track

similar information to FDR. ReVirt and Forensix
track more detailed information. Only FDR and

Forensix provide explicit query support for traces.
 Performance

Overhead
Log size

(B/event)

Log Size

(MB/machine-day)

FDR <1% 0.7 20MB

VTrace 5-13% 3-20 N/A

Vogel 0.5% 105 N/A

RFS <6% N/A 709MB

ReVirt 0-70% N/A 40MB-1.4GB

Forensix 6-37% N/A 450MB

3. Flight Data Recorder Architecture
In this section, we present our architecture and

implementation for black-box monitoring, collecting,
and analysis of PS interactions. Our architecture
consists of (1) a low-level driver that intercepts all PS
interactions with the file system and the Windows
Registry, calls to the APIs for process creation and
binary load activity, and exposes an extensibility API
for receiving PS interaction events from other
specialized stores; and (2) a user mode daemon that
collects and compresses the trace events into log files
and uploads them to a central server, (3) a central server
that aggregates the log files and, (4) an extensible set of
query tools for analyzing the data stream. Our
implementation does not require any changes to the
core operating system or applications running atop it.
We provide detailed discussion of our domain-specific
queryable log format in Section 4.

3.1 FDR Agent Kernel-Mode Driver
Our low-level instrumentation is handled by a kernel

mode boot driver2, which operates in real-time and, for
each PS interaction, records the current timestamp,
process ID, thread ID, user ID, interaction type (read,
write, etc.), and hashes of data values where applicable.
For accesses to the file system, the driver records the
path and filename, whether the access is to a file or a
directory and, if applicable, the number of bytes read or
written. For accesses to the registry, the driver records
the name and location of the registry entry as well as
the data it contains. The driver sits above the file
system cache, but below the memory mapping
manager. This driver also records process tree
information, noting when a binary module is loaded, or
when a process spawns another.

The largest performance impact from the driver stems
from I/O related to log writing, memory copies related
to logging events, and latency introduced by doing this
work on the calling application’s thread. We mitigate
this by only using the application’s thread to write the
relevant records directly into the user-mode daemon’s
memory space, and doing the processing on the user-
mode daemon’s thread. Caches for user names and file
names that need to be resolved for each interaction also
help to minimize lookup costs.

Our kernel driver is stable and suitable for use in
production environments, and will be available for
public use as part of Windows Vista.

3.2 FDR Agent User-Mode Daemon
The user-mode daemon is responsible for receiving

records of PS interactions from the kernel driver,
compressing them into our log format in-memory, and
periodically uploading these logs to a central server.

2 A kernel-mode boot driver is the first code to run after

booting and the last to stop if the system is shut down.

To avoid impacting the performance of the system,
we configure our daemon to run at lowest-priority,
meaning it will be scheduled only if the CPU is
otherwise idle. If the daemon does fall behind, the
driver can be configured to either block until space is
available or drop the event. However, in practice, we
have found that a 4MB buffer is sufficient to avoid any
loss on even our busiest server machines.

The daemon throttles its overall memory usage by
monitoring the in-memory compressed log size, and
flushing this to disk when it reaches a configurable
threshold (typically 20MB to 50MB). The daemon will
also periodically flush logs to disk to ensure reliable log
collection in the event of agent or system failure.
These logs are uploaded to a central server using a
standard SMB network file system protocol. If a failure
occurs during upload the daemon will save the log
locally and periodically retry the upload.

The daemon also manages its own operation, for
example, by automatically update its binaries and
configuration settings when indicated on the central
server, and monitoring its disk space and memory
usage. Setting up FDR tracing on a new machine is
simple: a user only needs to run a single binary on the
machine and configure the log upload location.

3.3 FDR Collection Server
The collection server is responsible for organizing

FDR log files as they are uploaded, triggering relevant
query tools to analyze the files as they arrive, and
pruning old log files from the archive. It also sets the
appropriate access privileges and security on the
collected files and processed data.

3.4 FDR Query Tools
The final pieces of our framework are the query tools

that analyze log files as they arrive. Each query tool is
specialized to answer a specific type of query for a
systems management task. Simple example queries
include “what files were modified today?”, or “which
programs depend on this configuration setting?” As all
our log files are read-only, we do not require
complicated transactional semantics or other
coordination between our query tools. Each query tool
reads the log files it is interested in scanning and
implements its own query plan against the data within.
While future work might investigate benefits of
caching, sharing intermediate results across multiple
concurrent queries, or other optimization techniques
from the database literature, we found that allowing
uncoordinated reads simplified the process of building
new query tools as required.

4. Designing the Log Format
The key requirements we have for FDR’s log format

are that 1) logs are compact, so that their size does not
overly burden client resources, network bandwidth or
server-side scalability; and 2) the log format efficiently

supports common-case queries. To meet these
requirements, we built a preliminary version of FDR
with a straightforward, flat format, and collected 5000
machine-days of traces from a wide variety of
machines. We can personally attest to the difficulty of
collecting, storing and analyzing this scale of data
without support for compression and queryability.
Based on our analysis of these traces, and a survey of
how previous work applies such traces to systems
management tasks, we designed an optimized log file
format that takes advantage of three aspects of PS
interaction workloads that we saw across our collected
traces.

First, most PS interactions repeat many times during a
day—93-99% of daily activity is a duplicate of an
earlier event. For queries that care only about what
happened, rather than when or how often, we can
improve query performance by separating the
definitions of this small number of distinct interactions
from the details of when they occur.

Secondly, we observe that PS interactions are highly
bursty, with many interactions occurring almost
simultaneously and long idle periods between bursts.
This allows us to save significant storage space by
amortizing timestamp information across a burst.

Finally, we find that sequences of PS interactions are
also highly repetitious; if we see a sequence of PS reads
and writes, we are very likely to see the same sequence
again in the future. This leads us to apply standard
compression schemes to the time-ordered traces of PS
interactions, achieving a high compression rate.

In the rest of this section, we describe relevant
attributes of common-case queries, present the results
and implications of our survey of PS interaction traces,
and then describe the details of our log format.

4.1 Common Queries
Today, systems administrators deal with large-scale,

complicated systems. According to surveys
[9,28,33,36], an average Windows machine has 70k
files and 200k registry settings. Faced with the task of
managing these systems, a systems administrator’s job
is often a problem of “finding the needle in the
haystack.” For example, troubleshooting is the task of
finding the few configuration settings or program files
that are causing a problem; and to test a software
upgrade or patch, the administrator needs to know what
subset of the system might be affected by the change.
To be useful, FDR must help systems administrators
quickly identify the small set of relevant state and
events out of all the state existing and events occurring
across the many machines of a computing or IT
environment. We describe the details of how systems
management tasks use PS interaction traces in
Section 6. Here, we briefly describe the aspects of
common-case queries that informed our log format
design.

We find that most common systems management
queries of PS interaction traces search for a subset of
events, identified by the responsible process or user, the
file or registry entry being accessed, or another aspect
of the interaction (“Who changed this configuration?”
or “What did I change yesterday?”). This means that,
by organizing or indexing our log format around such
attributes, we can quickly identify the subset of
interactions of interest. Common queries are also often
restricted by time range, looking only at events that
occurred during a specific period, implying that our
logs should support random access over time, not just
sequential access.

Many systems management tasks only involve the
existence (or absence) of a particular PS interaction,
and not when or how often the interaction occurred. For
example, finding all loads of a shared library, regardless
of when they occurred, can identify the processes that
depend on that library and help assess the impact of a
software upgrade. Other times, queries do care about
when a PS interaction occurred, but only need to know
an interaction’s relative-ordering vis-à-vis other PS
interactions on a given thread, e.g., to determine
potential causalities like loading a binary after reading
its name from the Registry. In both cases, the
implication is that some queries need not read
timestamps at all.

4.2 PS Workloads and Log Optimizations
For our survey, we monitored the PS interactions of

over 324 machines during one year across a variety of
computing environments and collected over 5000
machine-days of PS interactions in total. We worked
with MSN to instrument 207 of their machines, across 4
different services with different workloads, including
CPU-bound systems with heavy disk workloads, a large
storage service for external users, and web notifications
publish/subscribe service. In our own research lab, we
monitored 72 laboratory machines used for various data
collection, analysis and simulation experiments. We
also monitored 35 corporate desktops and laptops, used
by researchers and engineers, primarily for activities
such as software development and word processing.
Finally, we monitored 7 home machines, used for
entertainment and work-related activities by
researchers, engineers, and their families. As a control,
we also collected traces from 3 idle systems, running
within virtual machines with no user workload.

4.2.1 Scale and repeated interactions
The primary challenge to efficiently tracing the PS

interactions of a machine is the volume of events that
occur. In our survey, we found that the average number
of daily PS interactions was O(107) ranging from 9M
on desktop machines to 70M on the busiest workloads,
as shown in Table 2. Not surprisingly, servers tended
to have a stable workload from day-to-day, while our

lab, corporate desktop and home machines had varied
workloads. The highest number of daily interactions we
saw was 264M events, on an MSN server that collected
application logs from 1000s of other machines.

However, we found several factors that mitigate the
large volume of PS interactions in all these workloads.
First, the number of distinct files and registry entries
read or written every day is much smaller than the total
number of interactions. Secondly, the number of
distinct processes that run on each machine is very
small, O(102) processes on the busiest desktops, and
fewer on production servers. Overall, we found that
most PS entries are only accessed by a small number of
processes, and that the total number of distinct
interactions (i.e., distinct <user, process, operation-type,
PS entry> tuples) was O(105), only 0.2% to 5.4% of the
total interactions per day.

This implies that we can improve the performance of
queries not interested in timestamps or counts of PS
interaction occurrences by separating the unique
definitions of observed interactions from the time-
ordered traces of when they occur. Effectively, this
allows many common queries to ignore 94.6-99.8% of
the log. This also provides the possibility of
compressing our logs, by replacing repeated
descriptions of an interaction with a single unique ID.

4.2.2 Bursts of Activity
Several studies of I/O traffic and file system activities

have shown that server and desktop I/O workloads
demonstrate bursty or self-similar behavior [14,16].
We observe this in our traces as well, where it
manifests as many interactions arriving together with
long idle periods in between.

The primary implication of these bursts for our log
format is that, when many events occur together, there
is a clear opportunity to merge their associated time
information, storing a single timestamp for all the
events that occur during the same timestamp bucket.

This is a significant observation because per-event
timestamps are a major limiting factor to achieving high
compression rates. To help us choose an appropriate
bucket duration, we look to the requirements of
common-case systems management queries. We find
that fine-grained timestamps are rarely necessary,
instead what is most important is the relative ordering
of events and the ability to map event occurrences to
human activities (i.e., wall-clock time). This leads us to
choose a relatively coarse-grained 48-bit or 6ms
granularity timestamp. Note that this still provides a
granularity finer than Windows’ time-scheduling
quantum of 10-15ms. While one might worry that a
coarse-grained timestamp would mean every bucket
would have at least one event in it, in practice, even our
busiest observed machine-day, with 264M daily events,
showed no PS interactions during 60% of its timestamp
buckets. Of course, this does not mean the machine as
a whole was idle—it might have been busy with CPU
calculations during the times it was not doing PS
interactions.

4.2.3 Repeated Sequences of Interactions
Our final key observation is that many sequences of

PS interactions repeat over time. This is not a surprise,
as we would expect that most of the file system and
registry activities performed by a system are standard,
repetitive tasks, including process start-up and
shutdown, background activities, document auto-saves,
and logging. We perform a detailed analysis of
repeating “activity bursts,” in [32] and, for space
considerations, provide only a summary here.

In our analysis in [32], we define an “activity burst”
as the set of PS interactions occurring in one thread,
where each interaction occurs no more than some small
time separation apart. Formally, we define an activity
burst as a group of events {et | i ≤ t ≤ j} occurring
within a single thread, where gap(et,et+1) < k, for all
i ≤ t < j; gap(ei-1,ei) ≥ k; gap(ej,ej+1) ≥ k; gap(x,y) is the
time between two interactions x and y; and k is the
threshold gap between bursts. We call an activity burst
a “repeat” if it is identical to an earlier activity burst in
every attribute of its interactions except for timestamps.
Otherwise, we call it a “distinct” burst. In our survey,
we find that most activity bursts in a day are repeated
bursts. On desktops, we see 2K-5K distinct bursts out
of 20K-40K total and, on servers, we see 3K-4K
distinct bursts out of 40K-70K.

This repetition of PS interaction sequences indicates
that simple byte compression schemes, applied to the
time-ordered event sequences, should detect and
compress these repeating patterns. Since our analysis of
activity burst repetition focuses on bursts within a
single-thread, storing PS interactions in a system-wide
timestamp sequence runs the risk of allowing
concurrent I/O from multiple threads to interfere with
the compressibility of each other’s patterns. However,

Table 2: The average per machine daily total and
distinct interactions, entries, and processes

E
n

vi
ro

n
m

en
t

T
o

ta
l P

S

In
te

ra
ct

io
n

s

D
is

tin
ct

 P
S

In

te
ra

ct
io

n
s

D
is

tin
ct

 P
S

E

n
tr

ie
s

A

cc
es

se
d

D
is

tin
ct

P

ro
ce

ss
es

Svc. 1 70M 0.2% >0.1% 40-60
Svc. 4 29M 3.3% 0.4% 30-70
Svc. 2 22M 0.6% 0.1% 30
Svc. 3 19M 1.1% 0.1% 30-70
Home 17M 4.2% 0.6% 30-40
Desktop 9M 5.4% 1.0% 20-100
Lab 9M 1.5% 0.3% 17-40
Average 25M 1.6% 0.2% 43
Idle 965K 2.1% 0.5% 14

because of the relatively large CPU time slice of 10-
15ms on the Windows OS, and the knowledge that most
PS interactions are handled quickly by file caches, we
still expect to gain significant compression of repeating
patterns in a cross-thread trace of PS interactions.

4.3 Log Format Details
Based on the machines observed in our survey, our

log format has two key facets to its logical design,
shown in Figure 1. First, given the repetition of
accessed files, observed processes, etc., we normalize
the attributes of our persistent state interactions into
separate sections, essentially following a standard
procedure of database normalization.3 We create one
section for distinct PS interactions, which point to other
sections containing distinct names, user context,
process information, file data hashes and values. The
primary benefit of this normalization is a reduction of
repetitive information. In addition, we find that
grouping attributes into their own sections improves the
performance of byte compression algorithms as we
compress these log sections later. This separation also

3 Database normalization is a process of organizing data to

eliminate redundancy and reduce potential for error (33).

improves query efficiency by transforming queries that
involve multiple attributes and expensive string
comparisons into inexpensive comparisons of integer
IDs as we scan through traces of PS interactions.

Our second design choice in our logical log format is
to represent the trace of events itself as two parallel, but
connected, streams of data. The first stream is an
ordered list of events as they are captured by our kernel
driver and reported to the user daemon. The second
stream contains timestamp information for groups of
events. This amortizes the size of timestamp
information across multiple events, reducing the overall
size of the log, as well as improving byte compression
of the event stream by better exposing patterns in the
sequences of events. Both logical streams are stored in
a single physical file to ease management of log
archives.

We created a file structure that contains a large
logical address space split into 32 sections. Each of the
normalized attribute sections, the section of distinct PS
interactions, as well as the ordered event stream and
timestamp stream, are mapped to a section in our log
file. Each section is composed of individually
compressed 64k pages. Compressing in blocks, rather
than using a streaming compression format allows
random access within a data section.

To simultaneously optimize our log for random
access and compression, our physical log file layout
consists of a three-layer addressing scheme of block
table, block number, and block offset, shown in
Figure 2. This three-layer addressing scheme is
important because we want to compress individual
blocks and store the start and end offsets of each block
in a table for fast lookup, and as a further optimization,
compress these tables as well. With 448 block tables,
8192 blocks per table and a 64k uncompressed block
size, this provides a maximum addressable storage size
of 234 GB of uncompressed data within each log file.
While we find this is many times more than a single
machine-day of logs, this format gives us the flexibility
of joining many days of logs into a single file for
improved compression, and gives us flexibility if PS
interaction workloads grow in the future.

Figure 1: Logical design of our log format

Figure 2: The physical layout of our log format

Each log file starts with a 4k uncompressed header.
The first 256 bytes consist of versioning and other
miscellaneous information. Next are 32 section
descriptions, each 8 bytes long. Each of the logical
sections, described earlier, is laid out contiguously over
our three-layer addressing scheme, aligned at block
boundaries. These section descriptors provide the block
table and number of the start and end of each section.
The rest of the 4k header is filled by 448 block table
descriptors, that point to the start and end offsets of a
compressed block table. The block table, in turn,
contains 8192 block entries, each pointing to the start
and end offset of a compressed 64k block.

The timestamp section is maintained as a 16 byte
entry containing 6 bytes (48 bits) to represent a 6ms
time resolution, 2 bytes to count missing events within
that region, and two 4 byte offsets pointing to the first
and last consecutive event with that time resolution.
While almost all events are received by the daemon in
time sorted order, we correctly handle timestamp
information for any events that appear out of order.
This can happen when a context switch occurs just after
an I/O activity completes, but before the kernel driver
reports it, but this delays the reporting of an event by a
few scheduling quantums, and never affect the intra-
thread ordering of PS interactions.

The user daemon first creates log files in-memory.
As it receives raw events from the kernel driver, the
daemon normalizes the events, replacing attribute
values with indexes into the appropriate sections. The
normalized event is then compared to the table of
distinct normalized events using an O(1) hash lookup,
and added to the table if necessary. Finally, the
normalized event is added to the ordered event stream
section, along with new timestamp information, if
necessary. Each of the log file’s data sections is
append-only in memory. When a log file is closed and
flushed to disk the daemon writes each data section
contiguously to disk while applying a standard
compression algorithm to each 64K-byte block.

4.4 Querying Logs
When analyzing these log files, our tools tend to

restrict their queries based on one or more attributes in
the PS interaction record, based on a time-range of
interest, or based on both. To restrict a query by
attribute, a query tool scans the appropriate section,
looking for all values matching the given criteria. From
these values, the tool then generates a filter to apply
against the section of distinct PS interactions, resulting
in a set of unique IDs, one for each PS interaction
matching the original attribute restriction. For example,
to return only PS interactions that access a particular
file, a tool would first scan the string section to find the
ID of the filename, and then scan the section of distinct
PS interactions to find the IDs of all distinct PS
interactions that accessed this filename ID. If a tool is

not interested in when or how many times an
interaction occurred then it can stop here, without
scanning the much larger event stream sections.
Otherwise, the tool can scan through the ordered event
list and timestamp stream to find the details of the
occurrences of these PS interactions.

To restrict a query by a time range, a query tool
applies a binary search to the timestamp stream,
searching for the start of the desired time range. Once
this timestamp is found, it can skip to the appropriate
64K block of the ordered list of events, and begin
scanning the ordered list from that point on, until the
end of the time range.

Common-case queries tend to extract sparse
information from the extremely large data set of PS
interactions. Our log format enables efficient queries
by allowing query tools to focus on the relevant subsets
of data, and expanding their scope to larger and larger
portions of the data as necessary. For example, a query
to find a list of all files modified during a day of 25M
PS interactions requires only one pass over a distinct
event table with 318Kentries to identify the string
attribute id of modified files, and then scanning over the
string attribute section with 100K entries to discover the
full filenames of each modified file, avoiding ever
scanning the full list of 25M events that occurred
during the day.

5. Experimental Evaluation
In this section, we evaluate FDR and find that on

average, our logs use only 0.7 bytes/PS interaction. We
find that query performance scales linearly with the
number of events in a log. All of our queries can be
processed in a single pass against an entire machine-day
of logs in just 3.2 seconds. FDR’s client-side
performance overhead is less than 1%, and calculating
the load on bottleneck resources in our central server
indicates that a single machine could scale to collecting
and analyzing all the PS interactions from 4300
machines, keeping all logs for over 3 months.

5.1 Log File Compression
The efficiency of FDR’s log file format affects both

the runtime load on clients’ memory and network, and
the long-term storage costs of PS interaction logs.

In our survey of 5000 machine-days of logs,
described in Section 4.2, the average raw event size is
140 bytes and daily per machine raw logs are 7GB,
compressing to 700MB with GZIP. After converting
our collected logs to our new format, we found,
depending on workload, each PS interaction takes
between 0.5 to 0.9 bytes of storage, and 0.7 bytes on
average. One machine-day of PS interactions can be
stored in 6 to 71MB, 20MB on average, with a
maximum observed machine-day size of 179MB.
Table 3 shows the results across our environments.

Table 3: Daily storage requirements for
machines across environments

Role Avg.
Bytes/Event

Avg.
MB/day

Max
MB/day

Svc. 1 0.91 71 179
Svc. 4 0.78 57 103
Svc. 2 0.71 19 22
Svc. 3 0.66 10 53
Home 0.58 17 51
Desktop 0.80 13 21
Lab 0.47 6 43
Average 0.70 20 49
Idle 0.85 0.76 0.88

Figure 3: Compression Ratio variation with log file
interval for each category of machines

In addition to PS interaction workload, the efficiency
of our log format’s compression is sensitive to the
frequency at which the logs are uploaded to the central
server. More frequent uploads of logs reduces the
latency between when an event occurs and when it can
be analyzed. However, uploading logs less frequently
allows the logs to collect more repeated events and
achieve better overall compression.

Figure 3 shows how storage size varies with the event
collection period. It shows that 80% of the compression
efficiency is typically achieved with log files an hour
long, and that improvement ceases after 1 week of data.
Based on this result, our current deployments upload
log files every 2 hours, and our central server
reprocesses and merges them into 1-week long log files
to save long-term storage space. We envision that
future versions of FDR will support latency-critical
queries by moving them to the client-side agent.

In Table 4, we look inside the log files to see how
much space is taken up by each section of our log file
format across our different environments. We see that
the ordered event stream and timestamps dominate,
together taking 66-96% of the daily logs of non-idle
machines. The definitions of distinct file and registry

interactions are the next major contributor to log file
size, taking 1.3-22.2% of daily logs from non-idle
machines. Surprisingly, storing the values of every
registry setting read or written (in the data section)
takes only 1.9-7% of daily logs of non-idle machines.

5.2 Log File Query Performance
To evaluate FDR’s query performance, we performed

three types of queries against our collected daily
machine logs: a single-pass query, a two-pass query,
and a more complicated multi-pass query. Our first
query is a single-pass scan of distinct PS interactions,
and generates a manifest that identifies the distinct set
of registry settings and files used by every process
during the day. This query does not require scanning
the time-ordered event streams. Our second query is a
two-pass scan that searches for stale binaries (discussed
in Section 6.1.2). This query scans through all PS
interactions for files loaded for execution, and then
scans the time-ordered event stream to see if the file has
been modified on-disk since it was last loaded into
memory, indicating that a stale copy exists in memory.
Our third query looks for Extensibility Points
(discussed in Section 6.2). This is our most
complicated query, making multiple scans of the
distinct PS interactions and time-ordered event stream.

Query performance was measured by evaluating our
three queries against log files that ranged from 200k to
200M PS interactions across all categories of machines.
For this experiment we used a single 3.2GHz processor.
We found that the average machine-day can be queried
in only 3.2 to 19.2 seconds, depending on query
complexity. Figure 4 plots the count of items in scanned
sections vs. the time to complete each query, and
indicates that performance scales linearly with log size.

We found that our query performance was not I/O
bound reading log files from disk, but rather CPU-
bound, on decompressing log files. In fact, we found
that query performance can be accurately predicted as a
linear function of the number of items per section in the

Table 4: Average section size as a percentage of
total log file size for each machine role

Role Event Time Reg. File String Data Other

Svc 1 77% 19% 1% 0.3% 0.2% 1.9% 0.6%

Svc 4 57% 17% 7% 13.9% 1.8% 3.2% 0.1%

Svc 2 71% 15% 4% 1.4% 0.6% 7.9% 0.1%

Svc 3 69% 15% 7% 1.8% 0.9% 2.7% 3.6%

Home 46% 27% 9% 11% 4.0% 1.9% 1.1%

Desktop 47% 19% 14% 8.2% 5.2% 5.7% 0.9%

Lab 48% 31% 8% 3.5% 1.9% 7.0% 0.6%

Average 53% 22% 9% 7.7% 2.8% 4.1% 1.4%

Idle 44% 35% 7% 4.2% 4.8% 3.9% 1.5%

1 week 30 sec. 5 min. 1 hr. 1 day

 Figure 4: Time taken for each query compared
with the number of attributes scanned

log file scanned by the query and the Intel Pentium
CPU cycle cost to process each item. We measured the
average per item CPU cycle cost to be 63k cycles for
manifest queries, 27k for stale binary queries and 53k
for extensibility point queries. Using Pearson’s product
moment correlation to compare our predicted and
measured query times, we find the correlation to be
from 0.923 to 0.998, indicating that query performance
is a linear function of the size of the log items scanned.

5.3 Client-Side Overhead
Here, we evaluate the tracing and compression

overhead of our kernel driver and user-mode agent.
Through our initial survey of PS interactions, we have
tested and deployed our driver and our user-mode agent
without our compression tools on over 324 Windows
2000, Windows XP and Windows 2003 machines. At
MSN, pre-production testing of our data collector was
done in a lab setup of 4 identical servers, 1 running our
agent, each receiving a copy of the current live
production load. Measurements were made of volume
and latency of workload transactions along with
memory, network, CPU, and I/O overhead. The
performance impact of our driver and agent was
minimal, with < 1% CPU overhead measured, and no
measurable degradation in transaction rate or latency.
To further confirm this, we conducted an experiment
where we placed a high and varied PS interaction
workload, consisting of simultaneously creating
100,000 processes, scanning the entire registry and file
system for non-existent entries, and making 10,000
copies of a 1KB file, 35 copies of a 1GB file, and
100,000 registry keys and values. Even under this load,
we found no measurable performance degradation.

The next stage of our evaluation of agent performance
focuses on the overhead of log format generation and
compression. Because we configure our agent to run on
a low-priority thread, we have not observed a
noticeable performance impact, but do want to

understand its limits. Therefore, we measure the CPU
cost of processing a single PS interaction, and use this
to evaluate the cost of processing our observed PS
interaction rates.

Our measured CPU cost to process a PS interaction is,
on average, 64k CPU cycles. This cost is constant with
regard to the number of events already processed. Our
highest observed spike from our collected data is 2400
interactions per second. The average peak burst every
day is 1800 interactions per second. From this, we
extrapolate that the highest 1 second CPU usage spike
on a 3.2 GHz CPU is 64k x 2400 / 3.2 GHz = 4.8%
CPU overhead. Our average peak is 3.6% CPU
overhead. As a further test case, we created an
artificially high PS interaction load by repeatedly
accessing cached PS data, without pause, generating a
rate of 15k interactions / second. Compressing these
interactions at this rate produces 30% CPU overhead.
Our average rate of 100-800 PS interactions per second
requires only 0.2 – 1.6% CPU overhead.

5.4 Server Scalability
The scalability of a single-machine FDR server

collecting and analyzing PS interaction logs from many
other machines is potentially limited by several factors:
network bandwidth for receiving logs, disk I/O
bandwidth for storing and reading logs, CPU cost for
analyzing logs, and the disk capacity for storing logs.

The single-machine configuration we consider is the
one we use to collect logs from our agents today. It is a
dual 3.2GHz CPU, 2GB of RAM, a 1Gbps network
connection, and a 24 hard drives (400GB 7200RPM
SATA) in two 12 disk RAID 5 sets with 1 parity drive,
providing 8TB of storage. Assuming an average 20MB
log file per machine-day, and using the performance of
this system, we consider each of the potential
scalability bottlenecks:
Network bandwidth: A 1Gbps network link, with an
achieved bandwidth of 100 Mbps, could support 54,000
machines uploading per day.
Disk I/O bandwidth: Our RAID storage system
provides 80 Mbps random access bandwidth. At this
rate, we could support both writing logs and a single-
pass query at a rate of 43,200 machines per day.
CPU for analysis: Following the analysis of query cost
in Section 5.2, our dual processor 3.2GHz machine can
support querying up to 54,000 machines per day, at a
rate of 1.6 seconds per machine-day (3.2s per CPU).

From this analysis, not counting long-term storage
requirements, the limiting factor to scalability appears
to be disk bandwidth, supporting the centralized
collection of data from 43,200 machines. Of course,
this is not a sophisticated analysis, and there are likely
to be issues and interactions which might further limit
the scalability of a single-machine log collector. For
this reason, we apply a safety factor of 10 to our
analysis, and claim that FDR can allow a single server

to provide centralized collection and analysis of the
complete PS interaction logs of up to 4,300 machines.

Separately, analyzing the storage capacity of our
single-machine server, we find that our 8TB RAID
system can store a total of 400k 20MB machine-days.
This would store the complete PS interaction logs of
13,000 machine for 1 month, 4,000 machines for over 3
months, or 1000 machines for 1 year.

6. Using FDR for Systems Management
In this section, we first review our use of early on-

demand tracing prototypes to attack various systems
management problems, then present one new case study
in detail. Throughout, we describe how each technique
is improved by one or more of FDR’s benefits:
Completeness: FDR gathers a complete record of
reads, writes, creations, etc. to the file system and
registry, including details of the running process, user
account and, when appropriate, data hashes, values, etc.
Always-on: FDR’s always-on tracing means that users
do not have to anticipate when they might need tracing
information, do not need to reproduce problems to
obtain traces, and enables analysis of long-term trends.
Collection and Query Scalability: FDR’s scalability
eases cross-machine analysis, such as PeerPressure
[35], and allows administrators to centrally apply
current PS analysis techniques rigorously and en masse
to large computing and IT systems.

6.1 Management Scenarios
6.1.1 Troubleshooting Misconfigurations

When a problem, like a misconfiguration, happens,
troubleshooting is the task of determining what has
gone wrong and fixing it. The Strider Troubleshooter
[36] used a precursor to FDR, called AppTracer, to
capture on-demand traces of a program’s registry
interactions. Once a user notices a program error, they
turn on AppTracer and reproduce the problem. Strider
then asks the user when the program last worked, and
uses this date to find a “known-good” Windows System
Restore snapshot. Strider then searches for registry
settings used by the program that have changed since
the known-good snapshot. With some noise filtering
and ranking heuristics, Strider produces a short list of
settings likely responsible for the problem.

PeerPressure [35] improves on Strider by using
knowledge of the configuration settings on other
machines, stored in a central database. By assuming
that most other machines are configured correctly,
PeerPressure removes the need for users to identify the
last known-good state.

Both Strider and PeerPressure suffer from similar
limitations due to their use of an on-demand
AppTracer. First, both tools require users to reproduce
a problem so that the AppTracer can collect a trace—
hard to accomplish if an error appears only transiently
or is otherwise hard to reproduce. An always-on tracer

will already have captured the trace at the time of the
original problem. Secondly, both tools require the user
to guess which process is failing and should be traced
and the user must know to iteratively expand the scope
of the on-demand tracer to debug a cross-application
problem, where one process fails because of an error in
another (e.g., a word processor acting as an editor for
an e-mail reader). An always-on tracer will already
have captured traces of all the processes on a system,
obviating the user’s need to guess what part of the
system to trace. Finally, [35] states that updating
PeerPressure’s central database of machine
configurations as software and operating systems are
upgraded is an open challenge. With the scalable log
collection provided by FDR, collecting descriptions of
new configurations and software to insert into
PeerPressure’s central database is trivial.

Furthermore, FDR’s always-on tracer improves on
Strider and PeerPressure’s troubleshooting in a
fundamental way: whereas these previous tools are
only able to locate the misconfiguration, FDR’s history
of PS interactions can also help place responsibility for
a misconfiguration by determining when and how the
misconfiguration occurred. This can help identify the
root cause of the issue and prevent future occurrences.

6.1.2 Detecting Known Problems
In addition to reactive trobuleshooting, we can use

always-on tracing to proactively search for specific,
known problems, such as common misconfigurations
and old versions of software with known
vulnerabilities. One common problem, the “stale
binary problem,” occurs when software upgrades fail to
restart affected processes or reboot a machine after
replacing its on-disk binaries. The result is that the
system is continuing to execute the old program in-
memory. This is an especially serious problem when
patching security vulnerabilities. With complete,
always-on tracing, we can periodically query for the
last load-time of running programs and DLLs, and
compare them to their last modification-time on disk,
reporting inconsistencies to system administrators.

6.1.3 Change Management: Impact Analysis
Keeping systems up-to-date with the latest security

and bug patches is critical for minimizing vulnerability
to malicious adversaries, and loss of productivity to
software bugs. At the same time, patches can
destabilize existing applications. Today, unfortunately,
even if a patch only updates a single shared library, the
administrators do not know in advance which
applications might be affected. Consequently, patch
deployment is often delayed as it undergoes a lengthy
(and expensive) testing cycle, and computer systems
remain vulnerable to “fixed” bugs and security holes.

To help administrators focus their testing of software
upgrades, we built the Update Impact Analyzer (UIA)

[10] that cross-references the files and configuration
settings being patched against always-on traces of PS
interactions. The UIA generates a list of programs that
interact with any state that is going to be updated. Any
application not on this list can be placed at a lower-
priority on the testing regimen. (An exception is when
a given application interacts with an updated
application via inter-process communication—in this
case, both applications could still require thorough
testing. See Section 7.3 for a discussion of other
possible candidates for always-on logging, including
inter-process communication and locks.)

A primary challenge faced by UIA, as reported in
[10], is that patch testing and deployment is managed
centrally by administrators, but application usage, for
determining the dependencies between an application
and various files and settings, is distributed across
many computers. FDR’s scalable tracing and collection
of PS interactions enables administrators to easily
gather the accurate information they need.

6.1.4 Malware Mitigation
The challenges to mitigating a malware infection,

whether spyware, Trojan software, viruses or worms,
are detecting its existence on a system and determining
how the malware entered the system. With always-on
PS interaction traces, identifying running malware is a
matter of querying for the hashes of loaded executables
and shared libraries. Any well-known malware
signatures can be flagged, and unrecognized hashes can
be reported to an administrator to determine whether or
not they are malicious. Following the methodology of
[17], always-on tracing of PS interactions can also be
analyzed to discover how malware entered a system.

To further backtrack the “route of entry” of malware,
the HoneyMonkey (HM) project analyzes the PS
interaction traces collected with FDR of web browsers
as they visit many websites [37], Using a farm of
virtual machines running scripted web browsers, HM
crawls the Internet. If HM notices a web browser
writing to the file system outside of its browser sandbox
(e.g., writes other than temporary cache files), then it
can be assured that a malicious website is exploiting a
browser vulnerability to install malware. SpyCrawler, a
concurrent research project, used a similar system to
detect malicious websites [23]. Without FDR’s detailed
trace information stating which processes where
making the changes, their browser monitoring system
had a high false-positive rate for detecting exploits,
reduced by using antivirus tools to check for known
malware. New malware would not be detected.

FDR’s log collection can be modified in several ways
to harden it against malicious adversaries. Many
malicious software programs, such as spyware bundled
with otherwise legitimate downloaded software, must
first be written to disk before executing. We can
prevent these programs from tampering with FDR’s

logs after-the-fact by adding tamper-evident hash-
chaining signatures [18] to our logs or by moving our
user agent to a hypervisor or VM outside the
accessibility of the monitored system. Malicious
software that enters a system directly (e.g., via a remote
buffer overflow exploit) could corrupt our kernel driver
before writing to disk. To avoid this attack, the file
system itself would have to be moved to a separate VM
or hypervisor. Detecting malware that never interacts
with the disk is outside of FDR’s scope.

6.2 Case Study: Exploiting SW Extensibility
Once spyware or other malware first infects a system,

they often load themselves as a plug-in or extension to
the operating system, daemon, or frequently used
applications such as a web browser, ensuring their
continued execution on the host system. One method to
defend against such malware is to monitor the settings
or extensibility points (EPs) which control software
extensions, alerting the user to changes that might
signify a malware installation.

By comparing snapshots of the Windows Registry
before and after 120 different malware installations,
GateKeeper [38] found 34 EPs that should be
monitored for signs of malicious activity. Here, we
show how we can take advantage of always-on tracing
to detect potential malware-exploitable settings, even if
they are currently used only by benign software
extensions. Further, we show how PS interaction traces
can help rank the importance of these EPs, based on the
observed privileges and lifetimes of the processes that
use these extensions.

6.2.1 Detecting Extensibility Points
To discover EPs we monitor application PS

interactions for files being loaded for execution4, and
check for a previous PS interaction which contained the
executable’s filename. If we find such a setting, we
assume that it directly triggered the executable file load
and mark the setting as a direct extensibility point. In
some cases, if we continue to search backward through
the history of PS interactions, we will also find indirect
extensibility points, where another configuration setting
triggers the process to read the direct EP. For example,
an indirect EP may reference an ActiveX class
identifier that points to a COM5 object’s settings that
contain the executable file name.

Many EPs have a similar name prefix, indicating that
plug-ins using it follow a standard design pattern. We
define a common EP name prefix as an extensibility
point class, and the fully named EP as an extensibility

4 Our PS interaction tracing records the loading of a file for

execution as a distinct activity from simply reading a file
into memory.

5 `Component Object Model’ is a Microsoft standard for
reusing and sharing software components across
applications.

point instance. We identify new EP classes by manually
examining newly discovered EP instances that do not
match an existing EP class.

To survey how significant a vulnerability EPs are, we
processed 912 machine-days of traces from 53 home,
desktop, and server machines. From these machines, we
discovered 364 EP classes and 7227 EP instances. 6526
EP instances were direct and 701 were indirect. While
130 EP classes had only 1 instance, 28 had more than
20 unique instances. The dominant EP class consists of
COM objects, and accounts for 40% of all EP instances.
The next two largest EP classes are associated with the
Windows desktop environment, and web browser plug-
ins. Other popular EP classes are related to an Office
productivity suite and a development environment, both
of which support rich extensibility features. Overall,
we found that 67% of the software programs observed
in our traces accessed an EP instance, and those that did
used 7 on average. Explorer.exe, responsible for
the Windows desktop, used the largest number of EP
classes (133 EP Classes), followed by a web browser
(105 EP Classes) and an email client (73 EP Classes).

Comparing our list of EP classes with the 34
discovered by Gatekeeper, we found that our procedure
detected all except 6 EPs used by programs not
observed in our traces.

6.2.2 Criticality of Extensibility Points
The criticality of an EP can be estimated using 1) the

privilege-level of the loading process, where higher-
privilege processes such as operating system or
administrator-level processes, are more critical; and
2) the lifetime of the loading process, where longer
running applications provide higher availability for a
malicious extension. We observed that on average a
machine will have at least a third of EP instances
(spanning 210 EP classes) loaded by processes that are
running for 95% of the machine’s uptime. We also
observed that one third of all EP instances were used by
processes with elevated privileges. This indicates that
many EP instances are critical security hazards.

6.2.3 Lessons and Suggestions
This case study shows how FDR’s traces of PS

interactions can be analyzed to connect the security-
sensitive behavior of loading dynamic code modules
back to the critical configuration settings which control
its behavior, and furthermore rank the criticality of each
setting. Since this analysis requires that an EP be in
use, whether by malware or by a benign software
extension, FDR’s scalability and always-on tracing is
critical to analyzing a wide-breadth of computer usage
and detecting as many EPs as possible.

Once we have discovered these EPs, we can continue
to analyze their use and suggest ways to mitigate the
threat from EP exposure. In particular, we observed
that 44% of EP instances were not modified during our

monitoring period. This suggests that system
administrators could restrict write permissions on these
EPs, or that application designers could transform them
into static data instead of a configurable setting. Also,
70% of all EP instances were used by only single
process: an opportunity for administrators or
application designers to lockdown these EPs to prevent
their misuse. In all, we found that only 19% of EP
instances were both modified and shared by multiple
applications, and thus not easy candidates for removal
or lockdown. For these remaining EPs, we suggest
monitoring for suspicious activities and, for critical
EPs, we suggest that administrators and developers
audit their usefulness vs. their potential to be misused.

7. Discussion
In this section, we discuss the implications of our

work on systems management techniques, as well as
limitations and opportunities for future work.

7.1 White-box and Black-Box Knowledge
Software installers use manifests to track installed

software and their required dependencies, anti-virus
monitors use signatures of known malware, and
configuration error checkers use rules to detect known
signs of misconfigurations. All of these automated or
semi-automated tools use explicit prior knowledge to
focus on a narrow set of state and look either for known
problematic state or checking for known good state.
This approach is fragile in its reliance on the
correctness and completeness of pre-determined
information. This information can become stale over
time, might not account for all software and cannot
anticipate all failures. Keeping this information
complete and up-to-date is hard because of the long-tail
of third-party software, in-house applications, and the
continuous development of new malware. With FDR-
collected traces, a black-box approach to systems
management can help by augmenting predetermined
information with observed truth about system behavior.

For example, today’s software installers commonly
fail to account for program-specific PS created post-
installation, such as log files and post-install plug-ins,
as well as interruptions or failures during installation or
removal. These mistakes accumulate and lead to system
problems.6 Common advice is to occasionally reinstall
your computer to clean up such corruptions. Black-box
tracing helps avoid this by providing installers with
complete, ground-truth about installed files.

To test this approach, we compared a black-box
accounting of files created during installations of 3
popular applications to the files accounted for in their
explicit manifests. By collecting FDR traces while
installing the application, using it, and then uninstalling

6 Examples of failed installations causing such problems can

be found at http://support.microsoft.com/ via the article IDs:
898582, 816598, 239291, and 810932.

it, we measured the file and registry entries leaked on
the system. The first application, Microsoft Office
2003, leaked no files, but did leave 1490 registry
entries, and an additional 129 registry entries for each
user that ran Office while it was installed. The second
application, the game ‘Doom3’, leaked 9 files and 418
registry entries. Finally, the enterprise database
Microsoft SQL Server leaked 57 files and 6 registry
entries. These point examples validate our belief that
predetermined information can be unreliable and that
black-box analysis of FDR traces provides a more
complete accounting of system behavior.
Predetermined information does have its uses, however.
For example, a priori knowledge can express our
expectations of software behavior [27] and higher-level
semantics than can be provided by a black-box analysis.

7.2 State Semantics
One of the limitations of a black-box tracing approach

is that, while it can provide complete, low-level ground
truth, it cannot provide any semantic guidance about the
meaning of the observed activities. For example, FDR
cannot tell whether the Windows Registry editor
program (RegEdit) is reading a registry entry as a
configuration setting to affect its own behavior, or as
mere data for display. Similarly, FDR cannot tell
whether any given file on disk is a temporary file, a
user document, or a program binary (unless explicitly
loaded for execution). Investigating how to best
augment low-level tracing with heuristics and semantic,
white-box knowledge is an important topic for
continuing to improve systems management techniques.
One option, discussed below, is to selectively log
application-level events and information to expose the
semantic context of lower-level PS interactions.

7.3 Logging higher-level events
The question we pose here, as a challenge for future

work, is what classes of events, in addition to PS
interactions, should be logged to help operators and
administrators maintain reliable and secure systems?

One category, mentioned above, is the semantic
context of PS interactions, such as the context we
receive when software binaries must be explicitly
loaded for execution. Perhaps we can receive similar
context and benefit from knowing that the Windows
Registry editor is reading configuration settings as data,
and not to affect its own behavior. Similarly, explicitly
recording whether a newly created file is a user
document, temporary program state or a system file
might help administrators improve backup strategies
and debug problems.

A second category of higher-level events are those
that help to track the provenance of data. While there
has been research on how to explicitly track the
providence of data, we might be able to gain some of
the same benefit from simply logging a “breadcrumb”

trail as new files are created. Even just integrating web
browsing history with PS interactions would allow us to
track the provenance of downloaded files and locate the
source of malware installed via a browser exploit.

A third category of events that might benefit from
FDR-style always-on logging are interactions and
communications between processes, such as network
connections and inter-process communication. While
this category does not provide extra semantic
information, these interactions are important for
detecting software dependencies, fault propagation
paths, and potential exposure to malware.

Altogether, extending always-on tracing to include
more context and events could enable a gray-box
approach to systems management, combining the
benefits of black-box ground-truth and white-box
semantic knowledge [2].

7.4 Using Traces to (Re) Design Programs
In this paper, we have focused on analyzing PS

interactions to benefit systems administrators and
operators as they attempt to understand the state of the
systems they manage. However, these PS interactions
might be just as useful, though on a different time-
scale, for developers interested in improving the
applications and systems they have built. One obvious
benefit is when PS interactions expose an otherwise
difficult-to-track software bug. We already discussed
an analysis to detect “stale binaries” after software
installations (a bug in the installer). Tracing PS
interactions has uncovered other bugs in several server
management programs as well. Other benefits to
application designers can come from specific analyses
of a system’s reliability and security, such as our
analysis of extensibility points in Section 6.2.

The bottom-line is that always-on tracing of PS
interactions improves our understanding of a system’s
dynamic behavior in production environments, and
understanding this behavior is the first step towards
improving it.

8. Conclusion
We built FDR, an efficient and scalable system for

tracing and collecting a complete, always-on audit of
how all running processes read, write, and perform
other actions on a system’s persistent state, and for
scalably analyzing the enormous volume of resultant
data. Thus, FDR addresses significant limitations faced
by prior work in using PS interactions to solve systems
management problems. We achieved our goal by
designing a domain-specific log format that exploits
key aspects of common-case queries of persistent state
interaction workload: the relatively small number of
daily distinct interactions, the burstiness of interaction
occurrences, and repeated sequences of interactions.

For the last 20 years, systems management has been
more of a black-art than a science or engineering

discipline because we had to assume that we did not
know what was really happening on our computer
systems. Now, with FDR’s always-on tracing, scalable
data collection and analysis, we believe that systems
management in the next 20 years can assume that we do
know and can analyze what is happening on every
machine. We believe that this is a key step to removing
the “black art” from systems management.

9. Bibliography
[1] W. Arbaugh, W. Fithen, and J. McHugh. Windows of

Vulnerability: A Case Study Analysis. In IEEE Computer,
Vol. 33(12)

[2] A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Information and Control in Gray-Box Systems. In SOSP,
Banff, Canada, 2001

[3] M. Baker, et al. Measurements of a Distributed File
System. In SOSP, Pacific Grove, CA, 1991

[4] N. Brownlee and K. Claffy and E. Nemeth. DNS
Measurements at a Root Server. In Global Internet
Symposium. San Antonio, TX, 2001

[5] M. Burtscher. VPC3: A Fast and Effective Trace-
Compression Algorithm. In ACM SIGMETRICS. New
York, NY, 2004

[6] Z. Chen, J. Gehrke, F. Korn. Query Optimization In
Compressed Database Systems. In ACM SIGMOD. Santa
Barbara, CA, 2001

[7] E. A. Codd. A relational model for large shared databanks.
Communications of the ACM, Vol. 13(6)

[8] B. Cornell, P. A. Dinda, and F. E. .Bustamente. Wayback:
A User-level Versioning File System for Linux. In Usenix
Technical. Boston, MA, 2004

[9] J. Douceur, and B. Bolosky. A Large-Scale Study of File-
System Content. In ACM SIGMETRICS. Atlanta, GA,
1999

[10] J. Dunagan, et al. Towards a Self-Managing Software
Patching Process Using Blacpk-box Persistent-state
Manifests. In ICAC. New York, NY, 2004

[11] G. W. Dunlap, et al. ReVirt: Enabling Intrusion Analysis
through Virtual-Machine Logging and Replay. In OSDI,
Boston, MA, 2002

[12] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive
NFS Tracing of Email and Research Workloads. In
USENIX FAST, San Francisco, CA, 2003

[13] A. Goel, et al. Forensix: A Robust, High-Performance
Reconstruction System. In ICDCS Security Workshop.
Columbus, OH, 2005

[14] S. D. Gribble, et al. Self-similarity in File Systems. In
ACM SIGMETRICS, Madison, WI, 1998

[15] W. H. Hau, and A. J. Smith. Characteristics of I/O
Traffic in Personal Compute and Server Workloads. IBM
Systems Journal. , 347-372, Vol. 42(2)

[16] W. W. Hsu, and A. J. Smith. Characteristics of I/O
Traffic in Personal Computer and Server Workloads.
UC Berkeley Computer Science Division Technical
Report, UCB/CSD-02-1179, 2002

[17] S. King, and P. Chen. Backtracking Intrusions. In SOSP,
Bolton Landing, NY, 2003

[18] L. Lamport. Password authentication with insecure
communication. In Communications of the ACM,
24(11):770-772, Nov. 1981

[19] J. Larus. Whole Program Paths. In PLDI, Atlanta, GA,
1999

[20] J. Lorch, Personal communication. April 11, 2006
[21] J. Lorch, and A. J. Smith. The VTrace Tool: Building a

System Tracer for Windows NT and Windows 2000.
MSDN Magazine. , Vol. 15, 10

[22] R. Mahajan, D. Wetherall, and T. Anderson.
Understanding BGP Misconfiguration. In ACM
SIGCOMM, Pittsburgh, PA, 2002

[23] A. Moshchuk, T. Bragin, S. D. Gribble, and H. A. Levy,
Crawler-based Study of Spyware in the Web. In NDSS,
San Diego, CA, 2006

[24] D. Oppenheimer, A. Ganapathi and D. Patterson. Why do
Internet services fail, and what can be done about it? In
USITS. Seattle, WA, 2003

[25] K. K. Ramakrishnan, B. Biswas, and R. Karedla.
Analysis of File I/O Traces in Commercial Computing
Environments. In ACM SIGMETRICS. Newport, RI, 1992

[26] E. Rescorla. Security Holes... Who Cares? In USENIX
Security Symposium. Washington, DC, 2003

[27] P. Reynolds, et al. Pip: Detecting the unexpected in
distributed systems. In NSDI, San Jose, CA, 2006

[28] D. Roselli, J. Lorch, and T. A. Anderson. Comparison of
File System Workloads. In USENIX Technical, San
Diego, CA, 2000

[29] C. Ruemmler, and J. Wilkes. UNIX Disk Access
Patterns. In USENIX Technical, San Diego, CA, 1993

[30] Solaris Dynamic Tracing (DTRACE)
http://www.sun.com/bigadmin/content/dtrace/

[31] C. Soules, G. Goodson, J. Strunk, G. Ganger. Metadata
Efficiency in a Comprehensive Versioning File System.
In USENIX FAST, San Francisco, CA, 2003

[32] C. Verbowski, et al. Analyzing Persistent State
Interactions to Improve State Management, Microsoft
Research Technical Report. MSR-TR-2006-39, 2006

[33] W. Vogels. File System Usage in Windows NT 4.0. In
SOSP, Charleston, SC, 1999

[34] H. Wang, C. Guo, D. Simon, and A..Zugenmaier. Shield:
Vulnerability-Driven Network Filters for Preventing
Known Vulnerability Exploits. In ACM SIGCOMM.
Portland, OR, 2004

[35] H. Wang, et al. Automatic Misconfiguration
Troubleshooting with PeerPressure. In OSDI. San
Francisco, CA, 2004

[36] Y.-M. Wang, et al. STRIDER: A Black-box, State-based
Approach to Change and Configuration Management and
Support. In LISA. San Diego, CA, 2003

[37] Y.-M. Wang, et al. Automated Web Patrol with Strider
HoneyMonkeys: Finding Web Sites that Exploit Browser
Vulnerabilities. In NDSS. San Diego, CA, 2006

[38] Y.-M. Wang, et al. Gatekeeper: Monitoring Auto-Start
Extensibility Points (ASEPs) for Spyware Management.
In LISA, Atlanta, GA, 2004

[39] A. Whitaker R. Cox, S. Gribble. Configuration
Debugging as Search: Finding the Needle in the
Haystack. In OSDI, San Francisco, CA, 2004

[40] N. Zhu, T.-C. Chiueh. Design, Implementation, and
Evaluation of Repairable File Service. In ICDSN,
San Francisco, CA, 2003

