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Abstract

Mismanagement of the persistent state of a systeintheabxecutable files, configuration settings atiter data
that govern how a system functions—causes relighplibblems, security vulnerabilities, and drivesageration
costs. Recent research traces persistent staggadtibns—how state is read, modified, etc.—to help
troubleshooting, change management and malwargatidh, but has been limited by the difficulty afllecting,
storing, and analyzing the 10s to 100s of milliaisdaily events that occur on a single machine, hmiess the
1000s or more machines in many computing environsnen

We present the Flight Data Recorder (FDR) that kxsadways-on tracing, storage and analysis of persistent
state interactions. FDR uses a domain-specifiddogat, tailored to observed file system workloadsl common
systems management queries. Our lossless log faongpresses logs to only 0.5-0.9 bytes per intienrac In this
log format, 1000 machine-days of logs—over 25 hillevents—can be analyzed in less than 30 minutesrepbrt
on our deployment of FDR to 207 production machiaedMSN, and show that a single centralized cdbect
machine can potentially scale to collecting andyarirag the complete records of persistent staterautions from
4000+ machines. Furthermore, our tracing technois@pipping as part of the Windows Vista OS.

1. Introduction work has shown thaglectively logging how processes

Misconfigurations and other persistent state (PSJunning onla system interact with PS (e.g.l, frea:iie)_/vkl
problems are among the primary causes of failunels a creat:a, ﬁe e_te) canf.be an |mport|ant tool for qyic h
security vulnerabilites across a wide variety of foubleshooting configuration problems, managing t

systems, from individual desktop machines to large . - ; o
scale Internet services. MSN, a large Internetisey ~a"d detecting malicious websites exploiting web

finds that, in one of their services running a 700QProwsers [17,35-37].  Unfortunately, each of these
machine system, 70% of problems not solved b);echnlques is I|m|ted_ by the current infeasibilibf
rebooting were related to PS corruptions, whileyonl SOllecting and analyzing the complete logs of 10s t
30% were hardware failures. In [24], Oppenheimter 100S ©f millions of events generated by a single
al. find that configuration errors are the largestegaty mac_hlne, _much less t_he 1000s of r_nachmes In even a
of operator mistakes that lead to downtime in meer Medium-sized computing and IT environments.
services. Studies of wide-area networks show that 1N€ré are three desired attributes in a tracing and

misconfigurations cause 3 out of 4 BGP routinganalysis infrastructure.  First is low performance
announcements, and are also a significant causetiaf overhead on the monitored client, such that ieasible

load on DNS root servers [4,22]. Our own analygis olo always be collecting complete information foe Uy

call logs from a large software company’s intefinalp systems management tools. The second desired

desk, responsible for managing corporate desktop&ttrib”te is an efficient method to store datathsd we

found that a plurality of their calls (28%) were pgcan collect logs from many machines over an exténde

related? Furthermore, most reported security period to provide a breadth and historical deptdata

compromises are against known vulnerabilities—WN€n managing systems. Finally, the analysis eéeh

administrators are wary of patching their systemd29€ volumes of data has to be scalable, so taatam

because they do not know the state of their systards Monitor, analyze and manage today’s large computing
cannot predict the impact of a change [1,26,34]. environments. Unfortunately, while many tracerseha

PS management is the process of maintaining the provided low-overhead, none of the state-of-the-art
“correctness” of critical program files and settintp techpolofg|esﬁf.o.r always-on tracmgI of_ PS inteiant
avoid the misconfigurations and inconsistencieg thaProvide for efficient storage and analysis.

cause these reliability and security problems. eRec We present the Flight-Data Recorder ('.:DR)’ a high-
performance, always-on tracer that provides coraplet

records of PS interactions. Our primary contribatis

! The other calls were related to hardware probl¢higs), @ domain-specific, queryable and compressed leg fil
software bugs (15%), design problems (6%), “howdalls ~ format, designed to exploit workload charactersstd
(9%) and unclassified calls (12%). 19% not claedifi

impact of software patches, analyzing hacker biesk-




PS interactions and key aspects of common-ca:  Taple1: Performance overhead and log sizes for

queries—primarily that most systems managemer related tracers. VTrace, Vogel and RFS track

tasks are looking for “the needle in the haystack,  similar information to FDR. ReVirt and Forensix

format, requiring only 0.47-0.91 bytes per intei@ct Performance LogSze  Log Sze

that supports the analysis of 1000 machine-daysgsf Overhead .

over 25 hillion events, in less than 30 minutes. (Bfevent)  (MB/machine-day)
We evaluate FDR’'s performance overhead FDR <1% 0.7 20MB

compression rates, query performance, and scajabili \/Trace | 5-13% 320 N/A

We also report our experiences with a deployment ¢

FDR to monitor 207 production servers at various\s Vogel | 0.5% 105 N/A

sites. We describe hoaways-on tracing and analysis RFS <6% N/A 709MB
improve our abilit.y to do after_—theifac.:t qucleriesrmrd—. ReVirt 0-70% N/A 40MB-1.4GB
to-reproduce incidents, provide insight into onrgpi . .

system behaviors, and help administrators scalab FOrensix| 6-37% N/A 450MB

manage large-scale systems such as IT environmers, eived performance penalties, but sacrificebilii

ar|1d Iﬂternet service cluste(rf. lated K ared hinto requests satisfied by local caches as well as
n the next section, we discuss related work am®d th, ity of the process making a request.

strengths and weaknesses of current approaches 1q>qmpiete versioning file systems, such as CVFS [31]
tracing systems. We present FDR'’s architecture angq WayBack [8] record separate versions of fites f

log format design in sections 3 and 4, and evalti®@e ooy write to the file system. While such filesgyms
system in Section 5. Section 6 presents sevealyia  paue heen used as a tool in configuration debugging

techniques that show how PS interactions can hel 9], they do not capture file reads, or detailstiud
systems management tasks I|k.e troubleshqotmg a’;_Erocesses and users that are changing files. The
change management. In Section 7, we discuss t€anairable File Service (RFS) logs file versioning
implications of this work, and then conclude. _ information and also tracks information-flow thrdug
Throughout the paper, we use the termeRBIES 10 goq ang processes to analyze system intrusiddis [4

refer to files _and folder_s yvithin the file systeas, well In [33], Vogels declares analysis of his 190M trace
as their equivalents within structured files sushtlze records to be a “significant problem,” and usesadat

Windows Registry. A P3nteraction is any kind of = arehousing techniques to analyze his data. The

access, such as an open, read, write, close otedelg-qensix project, tracing system calls, also resdogs
operation. in a standard database to achieve queryability.[13]
2. Related Work However, Forensix’s client-side performance ovedhea
In this section, we discuss related research andnd their query performance (analyzing 7 machingda
common tools for tracing system behaviors. Weof logs in 8-11 minutes) make it an unattractivéiap
discuss related work on analyzing and applying eéhesfor large-scale production environments.
traces to solve systems problems in Section 6.leTab A very different approach to tracing a system’s
compares the log-sizes and performance overhead bEhavior is to record the nondeterministic evehe t
FDR and other systems described in this section foaffect the system, and combine this trace withugirt
which we had data available [33,11,21,20,40]. machine-based replay support. While this provides
The tools closest in mechanics to FDR are fileesyst finer-grained and more detailed information abollit a
workload tracers. While, to our knowledge, FDRhis  the behaviors of a system than does FDR, this extra
first attempt to analyze PS interactions to improveinformation can come at a high cost: ReVirt reports
systems management, many past efforts have analyzegbrkload-dependent slowdowns up to 70% [11]. More
file system workload traces with the goal of optimg  significantly, arbitrary queries are not supported
disk layout, replication, etc. to improve I/O syste without replaying the execution of the virtual maneh
performance [3,9,12,15,25,28,29,33]. Tracers baged taking time proportional to its original execution.
some form of kernel instrumentation, like FDR and While, to our knowledge, we are the first to
DTrace [30], can record complete information. Whil investigate domain-specific compression technidaes
some tracers have had reasonable performandeS interaction or file system workload traces, ¢heas
overheads, their main limitation has been a lack obeen related work in the area on optimizing or
support for efficient queries and the large logesiz compressing program CPU instruction traces [5,49],
Tracers based on sniffing network file system icaff well as work to support data compression within
such as NFS workload tracers [12,29] avoid anyntlie general-purpose databases [6].



3. Flight Data Recorder Architecture To avoid impacting the performance of the system,
In this section, we present our architecture andve configure our daemon to run at lowest-priority,
implementation for black-box monitoring, collecting mMeaning it will be scheduled only if the CPU is
and analysis of PS interactions. Our architectur®therwise idle. If the daemon does fall behince th
consists of (1) a low-level driver that interceptsPS  driver can be configured to either block until spas
interactions with the file system and the Windowsavailable or drop the event. However, in practige,
Registry, calls to the APIs for process creatioml an have found that a 4MB buffer is sufficient to avaiady
binary load activity, and exposes an extensibififgl  10SS on even our busiest server machines.
for receiving PS interaction events from other The daemon throttles its overall memory usage by
specialized stores; and (2) a user mode daemon thatonitoring the in-memory compressed log size, and
collects and compresses the trace events intoilleg f flushing this to disk when it reaches a configueabl
and uploads them to a central server, (3) a cesgraer threshold (typically 20MB to 50MB). The daemon will
that aggregates the log files and, (4) an exteasiet of  also periodically flush logs to disk to ensureaklée log
query tools for analyzing the data stream. ourcollection in the event of agent or system failure.
implementation does not require any changes to théhese logs are uploaded to a central server using a
core Operating System or app"cations running am‘) standard SMB network file SyStem prOtOCOI. If dufice
We provide detailed discussion of our domain-specif occurs during upload the daemon will save the log
queryab|e |og format in Section 4. |Oca”y and periOdica”y retry the Upload -
3.1 FDR Agent Kernel-Mode Driver The daemon also manages its own operation, for

Our low-level instrumentation is handled by a kérne example, by automatically update its binaries and

mode boot drivér which operates in real-time and, for configuration settings when indicated on the céntra
' server, and monitoring its disk space and memory

each PS interaction, records the current timestampejsa e Setting up EDR tracing on a new machine is
process ID, thread ID, user ID, interaction typeaft, sag g 9 up 9 . .
simple: a user only needs to run a single binaryhe

write, etc.), and hashes of data values where cgipé. machine and confiaure the loa upload location
For accesses to the file system, the driver recthrds 9 9 up '

path and filename, whether the access is to aofila 3.3 FDR Collection Server
directory and, if applicable, the number of bytead or The collection server is responsible for organizing
written. For accesses to the registry, the drieeords FDR log files as they are uploaded, triggering vefe
the name and location of the registry entry as waell query tools to analyze the files as they arrived an
the data it contains. The driver sits above the fi Pruning old log files from the archive. It alsass¢he
system cache, but below the memory mapping@Ppropriate access privileges and security on the
manager. This driver also records process tregollected files and processed data.
information, noting when a binary module is loaded, 3.4 FDR Query Tools
when a process spawns another. The final pieces of our framework are the quenjgoo
The largest performance impact from the driver stemthat analyze log files as they arrive. Each queoy is
from 1/O related to log writing, memory copies teld  specialized to answer a specific type of query dor
to logging events, and latency introduced by ddlng  systems management task. Simple example queries
work on the calling application’s thread. We mitgga include “what files were modified today?”, or “whic
this by only using the application’s thread to wrihe  programs depend on this configuration setting?” als
relevant records directly into the user-mode daésnon our log files are read-only, we do not require
memory space, and doing the processing on the usetemplicated transactional semantics or other
mode daemon’s thread. Caches for user namesland ficoordination between our query tools. Each queoy t
names that need to be resolved for each interaatstn reads the log files it is interested in scanningl an
help to minimize lookup costs. implements its own query plan against the dataimith
Our kernel driver is stable and suitable for use inwhile future work might investigate benefits of
production environments, and will be available forcaching, sharing intermediate results across nbaltip
public use as part of Windows Vista. concurrent queries, or other optimization technique
3.2 FDR Agent User-Mode Daemon from the database literature, we found that allgwin
The user-mode daemon is responsible for receivingncoordinated reads simplified the process of mgld
records of PS interactions from the kernel driver,new query tools as required.
compressing them into our log format in-memory, and4, Designing the L og Format
periodically uploading these logs to a central serv The key requirements we have for FDR’s log format
are that 1) logs are compact, so that their sizs amt
overly burden client resources, network bandwidth o
server-side scalability; and 2) the log format@éintly

2 A kernel-mode boot driver is the first code to rafter
booting and the last to stop if the system is slown.



supports common-case queries. To meet theseWe find that most common systems management
requirements, we built a preliminary version of FDRqueries of PS interaction traces search for a sutfse
with a straightforward, flat format, and collects@00  events, identified by the responsible process er, ke
machine-days of traces from a wide variety offile or registry entry being accessed, or anotlsgreat
machines. We can personally attest to the diffjcaf  of the interaction (“Who changed this configurafdn
collecting, storing and analyzing this scale ofadat or “What did | change yesterday?”). This meang,tha
without support for compression and queryability. by organizing or indexing our log format around suc
Based on our analysis of these traces, and a sufvey attributes, we can quickly identify the subset of
how previous work applies such traces to systemteractions of interest. Common queries are afsen
management tasks, we designed an optimized log fileestricted by time range, looking only at eventatth
format that takes advantage of three aspects of P&curred during a specific period, implying thatr ou
interaction workloads that we saw across our ctdlbc logs should support random access over time, rsit ju
traces. sequential access.

First, most PS interactions repeat many times dwin ~ Many systems management tasks only involve the
day—93-99% of daily activity is a duplicate of an existence (or absence) of a particular PS interagcti
earlier event. For queries that care only abouatwh and notwhen or how often the interaction occurred. For
happened, rather than when or how often, we caexample, finding all loads of a shared library,aetiess
improve query performance by separating theof when they occurred, can identify the proceskas t
definitions of this small number of distinct intetisans  depend on that library and help assess the im{daat o
from the details of when they occur. software upgrade. Other times, queries do careitabo

Secondly, we observe that PS interactions are yighlwhen a PS interaction occurred, but only need to know
bursty, with many interactions occurring almostan interaction’s relative-ordering vis-a-vis othBiS
simultaneously and long idle periods between burstdnteractions on a given threadg., to determine
This allows us to save significant storage space bpotential causalities like loading a binary afteading
amortizing timestamp information across a burst. its name from the Registry. In both cases, the

Finally, we find that sequences of PS interactiares implication is that some queries need not read
also highly repetitious; if we see a sequence ofddfls timestamps at all.

and_wr_ites, we are very Ii_kely to see the same&ec®l 42 PS\Workloads and L og Optimizations
again in the future. This leads us to apply steda For our survey, we monitored the PS interactions of
compression schemes to the time-ordered tracesSof Ryyer 324 machines during one year across a vaoiety
interactions, achieving a high compression rate. computing environments and collected over 5000
In the rest of this section, we describe relevaninachine-days of PS interactions in total. We wdrke
attributes of common-case queries, present thetsesuyith MSN to instrument 207 of their machines, asrds
and implications of our survey of PS interactioacs, gifferent services with different workloads, inciog
and then describe the details of our log format. CPU-bound systems with heavy disk workloads, aglarg
4.1 Common Queries storage service for external users, and web natifios
Today, systems administrators deal with large-scalepublish/subscribe service. In our own research \ab
complicated systems. According to surveysmonitored 72 laboratory machines used for variata d
[9,28,33,36], an average Windows machine has 70kollection, analysis and simulation experiments.e W
files and 200k registry settings. Faced with #ektof  also monitored 35 corporate desktops and laptoges u
managing these systems, a systems administratiy’s j by researchers and engineers, primarily for aaivit
is often a problem of “finding the needle in the such as software development and word processing.
haystack.” For example, troubleshooting is thé& tafs  Finally, we monitored 7 home machines, used for
finding the few configuration settings or prograiled  entertainment and work-related activities by
that are causing a problem; and to test a softwareesearchers, engineers, and their families. Asndéral,
upgrade or patch, the administrator needs to knbatw we also collected traces from 3 idle systems, mmni
subset of the system might be affected by the ahangwithin virtual machines with no user workload.
To be useful, FDR must help systems administratorg 2 1 Scale and repeated interactions
quickly identify the small set of relevant statedan The primary challenge to efficiently tracing the PS
events out of all the state existing and eventsioi nteractions of a machine is the volume of eveht t
across the many machines of a computing or IToccyr. In our survey, we found that the averagalyer
environment. We describe the details of how systemys gajly PS interactions was O(3ranging from 9M
management tasks use PS interaction traces ign gesktop machines to 70M on the busiest workloads
Section 6. Here, we briefly describe the aspeéts Oy5 shown in Table 2. Not surprisingly, serversiéeh

common-case queries that informed our log formaty have a stable workload from day-to-day, while ou
design.



Table 2: The average per machinedaily total and ~ This is a significant observation because per-event

distinct interactions, entries, and processes timestamps are a major limiting factor to achievitigh

= " 2 ne lnod _ 2 compression rates. To help us choose an apprepriat

@ Qs Qs o2 3 ca bucket duration, we look to the requirements of

= TS |85 [8¢& § ks common-case systems management queries. We find

2 2 g 2 g = 2 apg that fine-grained timestamps are rarely necessary,

S g |29 |0 o . ) , | L

€ c ac |0 instead what is most important is the relative ande

w of events and the ability to map event occurrertoes
Sve. 1 70M 0.2% >0.1% 40-60 1 man activitiesi(e., wall-clock time). This leads us to
Sve. 4 29M|  3.3% 0.4% 30-70  choose a relatively coarse-grained 48-bit or 6ms
Svc. 2 22M|  0.6%4 0.1% 30 granularity timestamp. Note that this still prostda
Svc. 3 1M 1.1% 0.1%  30-70  granularity finer than Windows' time-scheduling
Home 17M|  4.2% 0.69 30-40  quantum of 10-15ms. While one might worry that a
Desktop 9M| 5.4% 1.0% 20-100 coarse-grained timestamp would mean every bucket
Lab M| 1.5% 0.3% 17-40  would have at least one event in it, in practieeneour
Average 25M 1.6% 0.2% 43 busiest observed machine-day, with 264M daily eyent
Idle 965K | 2.1% 0.5% 14 showed no PS interactions during 60% of its timagta

- . buckets. Of course, this does not mean the maasne
lab, corporate desktop and home machines had Va”%whole was idle—it might have been busy with CPU

workloads. The highest number of daily interactiones . i . i X
saw was 264M events, on an MSN server that cotlecte.ca'CUIatIonS during the times it was not doing PS

application logs from 1000s of other machines. Interactions. )

However, we found several factors that mitigate the4-2.3 Repeated Sequences of Interactions
large volume of PS interactions in all these woakis. Our final key observation is that many sequences of
First, the number of distinct files and registrytrss ~ PS interactions repeat over time. This is notrarsse,
read or written every day is much smaller thantttal ~as we would expect that most of the file system and
number of interactions. Secondly, the number offegistry activities performed by a system are saashd
distinct processes that run on each machine is verigpetitive tasks, including process start-up and
small, O(16) processes on the busiest desktops, anghutdown, background activities, document auto-save
fewer on production servers. Overall, we foundt thaand logging. We perform a detailed analysis of
most PS entries are only accessed by a small nuofiber repeating “activity bursts,” in [32] and, for space
processes, and that the total number of distinceonsiderations, provide only a summary here.
interactionsi(e., distinct <user, process, operation-type, In our analysis in [32], we define an “activity lstir
PS entry> tuples) was O()0only 0.2% to 5.4% of the as the set of PS interactions occurring in oneathre
total interactions per day. where each interaction occurs no more than somé sma

This implies that we can improve the performance ofime separation apart. Formally, we define anviyti
queries not interested in timestamps or counts ®f Pburst as a group of eventsafi<t<j} occurring
interaction occurrences by separating the uniquavithin a single thread, whergap(e,e.1) <k, for all
definitions of observed interactions from the time-i <t<j; gap(e..,e) = k; gap(e,e.1) = k; gap(xy) is the
ordered traces of when they occur. Effectivelys th time between two interactions andy; andk is the
allows many common queries to ignore 94.6-99.8% othreshold gap between bursts. We call an activityst
the log. This also provides the possibility of @ “repeat” if it is identical to an earlier actiyiburst in
compressing our logs, by replacing repeated®Very attribute of its interactions except for tstamps.
descriptions of an interaction with a single unidDe Otherwise, we call it a “distinct” burst. In ounrsey,
4.2.2 Bursts of Activity we find that most activity bursts in a day are edpd

Several studies of I/O traffic and file system witigs bursts. On desktops, we see 2K-5K distinct bussts

have shown that server and desktop I/O workload§ 20K-40K ‘total and, on servers, we see 3K-4K

demonstrate bursty or self-similar behavior [14,16] d|_:|;_tr|1r_1ct burs;ltts_ out ?fF?gK'ZOK' . indigat
We observe this in our traces as well, where it IS repetiion o Interaction sequences inexa

manifests as many interactions arriving togetheth wi ':hat swgpledbyte cotmpressmn scheT]es,ldapglltted ?O thd
long idle periods in between. ime-ordered event sequences, shou etect an

The primary implication of these bursts for our log compress these repeating patterns. Since our #alys

format is that, when many events occur togethereth a_ct|\1|tythburzt r(tapgtltlogsfpiusest_ on _bursts SVIVB}'[(;'SH
is a clear opportunity to merge their associatede ti ?lng et- read, storing N erat(rz]lons_ Irll a sfy lowi
information, storing a single timestamp for all the Imestamp - seéquence - runs e nsk of alowng

: A oncurrent I/O from multiple threads to interferéhw
events that occur during the same timestamp bucke .
9 P the compressibility of each other’'s patterns. Heoave



4KB uncompressed header

Compressed Blocks (64KB each, before compression)
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Figure 2: The physical layout of our log for mat

because of the relatively large CPU time slice 0f 1 improves query efficiency by transforming querikatt
15ms on the Windows OS, and the knowledge that mostvolve multiple attributes and expensive string

PS interactions are handled quickly by file caches,
still expect to gain significant compression ofeafing
patterns in a cross-thread trace of PS interactions

Timestamp Ordered
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End Offset

\ id —‘

Distinct PS Interactions <€

Distinct File
Interactions
User
Thread
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Filename

User Table
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\Thread Table Process Table

String Table

Distinct Registry
Interactions

Figure 1: Logical design of our log format
4.3 Log Format Details

comparisons into inexpensive comparisons of integer
IDs as we scan through traces of PS interactions.

Our second design choice in our logical log forisat
to represent the trace of events itself as twollehraut
connected, streams of data. The first stream is an
ordered list of events as they are captured byketmel
driver and reported to the user daemon. The second
stream contains timestamp information for groups of
events. This amortizes the size of timestamp
information across multiple events, reducing therall
size of the log, as well as improving byte compiess
of the event stream by better exposing patternthen
sequences of events. Both logical streams aredsiar
a single physical file to ease management of log
archives.

We created a file structure that contains a large
logical address space split into 32 sections. Edc¢he
normalized attribute sections, the section of di$tPS
interactions, as well as the ordered event streach a
timestamp stream, are mapped to a section in a@ur lo
file.  Each section is composed of individually
compressed 64k pages. Compressing in blocks,rrathe
than using a streaming compression format allows
random access within a data section.

To simultaneously optimize our log for random

Based on the machines observed in our survey, ouccess and compression, our physical log file layou
log format has two key facets to its logical design consists of a three-layer addressing scheme ofkbloc

shown in Figure 1.

the attributes of our persistent state interactione

First, given the repetition oftable, block number, and block offset, shown in
accessed files, observed processes, etc., we npemal Figure 2.

This three-layer addressing scheme is
important because we want to compress individual

separate sections, essentially following a standar@locks and store the start and end offsets of bautk

procedure of database normalizatioWWe create one

section for distinct PS interactions, which pomither
sections containing distinct names,
process information, file data hashes and valuEise
primary benefit of this normalization is a reduatiof
repetitive information.
grouping attributes into their own sections imp®tee

in a table for fast lookup, and as a further optation,
compress these tables as well. With 448 bloclkemabl

user context3192 blocks per table and a 64k uncompressed block

size, this provides a maximum addressable storiage s
of 234 GB of uncompressed data within each log file

In addition, we find that While we find this is many times more than a single

machine-day of logs, this format gives us the fidity

performance of byte compression algorithms as wf joining many days of logs into a single file for

compress these log sections later. This separatfm

3 Database normalization is a process of organidiaig to
eliminate redundancy and reduce potential for €38).

improved compression, and gives us flexibility i P
interaction workloads grow in the future.



Each log file starts with a 4k uncompressed headenot interested in when or how many times an
The first 256 bytes consist of versioning and otherinteraction occurred then it can stop here, without
miscellaneous information.  Next are 32 sectionscanning the much larger event stream sections.
descriptions, each 8 bytes long. Each of the &lgic Otherwise, the tool can scan through the ordereshtev
sections, described earlier, is laid out contiglyooger  list and timestamp stream to find the details of th
our three-layer addressing scheme, aligned at blocticcurrences of these PS interactions.
boundaries. These section descriptors providéltiek To restrict a query by a time range, a query tool
table and number of the start and end of eachasecti applies a binary search to the timestamp stream,
The rest of the 4k header is filled by 448 blockléa searching for the start of the desired time ran@ace
descriptors, that point to the start and end dffedta  this timestamp is found, it can skip to the appiater
compressed block table. The block table, in turn64K block of the ordered list of events, and begin
contains 8192 block entries, each pointing to tfa&ts scanning the ordered list from that point on, utiti
and end offset of a compressed 64k block. end of the time range.

The timestamp section is maintained as a 16 byte Common-case queries tend to extract sparse
entry containing 6 bytes (48 bits) to representnas 6 information from the extremely large data set of PS
time resolution, 2 bytes to count missing eventthiwi  interactions. Our log format enables efficient rige
that region, and two 4 byte offsets pointing to fingt by allowing query tools to focus on the relevarsats
and last consecutive event with that time resaofutio of data, and expanding their scope to larger argkfa
While almost all events are received by the daemon portions of the data as necessary. For examplaesy
time sorted order, we correctly handle timestampo find a list of all files modified during a day 285M
information for any events that appear out of orderPS interactions requires only one pass over andisti
This can happen when a context switch occurs ftest a event table with 318Kentries to identify the string
an /0 activity completes, but before the kernévelr  attribute id of modified files, and then scanningothe
reports it, but this delays the reporting of anrdMgy a  string attribute section with 100K entries to digeothe
few scheduling quantums, and never affect the {ntrafull filenames of each modified file, avoiding ever
thread ordering of PS interactions. scanning the full list of 25M events that occurred

The user daemon first creates log files in-memoryduring the day.

As it receives raw events from the kernel drivéle t g Experimental Evaluation

daemon normalizes the events, replacing attribute .In this section. we evaluate FDR and find that on
values with indexes into the appropriate sectiofbe verage, our logs use only 0.7 bytes/PS interactive

n_orr_nahzed event Is then cqmpared to the table Ofnq thqt query performance scales linearly witke th
distinct normalized events using an O(1) hash lpoku number of events in a log. All of our queries can b

and added to the table if necessary. Finally, the,cessed in a single pass against an entire medain

normalized event is added to the ordered evenarstre logs in just 3.2 seconds. FDR's client-side
section, along Wr;th fne;v tllmesft.;arpp mformatlpn, 'f_ erformance overhead is less than 1%, and caloglati
necessary. ~Each of the log file's data sections ige |gad on bottleneck resources in our centraleser

append-only in memory. When a log file is closed a jjjicates that a single machine could scale taeciig
flushed to disk the daemon writes each data sectiog 4 analyzing all the PS interactions from 4300

contiguously to disk while applying a standard . hines: keeping all logs for over 3 months.
compression algorithm to each 64K-byte block. . .
5.1 Log File Compression

4.4 Querylng_Logs ) The efficiency of FDR’s log file format affects ot
Wh_en af?a'yz'”g these log files, our tools t_e’_‘d ©the runtime load on clients’ memory and networkg an

restrict the|r quenes based on one or more atethin tpe long-term storage costs of PS interaction logs.

_the PS interaction record, based on a time-range of |~ survey of 5000 machine-days of logs,

interest, or based on both. To restrict a query byjegerined in Section 4.2, the average raw eveetisiz

attribute, a query tool scans the appropriate cecti 140 bytes and daily per machine raw logs are 7GB,

looking for all values matching the given criFeriﬁrom compressing to 700MB with GZIP. After converting
these values, the tool then generates a filterpuya our collected logs to our new format, we found,

against the section of distinct PS interactionsuliteng depending on workload, each PS interaction takes
in a set of unique IDs, one for each PS interactiorbewveen 0510 0.9 byteé of storage, and 0.7 hytes

matching the original attribute restriction. FeB&ple, 5 erage. One machine-day of PS interactions can be
to return only PS interactions that access a paaic  gioreq in 6 to 71MB, 20MB on average, with a
file, a tool _would first scan the string sectlo_nfmuj th_e maximum observed machine-day size of 179MB.
ID Of. the f|Ie_name, an_d then scan the sectlo_n gtﬁmht Table 3 shows the results across our environments.

PS interactions to find the IDs of all distinct PS

interactions that accessed this filename ID. tba is



Table 3: Daily storage requirements for Table 4: Average section size as a per centage of

machines acr 0ss environments total log file size for each machinerole
Role Avg. Avg. Max Role Event|Time|Reg |File |String|Data |Other
B /Event| MB/d MB/d

Soe 1 ylesEen R Svel | 7794 199 1% 0.3% 0.2% 1.99 0.6%

Svc.4 0.78 57 103 Svc4 57% 179 79%13.99%4 1.8%9 3.29% 0.1%

gvc.g 8-;; 18 gg Svc2 | 719415% 4% 1.49% 0.694 7.9 0.1%

VC. .

Home 0.58 17 51 Svc 3 699% 15% 7% 1.8%99 0.994 2.79% 3.6%

Desktop 0.80 13 21 Home | 4694 279 9%| 119 4.0%4 1.9%94 1.1%

Lab 0.47 6 43

Average 0.70 20 29 Desktop| 479 1999 149 8.294 5.29%4 5.7%4 0.9%

Idle 0.85 0.76 0.88 Lab 48% 319% 8% 3.5% 1.994 7.09 0.6%

In addition to PS interaction workload, the effiudy Average| 53%|22%| 9% |7.7%|2.8% |4.1%| 1.4%

of our log format's compression is sensitive to tI g 242%]| 35%| 7%| 4.2%| 4.8%| 3.99 1.5%
frequency at which the logs are uploaded to théraken

server. More frequent uploads of logs reduces hgnieractions are the next major contributor to fidg
latency between when an event occurs and whemit caj;e taking 1.3-22.2% of daily logs from non-idle
be analyzed. However, uploading logs less fredyent machines.  Surprisingly, storing the values of gver
allows the logs to collect more repeated events anfLgisiry setting read or written (in the data seti

achieve better overall compression. _ takes only 1.9-7% of daily logs of non-idle maclsine
Figure 3 shows how storage size varies with theteve .
5.2 LogFile Query Performance

collection period. It shows that 80% of the compias T luate FDR’ ‘ ‘ d
efficiency is typically achieved with log files drour 0 évaluate S queéry performance, we performe
three types of queries against our collected daily

long, and that improvement ceases after 1 weelatat.d . :
machine logs: a single-pass query, a two-pass query

Based on this result, our current deployments uploa . . '
log files every 2 hours, and our central serverand a more complicated multi-pass query. Our first

reprocesses and merges them into 1-week longlkegy fi dUETY IS a single-pass scan of distinct PS intimast
topsave long-term sfctl)rage space. We envigiSﬁg thand generates manifest that identifies the distinct set

future versions of FDR will support latency-critica of registry settings and files used by every preces

queries by moving them to the client-side agent. durln_g the day. This query does not require scannin
In Table 4, we look inside the log files to see howthe time-ordered event sreams. Qur ;econd quesly 1S

much space is taken up by each section of ourileg f two-pass scan that searchesdate binaries (discussed

format across our different environments. We $ex¢t t ?n Sect_ion 6'1'2)_‘ This query scans t_hrough all PS
the ordered event stream and timestamps dominat&'teracuons, for files loaded for execution, andrth
together taking 66-96% of the daily logs of noreidl stans the §|me-order¢d e\{ent s;ream to see |flmtaafs_
machines. The definitions of distinct file and isty been mod'f'?d pn-d|sk since it was ""?St Ipaded Into
memory, indicating that a stale copy exists in mgmo
Our third query looks for Extensibility Points

Bytes per Event vs. Log File Interval : , _ o
(discussed in Section 6.2). This is our most

¢ 1\ \ \ \ —4—Desktop  —-Homel complicated query, making multiple scans of the
Y \ \ \ Home2  ——Idle distinct PS interactions and time-ordered everesi.
L 3= —k—lab sucl Query performance was measured by evaluating our
g .. ) \ \ \ Suc2 Sue3 three queries against log files that ranged frok20
e \ \‘ \ scs 200M PS interactions across all categories of nmashi
a \ \\‘ \\___ For this experiment we used a single 3.2GHz pracess
g1 N / We found that the average machine-day can be glerie
! . — # in only 3.2 to 19.2 seconds, depending on query
05 M— = complexity. Figure 4 plots the count of items iasged

sections vs. the time to complete each query, and

indicates that performance scales linearly withdizg.
30sec  Smin. 1hr. 1day 1 week We found that our query performance was not 1/0
bound reading log files from disk, but rather CPU-
bound, on decompressing log files. In fact, wenfbu
Figure 3: Compression Ratio variation with log file that query performance can be accurately predaseal
interval for each category of machines linear function of the number of items per seciiothe

Log File Interval



Query Time vs. Scanned Log File Section Attributes understand its limits. Therefore, we measure tR&J C

1000 cost of processing a single PS interaction, andthise
to evaluate the cost of processing our observed PS
. interaction rates.

100 A —

Our measured CPU cost to process a PS interastion i
on average, 64k CPU cycles. This cost is constitht
regard to the number of events already proces€rd.

A{'{// highest observed spike from our collected data4¥02
/r’
"

Query Time (seconds)
=
(=]

—— Manifest interactions per second. The average peak buesyev
' —=—5tale Binary day is 1800 interactions per second. From this, we
Ep extrapolate that the highest 1 second CPU usage spi
01 : , , on a 3.2 GHz CPU is 64k x 2400 / 3.2 GHz = 4.8%
.01 o1 1 10 CPU overhead. Our average peak is 3.6% CPU

overhead. As a further test case, we created an
artificially high PS interaction load by repeatedly
accessing cached PS data, without pause, genegating
rate of 15k interactions / second. Compressingethe
iun4’nteractions at this rate produces 30% CPU overhead

CPU cycle cost to process each item. We measheed tOur average rate of 100-800 PS interactions pergkc

average per item CPU cycle cost to be 63k cycles folquires only 0.2 - 1.6% CPU overhead.

manifest queries, 27k for stale binary queries 38d 5.4 Server Scalability

for extensibility point queries. Using Pearson’squct The scalability of a single-machine FDR server

moment correlation to compare our predicted andollecting and analyzing PS interaction logs fromnm

measured query times, we find the correlation to b&ther machines is potentially limited by severaitdas:

from 0.923 to 0.998, indicating that query perfoncen  Network bandwidth for receiving logs, disk 1/O

is a linear function of the size of the log iternarsned.  bandwidth for storing and reading logs, CPU cost fo

53 Client-Side Over head analyzing logs, and the disk capacity for storiogsl
Here, we evaluate the tracing and compression The single-machine configuration we consider is the

. llect logs from our agents todais a
overhead of our kernel driver and user-mode agenf)ne we use to co
Through our initial survey of PS interactions, wavé dual 3.2GHz CPU, 2GB of RAM, a 1Gbps network

tested and deployed our driver and our user-modatag E?TnAecyio?, agg 3_ i4R2?[5d5drivtes (:LOSGB .72gQRPM
without our compression tools on over 324 Windows ) in two IS Sets wi parity dey

2000, Windows XP and Windows 2003 machines. Al rov!ding 8TB of storage. ASS““.“”Q an average 20MB
MSN, pre-production testing of our data collectasw og file per machine-day, and using the performanice

done in a lab setup of 4 identical servers, 1 nugmiur this system, we consider each of the potential

agent, each receiving a copy of the current Iivesc"’“abIIIty bottlenecks:

roduction load. Measurements were made of volumtle\'et\.'vork bandwidth: A 1Gbps network link, with an
gnd latency of workload transactions along with"’wh'eved bandwidth of 100 Mbps, could support 53,00

hines uploading per day.
memory, network, CPU, and 1/O overhead. TheMac o
performance impact of our driver and agent wa ik 1/0 bandwidth: Our RAID storage system

minimal. with < 1% CPUoverhead measured. and no provides 80 Mbps random access bandwidth. At this

measurable degradation in transaction rate or dgten rate, we could support both writing logs and a leng

To further confirm this, we conducted an experimentp":lSS query ata r.ate of 4_3'200 machine_zs per day.
where we placed a high and varied PS interactio’ Y fo_r analyss Following the analysis of query cost
workload, consisting of simultaneously creating'n Section 5.2, our dual processor 3.2GHz machare c

: ; P t querying up to 54,000 machines per dag at
100,000 processes, scanning the entire registryfiend suppor X
system for non-existent entries, and making 10,00(5ate of 1.6 seconds per machine-day (3.2s per CPU).

copies of a 1KB file, 35 copies of a 1GB file, and From this analysis, not counting long-term storage

; . i ts, the limiting factor to scalabilitypsars

100,000 registry keys and values. Even underdiaid, requiremen . ; .
we found no measurable performance degradation. to I be_ d'Skf dband;/wdth,4332u(;))(§)ortlngh the coefntrallzed
The next stage of our evaluation of agent perfolmaan fr? e_ctlonto atﬁ_ tr_omt d ’ | mac mde?H d_lmfourse

focuses on the overhead of log format generatiah an IS 1S not a sophisticated analysis, an erdilerty

compression. Because we configure our agent tomun :ﬁ be ISISLllaelst an? |nte_ra(it|0ns vr\:mchlmlght"fur:mgml
a low-priority thread, we have not observed a € scalability ot a singie-machine log collectoror

noticeable performance impact, but do want tothIS reason, we_apply a safety factor of_lO to_our
analysis, and claim that FDR can allow a singlerexer

Total Log File Section Attributes Scanned

Figure4: Timetaken for each query compared
with the number of attributes scanned
log file scanned by the query and the Intel Pent



to provide centralized collection and analysis loé t will already have captured the trace at the timehef
complete PS interaction logs of up to 4,300 machine original problem. Secondly, both tools require tiser
Separately, analyzing the storage capacity of outo guess which process is failing and should beetta
single-machine server, we find that our 8TB RAID and the user must know to iteratively expand tlepsc
system can store a total of 400k 20MB machine-daysf the on-demand tracer to debug a cross-applicatio
This would store the complete PS interaction lo§s oproblem, where one process fails because of am ierro
13,000 machine for 1 month, 4,000 machines for 8ver another €.g., a word processor acting as an editor for
months, or 1000 machines for 1 year. an e-mail reader). An always-on tracer will alngad

6. Using FDR for Systems Management havg _captured traces of all the processes on arsyst
In this section, we first review our use of early-o ©Pviating the user's need to guess what part of the

demand tracing prototypes to attack various system@/Stem to trace.  Finally, [35] states that updatin

management problems, then present one new case st eerPressure’s  central database of machine

in detail. Throughout, we describe how each tegumi  configurations as software and operating systeres ar
is improved by one or more of FDR's benefits: upgraded is an open challenge. With the scalaige |

Completeness FDR gathers a complete record of collection provided by FDR, collecting descriptioofs

reads, writes, creations, etc. to the file systam a NEW configurations and software to insert into
registry, including details of the running processer " eerPressure’s central database is trivial.

account and, when appropriate, data hashes, vales, " Urthermore, FDR's always-on tracer improves on
Always-on: FDR's always-on tracing means that usersStrlder and PeerPressure’s troublesh_ootmg in a
do not have to anticipate when they might needrtgac fundamental way: whereas these previous tools are

information, do not need to reproduce problems tg?Nly able to locate the misconfiguration, FDR'stbiig
obtain traces, and enables analysis of long-teemts, ~ ©f PS interactions can also help place resportsiior

Collection and Query Scalability: FDR’s scalability a misconfiguration by determining when and how the
eases cross-machine analysis, such as PeerPress{igconfiguration occurred. This can help identifie
[35], and allows administrators to centrally app|yroot cause of the issue and prevent future occoesen
current PS analysis techniques rigorously and essena 6.1.2 Detecting Known Problems

to large computing and IT systems. In addition to reactive trobuleshooting, we can use

6.1 Management Scenarios always-on tracing to proactively search for specifi

. . . . known problems, such as common misconfigurations
6.1.1 Troubleshooting Misconfigurations and old versions of software with known

When a problem, like a misconfiguration, happens,, nerapilities. One common problem, the “stale

troubleshooting is the task of determining what ha%inary problem,” occurs when software upgradestéail
gone wrong and fixing it. The Strider Troublest®ot |ogiart affected processes or reboot a machine afte
[36] used a precursor to FDR, called AppTracer, 1Qgpacing its on-disk binaries. The result is thize
capture on-demand traces of a program's registiiygsiem s continuing to execute the old program in-

interactions. Once a user notices a program etfiey,  memory. This is an especially serious problem when
turn on AppTracer and reproduce the problem. &trid osching security vulnerabiliies.  With complete,

then asks the user wh?n the program last workel, arLyays-on tracing, we can periodically query foe th
uses this date to find a "known-good” Windows Sste |55t oad-time of running programs and DLLs, and
Restore snapshot. ~Strider then searches for negist;ompare them to their last modification-time onkdis

settings used by the program that have changee singeing inconsistencies to system administrators.
the known-good snapshot. With some noise f||ter|ng613 ch M ] Analvs
and ranking heuristics, Strider produces a shettdf iy ange Management: [mpact Analysis

settings likely responsible for the problem. Keeping systems up-_to—date Wit.h _th_e Iatest_security
PeerPressure [35] improves on Strider by usin nd bug patches is critical for minimizing vulneitidyp

knowledge of the configuration settings on othert© Malicious adversaries, and loss of productitay
machines, stored in a central database. By asgumirEOftW%r_ﬁ bugs. At thlg same t|31e, pe;tches can
that most other machines are configured correctlydestabilize existing applications. Today, unfortefya

PeerPressure removes the need for users to idemsify ©VEN if @ patch only updates a single shared ybtae
last known-good state. administrators do not know in advance which

Both Strider and PeerPressure suffer from similaPPlications might be affected. Consequently, fpatc
limitations due to their use of an on-demanddePloymentis often delayed as it undergoes a tgngt
AppTracer. First, both tools require users toodpce  (aNd EXpensive) testing cycle, and computer systems
a problem so that the AppTracer can collect a tace remain vulnerable to “fixed” bugs and security Isole

hard to accomplish if an error appears only trantiie To help adminis_trators focus their testing of saitev
or is otherwise hard to reproduce. An always-apgr ~UPgrades, we built the Update Impact Analyzer (UIA)



[10] that cross-references the files and configanat logs after-the-fact by adding tamper-evident hash-
settings being patched against always-on traceBSof chaining signatures [18] to our logs or by moving o
interactions. The UIA generates a list of progrdha&  user agent to a hypervisor or VM outside the
interact with any state that is going to be updatddy  accessibility of the monitored system. Malicious
application not on this list can be placed at adlow software that enters a system directy/( via a remote
priority on the testing regimen. (An exceptionmiBen  buffer overflow exploit) could corrupt our kernelivcer

a given application interacts with an updatedbefore writing to disk. To avoid this attack, tfile
application via inter-process communication—in thissystem itself would have to be moved to a separite
case, both applications could still require thotoug or hypervisor. Detecting malware that never intexa
testing. See Section 7.3 for a discussion of othewith the disk is outside of FDR’s scope.

possible candidates for always-on logging, inclgdin g2 Case Study: Exploiting SW Extensibility
inter-process communication and locks.) ~ Once spyware or other malware first infects a syste

A primary challenge faced by UIA, as reported inthey often load themselves as a plug-in or extengio
[10], is that patch testing and deployment is madag tne operating system, daemon, or frequently used
centrally by administrators, but application usa§®, applications such as a web browser, ensuring their
determining the dependencies between an applicatiofyntinued execution on the host system. One médthod
and various files and settings, is d_istributed_ 8810 (efend against such malware is to monitor the regti
many computers. FDR'’s scalable tracing and cadlact or extensibility points (EPs) which control software
of PS interactions enables administrators to easn)éxtensions, alerting the user to changes that might
gather the accurate information they need. signify a malware installation.

6.1.4 Malware Mitigation By comparing snapshots of the Windows Registry
The challenges to mitigating a malware infection,before and after 120 different malware installagion
whether spyware, Trojan software, viruses or wormsGateKeeper [38] found 34 EPs that should be
are detecting its existence on a system and detergni monitored for signs of malicious activity. Heregw
how the malware entered the system. With always-oshow how we can take advantage of always-on tracing
PS interaction traces, identifying running malwerea  to detectpotential malware-exploitable settings, even if
matter of querying for the hashes of loaded exdétesa they are currently used only by benign software

and shared libraries.  Any well-known malware extensions. Further, we show how PS interactiaces
signatures can be flagged, and unrecognized haslnes can help rank the importance of these EPs, basdideon
be reported to an administrator to determine whethe observed privileges and lifetimes of the procedbas
not they are malicious. Following the methodolody o use these extensions.
[17], always-on tracing of PS interactions can @& §21 Detecting Extensibility Points
analyzed to discover how malware entered a system.  To discover EPs we monitor application PS
To further backtrack the “route of entry” of malear interactions for files being loaded for execufjoand
the HoneyMonkey (HM) project analyzes the PScheck for a previous PS interaction which contaithed
interaction traces collected with FDR of web browse eyecutable’s filename. If we find such a setting
as they visit many websites [37], Using a farm Ofassyme that it directly triggered the executatiteldiad
virtual machines running scripted web browsers, HManq mark the setting asdirect extensibility point. In
crawls the Internet. If HM notices a web browsersome cases, if we continue to search backward ghrou
writing to the file system outside of its browsandbox  the history of PS interactions, we will also fimiirect
(eg., writes other than temporary cache files), then itextengibility points, where another configuration setting
can be assured that a malicious website is explpai  triggers the process to read the direct EP. Famgie,
browser vulnerability to install malware. SpyCrawla a5 “indirect EP may reference an ActiveX class
concurrent research project, used a similar syStem jgentifier that points to a COMobject's settings that
detect malicious websites [23]. Without FDR’s deldi  gntain the executable file name.
trace information stating which processes where npany EPs have a similar name prefix, indicating tha
making the changes, their browser monitoring systemy,g-ins using it follow a standard design pattéie
had a high false-positive rate for detecting exploi gefine a common EP name prefix as extensibility

reduced by using antivirus tools to check for knownngint class, and the fully named EP as axtensibility
malware. New malware would not be detected.

FDR'’s log collection can be modified in several way ,
to harden it against malicious adversaries. ~Many execution as a distinct activity from simply reaglia file
malicious software programs, such as spyware bdndle into memory. y il
with otherwise legitimate downloaded software, must ~component Object Model is a Microsoft standaat f
first be written to disk before executing. We can reusing and sharing software components across
prevent these programs from tampering with FDR’s applications.

Our PS interaction tracing records the loading dile for



point instance. We identify new EP classes by manually monitoring period. This suggests that system
examining newly discovered EP instances that do naadministrators could restrict write permissionstoase
match an existing EP class. EPs, or that application designers could transfirem

To survey how significant a vulnerability EPs ane,  into static data instead of a configurable settiddso,
processed 912 machine-days of traces from 53 hom&0% of all EP instances were used by only single
desktop, and server machines. From these machiees, process: an opportunity for administrators or
discovered 364 EP classes and 7227 EP instanc28. 65application designers to lockdown these EPs togmev
EP instances were direct and 701 were indirect.l&Vhi their misuse. In all, we found that only 19% of EP
130 EP classes had only 1 instance, 28 had more thanstances were both modified and shared by multiple
20 unique instances. The dominant EP class cerdist applications, and thus not easy candidates for vamo
COM objects, and accounts for 40% of all EP instanc or lockdown. For these remaining EPs, we suggest
The next two largest EP classes are associatedtlvith monitoring for suspicious activities and, for aréi
Windows desktop environment, and web browser plugEPs, we suggest that administrators and developers
ins. Other popular EP classes are related to aiweOff audit their usefulness vs. their potential to beuséd.
productivity suite and a development environmeathb 7 Discussion

of which support rich extensibility features. Oar |, s section, we discuss the implications of our

we found that 67% of the software programs observeq,, o systems management techniques, as well as
in our traces accessed an EP instance, and thaiseidh limitations and opportunities for future work.

used 7 on averageExpl or er. exe, responsible for .
the Windows desktop, used the largest number of EIZ'l Whlte-_box and BIaCk'BO).( Knowledge .
Software installers use manifests to track ingdalle

classes (133 EP Classes), followed by a web browser . i ) e
(105 EP Classes) and an email client (73 EP Clpsses software and their required dependencies, antsviru
Comparing our list of EP classes with the 34monitors use signatures of known malware, and

discovered by Gatekeeper, we found that our praeedu configuration error checkers use rules to deteowkn

detected all except 6 EPs used by programs not9Ns oftm|sctogf|?urlatlons. AIIl.oftthe_se EUtOT"’gﬂd i
observed in our traces. semi-automated tools use explicit prior knowledge

o - . focus on a narrow set of state and look eithekfamwn

6.2.2 Criticality of Extensibility Points _ problematic state or checking for known good state.

The criticality of an EP can be estimated usingh®)  This approach is fragile in its reliance on the
privilege-level of the loading process, where highe correciness and completeness of pre-determined
privilege processes such as operating systtm Qpformation. This information can become stale rove
administrator-level processes, are more criticald & ine might not account for all software and cannot
2) the lifetime of the loading process, where lange gpiicipate all failures.  Keeping this information
running apphcatl(_)ns provide higher availabilityr fa complete and up-to-date is hard because of thetihg
malicious extension. We observed that on average g third-party software, in-house applications, ahd
machine will have at least a third of EP instancegntinuous development of new malware. With FDR-
(spanning 210 EP classes) loaded by processeamhat cgjiected traces, a black-box approach to systems
running for 95% of _the machlngs uptime. We alsomanagement can help by augmenting predetermined
observed that one third of all EP instances weeel by jnformation with observed truth about system bebavi

processes with elevated privileges. This indicales For example, today’s software installers commonly
many EP instances are critical security hazards. fail to account for program-specific PS createdtpos
6.2.3 Lessons and Suggestions installation, such as log files and post-instaligpins,

This case study shows how FDR's traces of PSs well as interruptions or failures during instidéin or
interactions can be analyzed to connect the sgeurit removal. These mistakes accumulate and lead terayst
sensitive behavior of loading dynamic code modulegproblems® Common advice is to occasionally reinstall
back to the critical configuration settings whiaimtrol ~ your computer to clean up such corruptions. Blaok-
its behavior, and furthermore rank the criticabfyeach  tracing helps avoid this by providing installersttwi
setting. Since this analysis requires that an ERnb complete, ground-truth about installed files.
use, whether by malware or by a benign software To test this approach, we compared a black-box
extension, FDR’s scalability and always-on traciag accounting of files created during installations 2f
critical to analyzing a wide-breadth of computeages  popular applications to the files accounted fothnir
and detecting as many EPs as possible. explicit manifests. By collecting FDR traces while

Once we have discovered these EPs, we can continistalling the application, using it, and then wgtalling
to analyze their use and suggest ways to mitigage t
threat from EP exposure. In particular, we obsgrve ® Examples of failed installations causing such fewts can

that 44% of EP instances were not modified during o  be found ahttp://support.microsoft.convia the article IDs:
898582, 816598, 239291, and 810932.




it, we measured the file and registry entries Ildakie  trail as new files are created. Even just intéggatveb

the system. The first application, Microsoft Offic browsing history with PS interactions would allow/to
2003, leaked no files, but did leave 1490 registrytrack the provenance of downloaded files and lottede
entries, and an additional 129 registry entriesefach  source of malware installed via a browser exploit.

user that ran Office while it was installed. Theend A third category of events that might benefit from
application, the game ‘Doom3’, leaked 9 files arid4 FDR-style always-on logging are interactions and
registry entries. Finally, the enterprise databaseommunications between processes, such as network
Microsoft SQL Server leaked 57 files and 6 registryconnections and inter-process communication. While
entries. These point examples validate our béfief this category does not provide extra semantic
predetermined information can be unreliable and thainformation, these interactions are important for
black-box analysis of FDR traces provides a morealetecting software dependencies, fault propagation
complete accounting of  system behavior. paths, and potential exposure to malware.
Predetermined information does have its uses, hewev Altogether, extending always-on tracing to include
For example,a priori knowledge can express our more context and events could enable a gray-box
expectations of software behavior [27] and higlesel  approach to systems management, combining the
semantics than can be provided by a black-box aisaly benefits of black-box ground-truth and white-box

7.2 State Semantics semantic knowledge [2].
One of the limitations of a black-box tracing apeb 7.4 Using Tracesto (Re) Design Programs
is that, while it can provide complete, low-levebgnd In this paper, we have focused on analyzing PS

truth, it cannot provide any semantic guidance abdwl  interactions to benefit systems administrators and
meaning of the observed activities. For exampl2RF operators as they attempt to understand the stdateeo
cannot tell whether the Windows Registry editorsystems they manage. However, these PS interaction
program (RegEdit) is reading a registry entry as amight be just as useful, though on a different time
configuration setting to affect its own behavior,as scale, for developers interested in improving the
mere data for display. Similarly, FDR cannot tell applications and systems they have built. Onealsvi
whether any given file on disk is a temporary fite, benefit is when PS interactions expose an otherwise
user document, or a program binary (unless exilicit difficult-to-track software bug. We already dissed
loaded for execution). Investigating how to bestan analysis to detect “stale binaries” after sofewa
augment low-level tracing with heuristics and setican installations (a bug in the installer). Tracing PS
white-box knowledge is an important topic for interactions has uncovered other bugs in severakse
continuing to improve systems management techniqguesnanagement programs as well.  Other benefits to
One option, discussed below, is to selectively logapplication designers can come from specific amslys
application-level events and information to exptise of a system’s reliability and security, such as our
semantic context of lower-level PS interactions. analysis of extensibility points in Section 6.2.
7.3 Logging higher-level events _ The pottor_n-line is that always—on. tracing of PS

The question we pose here, as a challenge forefutuintéractions improves our understanding of a system
work, is what classes of events, in addition to Pglynamic behavior in production environments, and
interactions, should be logged to help operators anunderstanding this behavior is the first step talsar
administrators maintain reliable and secure systems ~ mproving it.

One category, mentioned above, is the semanti8. Conclusion
context of PS interactions, such as the context we We built FDR, an efficient and scalable system for
receive when software binaries must be explicitlytracing and collecting a complete, always-on aodit
loaded for execution. Perhaps we can receive @imil how all running processes read, write, and perform
context and benefit from knowing that the Windowsother actions on a system’s persistent state, and f
Registry editor is reading configuration settingsdata, scalably analyzing the enormous volume of resultant
and not to affect its own behavior. Similarly, ey data. Thus, FDR addresses significant limitati@meced
recording whether a newly created file is a usemy prior work in using PS interactions to solveteyss
document, temporary program state or a system filgnanagement problems. We achieved our goal by
might help administrators improve backup strategiesiesigning a domain-specific log format that exgloit
and debug problems. key aspects of common-case queries of persistatg st

A second category of higher-level events are thosénteraction workload: the relatively small numbefr o
that help to track the provenance of data. Whikré daily distinct interactions, the burstiness of ratgion
has been research on how to explicitly track theoccurrences, and repeated sequences of interactions
providence of data, we might be able to gain sofme o For the last 20 years, systems management has been
the same benefit from simply logging a “breadcrumb”more of a black-art than a science or engineering



discipline because we had to assume timatdid not

know what was really happening on our computer

[19] J. Larus. Whole Program PathsFiDI, Atlanta, GA,
1999

systems. Now, with FDR’s always-on tracing, scidab [20] J. Lorch, Personal communication. April 11080

data collection and analysis, we believe that syste [21]
management in the next 20 years can assume thda we

J. Lorch, and A. J. Smith. The VTrace Tool:ilBing a
System Tracer for Windows NT and Windows 2000.
MSDN Magazne. , Vol. 15, 10

know and can analyze what is happening on every [22] R. Mahajan, D. Wetherall, and T. Anderson.

machine. We believe that this is a key step tooreng
the “black art” from systems management.
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