
Geoinformatica (2013) 17:417–448
DOI 10.1007/s10707-012-0164-9

Generic and efficient framework for search trees
on flash memory storage systems

Mohamed Sarwat · Mohamed F. Mokbel ·
Xun Zhou · Suman Nath

Received: 16 February 2012 / Revised: 27 June 2012 /
Accepted: 12 July 2012 / Published online: 30 August 2012
© Springer Science+Business Media, LLC 2012

Abstract Tree index structures are crucial components in data management systems.
Existing tree index structure are designed with the implicit assumption that the
underlying external memory storage is the conventional magnetic hard disk drives.
This assumption is going to be invalid soon, as flash memory storage is increasingly
adopted as the main storage media in mobile devices, digital cameras, embedded
sensors, and notebooks. Though it is direct and simple to port existing tree index
structures on the flash memory storage, that direct approach does not consider the
unique characteristics of flash memory, i.e., slow write operations, and erase-before-
update property, which would result in a sub optimal performance. In this paper, we
introduce FAST (i.e., Flash-Aware Search Trees) as a generic framework for flash-
aware tree index structures. FAST distinguishes itself from all previous attempts of
flash memory indexing in two aspects: (1) FAST is a generic framework that can
be applied to a wide class of data partitioning tree structures including R-tree and
its variants, and (2) FAST achieves both ef f iciency and durability of read and write
flash operations through memory flushing and crash recovery techniques. Extensive
experimental results, based on an actual implementation of FAST inside the GiST

The research of M. Sarwat and M. F. Mokbel is supported in part by the National Science
Foundation under Grants IIS-0811998, IIS-0811935, CNS-0708604, IIS-0952977,
by a Microsoft Research Gift, and by a seed grant from UMN DTC.

M. Sarwat (�) · M. F. Mokbel · X. Zhou
Department of Computer Science and Engineering, University of Minnesota - Twin Cities,
200 SE Union Street, Minneapolis, MN 55455, USA
e-mail: sarwat@cs.umn.edu

M. F. Mokbel
e-mail: mokbel@cs.umn.edu

X. Zhou
e-mail: xun@cs.umn.edu

S. Nath
Microsoft Research, One Microsoft Way - Redmond, Redmond, WA 98052, USA
e-mail: sumann@microsoft.com

418 Geoinformatica (2013) 17:417–448

index structure in PostgreSQL, show that FAST achieves better performance than
its competitors.

Keywords Flash memory · Tree · Spatial · Index structure · Storage ·
Multi-dimensional · Data · System

1 Introduction

Data partitioning tree index structures are crucial components in spatial data
management systems, as they are mainly used for efficient spatial data retrieval,
hence boosting up query performance. The most common examples of such index
structures include B-tree [4], with its variants [10, 27], for one-dimensional indexing,
and R-tree [14], with its variants [5, 17, 32, 34], for multi-dimensional indexing. Data
partitioning tree index structures are designed with the implicit assumption that the
underlying external memory storage is the conventional magnetic hard disk drives,
and thus has to account for the mechanical disk movement and its seek and rotational
delay costs. This assumption is going to be invalid soon, as flash memory storage is
expected to soon prevail in the storage market replacing the magnetic hard disks
for many applications [11, 12, 31]. Flash memory storage is increasingly adopted as
the main storage media in mobile devices and as a storage alternative in laptops,
desktops, and enterprise class servers (e.g., in forms of SSDs) [3, 21, 23, 28, 33].
Recently, several data-intensive applications have started using custom flash cards
(e.g., ReMix [19]) with large capacity and access to underlying raw flash chips. Such
a popularity of flash is mainly due to its superior characteristics that include smaller
size, lighter weight, lower power consumption, shock resistance, lower noise, and
faster read performance [16, 18, 20, 22, 29].

Flash memory is block-oriented, i.e., pages are clustered into a set of blocks. Thus,
it has fundamentally different characteristics, compared to the conventional page-
oriented magnetic disks, especially for the write operations. First, write operations in
flash are slower than read operations. Second, random writes are substantially slower
than sequential writes. In devices that allow direct access to flash chips (e.g., ReMix
[19]), a random write operation updates the contents of an already written part of the
block, which requires an expensive block erase operation,1 followed by a sequential
write operation on the erased block; an operation termed as erase-before-update [7,
20]. SSDs, which emulate a disk-like interface with a Flash Translation Layer (FTL),
also need to internally address flash’s erase-before-update property with logging and
garbage collection, and hence random writes, especially small random writes, are
significantly slower than sequential writes in almost all SSDs [7].

Though it is direct and simple to port existing tree index structures (e.g., R-tree
and B-tree) on FTL-equipped flash devices (e.g., SSDs), that direct approach does
not consider the unique characteristics of flash memory and therefore would result
in a sub-optimal performance due to the random writes encountered by these index
structures. To remedy this situation, several approaches have been proposed for

1In a typical flash memory, the cost of read, write, and erase operations are 25, 200 and 1,500 µs,
respectively [3].

Geoinformatica (2013) 17:417–448 419

flash-aware index structures that either focus on a specific index structure, and make
it a flash-aware, e.g., flash-aware B-tree [30, 36] and R-tree [35], or design brand new
index structures specific to the flash storage [2, 24, 25].

Unfortunately, previous works on flash-aware search trees suffer from two
major limitations. First, these trees are specialized—they are not flexible enough
to support new data types or new ways of partitioning and searching data. For
example, FlashDB [30], which is designed to use a B-Tree, does not support R-Tree
functionalities. RFTL [35] is designed to work with R-tree, and does not support
B-tree functionalities. Thus, if a system needs to support many applications with
diverse data partitioning and searching requirements, it needs to have multiple tree
data structures. The effort required to implement and maintain multiple such data
structures is high.

Second, existing flash-aware designs often show trade-offs between efficiency and
durability. Many designs sacrifice strict durability guarantee to achieve efficiency
[24, 25, 30, 35, 36]. They buffer updates in memory and flush them in batches to
amortize the cost of random writes. Such buffering poses the risk that in-memory
updates may be lost if the system crashes. On the other hand, several designs achieve
strict durability by writing (in a sequential log) all updates to flash [2]. However, this
increases the cost of search for many log entries that need to be read from flash
in order to access each tree node [30]. In summary, no existing flash-aware tree
structure achieves both strict durability and efficiency.

In this paper, we address the above two limitations by introducing FAST; a
framework for Flash-Aware Search Tree index structures. FAST distinguishes itself
from all previous flash-aware approaches in two main aspects: (1) Rather than
focusing on a specific index structure or building a new index structure, FAST is
a generic framework that can be applied to a wide variety of tree index structures,
including B-tree, R-tree along with their variants. Such an important property makes
FAST a very attractive solution to database industry as it is practical to port it inside
the database engine with minimal disturbance to the engine code. (2) FAST achieves
both efficiency and durability in the same design. For efficiency, FAST buffers all
the incoming updates in memory while employing an intelligent f lushing policy that
evicts selected updates from memory to minimize the cost of writing to the flash
storage. In the mean time, FAST guarantees durability by sequentially logging each
in-memory update and by employing an efficient crash recovery technique.

FAST mainly has four modules, update, search, f lushing, and recovery. The update
module is responsible on buffering incoming tree updates in an in-memory data
structure, while writing small entries sequentially in a designated flash-resident log
file. The search module retrieves requested data from the flash storage and updates
it with recent updates stored in memory, if any. The f lushing module is triggered
once the memory is full and is responsible on evicting flash blocks from memory to
the flash storage to give space for incoming updates. Finally, the recovery module
ensures the durability of in-memory updates in case of a system crash.

FAST is a generic system approach that neither changes the structure of tree
indexes it is applied to, nor changes the search, insert, delete, or update algorithms
of these indexes. FAST only changes the way these algorithms reads, or updates the
tree nodes in order to make the index structure flash-aware. We have implemented
FAST within the GiST framework [15] inside PostgrSQL. As GiST is a generalized
index structure, FAST can support any tree index structure that GiST is supporting,

420 Geoinformatica (2013) 17:417–448

including one-dimensional tree index structures (e.g., B-tree [4]) and including but
not restricted to R-tree [14], R*-tree [5], SS-tree [34], and SR-tree [17], as well as B-
tree and its variants. In summary, the contributions of this paper can be summarized
as follows:

– We introduce FAST; a general framework that adapts existing tree index struc-
tures to consider and exploit the unique properties of the flash memory storage.

– We show how to achieve efficiency and durability in the same design. For
efficiency, we introduce two f lushing policies that smartly select parts of the main
memory buffer to be flushed into the flash storage in a way that amortizes expen-
sive random write operations. We also introduce a crash recovery technique that
ensures the durability of update transactions in case of system crash.

– We give experimental evidence for generality, efficiency, and durability of FAST
framework when applied to different data partitioning tree index structures.

The rest of the paper is organized as follows: An overview of Flash Memory
storage is given in Section 2. Section 3 highlights related work to FAST. Section 4
gives an overview of FAST along with its data structure. The four modules of
FAST, namely, update, search, f lushing, and recovery are discussed in Sections 5–
8, respectively. Section 9 gives experimental results. Finally, Section 10 concludes
the paper.

2 Flash memory storage overview

Figure 1 gives an overview of a typical flash memory storage device. In flash memory,
data is stored in an array of flash blocks. Each block contains ≈64–128 pages,
where a page is the smallest unit of access. Flash memory supports three types of
operations: read, write, and erase. The Erase operation is the most expensive one
where it can only be done at the block level and results in setting of all bits within
a block to ones. Read is a low latency page level operation and can occur randomly
anywhere in the flash memory without incurring any additional cost. Write is also a
page level operation and can be performed only once a page has been previously
erased since it sets the required bits to zeros. In that sense, writing on a previously
erased block is a low latency operation, and termed as a sequential write, while
writing on an already written block will result in a block erase operation before the
actual write operation, and thus, would incur much higher cost. Current generation
flash memory-based storage devices have varying access latencies for each of these
operations. On average, compared to read operations, write operations are eight
times slower, while erase operations are 60 times slower [6]. The typical access
latencies for read, write, and erase operations in flash memory devices are 25, 200
and 1,500 µs, respectively [3].

The Flash Translation layer (FTL) [26] is a layer on top of NAND flash memory
that makes the flash memory device acts like a virtual disk. The FTL layer receives
read and write commands for logical pages addresses from the application layer and
converts them to the internal flash memory commands (i.e., read page, write page,
erase block) on physical pages/blocks addresses. To emulate disk like in-place update
operation for a logical page Plogical, the FTL writes data into a new physical page
Pphysical, maintains a mapping between logical pages and physical pages, and marks

Geoinformatica (2013) 17:417–448 421

Fig. 1 Flash memory storage.
Grey rectangles represent
pages that are contained in
blocks represented by dotted
rectangles Flash Translation Layer (FTL)

NAND Flash Memory

Page Read Page WriteBlock Erase

Logical Page Read Logical Page Write

the previous physical location of Pphysical as invalid for future garbage collection.
Even though FTL allows existing disk based applications to use flash memory
without any modiÞcations, it needs to internally deal with flash physical constraint
of erasing a block before updating a page in that block. Besides this asymmetric read
and write latency issue, a flash memory block can only be erased for a limited number
of times (e.g., 105–106), after which it acts like a read-only device [3]. FTL employs
various wear-leveling techniques to even out the erase counts of different blocks in
the flash memory to increase its longevity [8]. However, still early wear-out of flash
memory is one of the big concerns in widely deploying flash memory storage devices
[31], and thus, it is of essence that flash memory avoids block erases as much as
possible. Recent studies show that current FTL schemes are very effective for the
workloads with sequential access write patterns. However, for the workloads with
random access patterns, these schemes show very poor performance [9]

3 Related work

Previous approaches for flash-aware index structures can be classified into two cat-
egories: (1) Making an existing specif ic index structure flash-aware, which includes
flash-aware B-tree (e.g., FlashDB [30] and BFTL [36]) and flash-aware R-tree (e.g.,
RFTL [35]). The main idea of these index structures is to save the B-tree (R-tree)
operations in a reservation buffer residing on main memory. When the reservation
buffer is full, its content is totally flushed to flash memory. For instance, BFTL and
RFTL are adding a buffering layer on top of the flash translation layer in order
to make B-trees work efficiently on flash devices. (2) Designing brand new one-
dimensional index structures specific to the flash storage, e.g., the LA-tree [2] and the
FD-tree [24, 25]. LA-tree is flash friendly index structure that is intended to replace
the B-tree. LA-tree stores the updates in cascaded buffers residing on flash memory
and, then empties these buffers dynamically based on the operations workload. FD-
tree is also a one-dimensional index structure that allows small random writes to

422 Geoinformatica (2013) 17:417–448

occur only in a small portion of the tree called the head tree which exists at the
top level of the tree. When the capacity of the head tree is exceeded, its entries are
merged in batches to subsequent tree levels.

In terms of the performance-durability trade-off, previous approaches either:
(a) achieve efficiency, yet sacrifice durability, by buffering updates in main memory
and flush them in batches to flash memory to amortize the cost of random writes
[24, 25, 30, 35, 36]. However, storing updates in memory without taking into account
system failures, which leads to durability issue, where in-memory updates may be
lost if the system crashes, or (b) achieve durability, yet sacrifice efficiency, by writing
all the recent updates in a sequential log file [2], hence retrieving the updates from
the log file in case of a system crash. However, doing this increases the cost of search
for many log entries that need to be read from flash in order to access each tree node
with search and update operations [30].

FAST distinguishes itself from all previous techniques in three main aspects:
(1) FAST is a general framework for data-partitioning tree index structures built
inside GiST [15]. As GiST is a generalized index structure that can instantiate a wide
set of data-partitioning trees that include B-tree [4], R-tree [14], R*-tree [5], SS-tree
[34], and SR-tree [17]), FAST can support any tree that GiST is supporting. (2) FAST
ensures both the ef f iciency and durability of system transactions where updates are
buffered in memory, yet, an efficient crash recovery technique is triggered in case of
a system crash to ensure the durability. (3) FAST is not a brand new index structure,
hence does not need to replace existing tree indexes. However, it complements the
existing tree index structures in database management systems to make them work
efficiently on flash storage devices, with much less implementation cost.

4 Fast system overview

Figure 2 gives an overview of FAST. The original tree is stored on persistent flash
memory storage while recent updates are stored in an in-memory buffer. Both parts
need to be combined together to get the most recent version of the tree structure.
FAST has four main modules, depicted in bold rectangles, namely, update, search,
flushing, and crash recovery. FAST is optimized for both SSDs and raw flash devices.
SSDs are the dominant flash device for large database applications. On the other
hand, raw flash chips, which are dominant in embedded systems and custom flash
cards (e.g., ReMix [19]), are getting popular for data-intensive applications.

4.1 FAST modules

In this section, we explain FAST system architecture, along with its four main
modules; (1) Update, (2) Search, (3) Flushing, and (4) Crash recovery. The actions of
these four modules are triggered through three main events, namely, search queries,
data updates, and system restart.

Update module Similar to some of the previous research for indexing in flash
memory, FAST buffers its recent updates in memory, and flushes them later, in
bulk, to the persistent flash storage. However, FAST update module distinguishes
itself from previous research in two main aspects: (1) FAST does not store the

Geoinformatica (2013) 17:417–448 423

Fig. 2 FAST system architecture

update operations in memory, instead, it stores the results of the update operations in
memory, and (2) FAST ensures the durability of update operations by writing small
log entries to the persistent storage. These log entries are written sequentially to the
flash storage, i.e., very small overhead. Details of the update module will be discussed
in Section 5.

Search module The search module in FAST answers point and range queries that
can be imposed to the underlying tree structure. The main challenge in the search
module is that the actual tree structure is split between the flash storage and the
memory. Thus, the main responsibility of the search module is to construct the recent
image of the tree by integrating the stored tree in flash with the tree updates in
memory that did not make it to the flash storage yet. Details of the search module
will be discussed in Section 6.

Flushing module As the memory resource is limited, it will be filled up with the
recent tree updates. In this case, FAST triggers its flushing module that employs a
f lushing policy to select some of the in-memory updates and write them, in bulk,
into the flash storage. Previous research in flash indexing flush their in-memory
updates or log file entries by writing all the memory or log updates once to the flash
storage. In contrast, the flushing module in FAST distinguishes itself from previous
techniques in two main aspects: (1) FAST employs f lushing policies that smartly
selects some of the updates from memory to be flushed to the flash storage in a way
that amortizes the expensive cost of the block erase operation over a large set of
random write operations, and (2) FAST logs the flushing process using a single log
entry written sequentially on the flash storage. Details of the flushing module will be
discussed in Section 7.

Crash recovery module FAST employs a crash recovery module to ensure the
durability of update operations. This is a crucial module in FAST, as only because
of this module, we are able to have our updates in memory, and not to worry about
any data losses. This is in contrast to previous research in flash indexing that may
encounter data losses in case of system crash, e.g., [24, 25, 35, 36]. The crash recovery

424 Geoinformatica (2013) 17:417–448

module is mainly responsible on two operations: (1) Once the system restarts after
crash, the crash recovery module utilizes the log file entries, written by both the
update and flushing modules, to reconstruct the state of the flash storage and in-
memory updates just before the crash took place, and (2) maintaining the size of
the log file within the allowed limit. As the log space is limited, FAST needs to
periodically compact the log entries. Details of this module will be discussed in
Section 8.

4.2 FAST design goals

FAST avoids the tradeoff of durability and efficiency by using a combination of
buffering and logging. Unlike existing efficient-but-not-durable designs [24, 25, 30,
35, 36], FAST uses write-ahead-logging and crash recovery to ensure strict system
durability. FAST makes tree updates efficient by buffering write operations in main
memory and by employing an intelligent flushing policy that optimizes I/O costs for
both SSDs and raw flash devices. Unlike existing durable-but-inefficient solutions
[2], FAST does not require reading in-flash log entries for each search/update
operation, which makes reading FAST trees efficient.

4.3 FAST data structure

Other than the underlying index tree structure stored in the flash memory storage,
FAST maintains two main data structures, namely, the Tree Modif ications Table,
and Log File, described below.

Tree modif ications table This is an in-memory hash table (depicted in Fig. 3)
that keeps track of recent tree updates that did not make it to the flash storage
yet. Assuming no hashing collisions, each entry in the hash table represents the
modification applied to a unique node identifier, and has the form (status, list)
where status is either NEW, DEL, or MOD to indicate if this node is newly created,
deleted, or just modified, respectively, while list is a pointer to a new node, null,
or a list of node modifications based on whether the status is NEW, DEL, or
MOD, respectively. For MOD case, each modification in the list is presented by the
quadruple (TimeStamp, type, index, value) where TimeStamp represents the time at

Fig. 3 Tree modifications table

Geoinformatica (2013) 17:417–448 425

which the update happened, type is either K, PF , or PM, to indicate if the modified
entry is the key, a pointer to a flash node, or a pointer to an in-memory node,
respectively, while index and value determines the index and the new value for the
modified node entry, respectively. In Fig. 3, there are two modifications in nodes A
and D, one modification in nodes B and F, while node G is newly created and node
H is deleted.

Log f ile This is a set of flash memory blocks, reserved for recovery purposes. A log
file includes short logs, written sequentially, about insert, delete, update, and flushing
operations. Each log entry includes the triple (operation, node_list, modif ication)
where operation indicates the type of this log entry as either insert, delete, update, or
flush, node_list includes the list of affected nodes by this operation in case of a flush
operation, or the only affected node, otherwise, modif ication is similar to the triple
(type, index, value), used in the tree modif ications table. All log entries are written
sequentially to the flash storage, which has a much lower cost than random writes
that call for the erase operation.

4.4 Running example

Throughout the rest of this paper, we will use Fig. 4 as a running example where six
objects O1 to O6, depicted by small black circles, are indexed by an R-tree. Then, two
objects O7 and O8, depicted by small white circles, are to be inserted in the same R-
tree. Figure 4a depicts the eight objects in the two-dimensional space domain, while
Fig. 4b gives the flash-resident R-tree with only the six objects that made it to the

0 2 4 6 8 10 12 14

10

8

6

4

2

O1

O2

O3

O4

O5

O6

O7

O8

(a) 2D Space

A

B C

GFED

O1 O2 O3 O4 O5 O6

(b) R-tree Index

Mod

Mod

Mod

Mod

C

G

B

D

1, K, 2, (12,4,14,2)

2, K, 2, O7

3, K, 2, (5,10,8,7)

4, K, 2, O8

(c) Tree Modifications Table

Fig. 4 Illustrating example for search and update operations in FAST

426 Geoinformatica (2013) 17:417–448

Table 1 Cost analysis parameters

Parameter Definition

T The underlying tree index structure to which FAST has been applied
RM The average time to read a node update entry from the tree modifications table
WM The average time to write a node update entry to the tree modifications table
RF The average time to read a tree node from the underlying tree T residing

on flash memory
WF The average time to write a tree node to the underlying tree T residing

on flash memory
EF The average time to erase a whole block on the flash memory device

flash memory. Finally, Fig. 4c gives the in-memory buffer (tree modif ications table)
upon the insertion of O7 and O8 in the tree.

4.5 Operations cost parameters

For each FAST module, we analyze the cost model of its main operations, including
search, update, flushing, crash recovery and log compaction. To this end, we define
the parameters given in Table 1.

5 Tree updates in FAST

This section discusses the update operations in FAST, which include inserting a new
entry and deleting/updating an existing entry. An update operation to any tree in
FAST may result in creating new tree nodes as in the case of splitting operations (i.e.,
when inserting an element in the tree leads to node overflow), deleting existing tree
nodes as in the case of merging operations (i.e., when deleting an element from the
tree leads to node underflow), or just modifying existing node keys and/or pointers.

Main idea For any update operation (i.e., insert, delete, update) that needs to
be applied to the index tree, FAST does not change the underlying insert, delete,
or update algorithm for the tree structure it represents. Instead, FAST runs the
underlying update algorithm for the tree it represents, with the only exception
of writing any changes caused by the update operation in memory instead of the
external storage, to be flushed later to the flash storage, and logging the result of
the update operation. A main distinguishing characteristic of FAST is that what
is buffered in memory, and also written in the log file, is the result of the update
operation, not a log of this operation.

Algorithm Algorithm 1 gives the pseudo code of inserting an object Obj in FAST.
The algorithms for deleting and updating objects are similar in spirit to the insertion
algorithm, and thus are omitted from the paper. The algorithm mainly has two steps:
(1) Executing the insertion in memory (Line 2 in Algorithm 1). This is basically
done by calling the insertion procedure of the underlying tree, e.g., R-tree insertion,
with two main differences. First, the insertion operation calls the search operation,
discussed later in Section 6, to find where we need to insert our data based on the
most recent version of the tree, constructed from main memory recent updates and

Geoinformatica (2013) 17:417–448 427

Algorithm 1 Insert an Object in the Tree
1: Function Insert(Obj)

/* STEP 1: Executing the Insertion in Memory only */
2: L← List of modified nodes from the in-memory execution of inserting Obj in

the underlying tree
/* STEP 2: Buffering and Logging the Updates */

3: for each Node N in L do
4: HashEntry←N entry in the Tree Modif ications Table
5: if HashEntry is not NULL then
6: Add the triple (MOD, N , updates in N) to the log file
7: if the status of HashEntry is MOD then
8: Add the changes in N to the list of changes of HashEntry
9: else

10: Apply the changes in N to the new node of HashEntry
11: end if
12: else
13: HashEntry← Create a new entry for N in the Tree Modif ications Table
14: if N is a newly created node then
15: Add the triple (NEW, N , updates in N) to the log file
16: Set HashEntry status to NEW, and its pointer to N
17: else
18: Add the triple (MOD, N , updates in N) to the log file
19: Set HashEntry status to MOD, and its pointer to the list of changes that

took place in N
20: end if
21: end if
22: end for

the in-flash tree index structure. Second, the modified or newly created nodes that
result back from the insertion operation are not written back to the flash storage,
instead, they will be returned to the algorithm in a list L. Notice that the insertion
procedure may result in creating new nodes if it encounters a split operation.
(2) Buffering and logging the tree updates (Lines 3–22 in Algorithm 1). For each
modified node N in the list L, we check if there is an entry for N in our in-memory
buffer, tree modif ications table. If this is the case, we first add a corresponding log
entry that records the changes that took place in N . Then, we either add the changes
in N to the list of changes in its entry in the tree modif ications table if this entry status
is MOD, or update N entry in the tree modif ications table, if the entry status is NEW.
On the other hand, if there is no entry for N in the tree modif ications table, we create
such entry, add it to the log file, and fill it according to whether N is a newly created
node or a modified one.

Example In our running example of Fig. 4, inserting O7 results in modifying two
nodes, G and C. Node G needs to have an extra key to hold O7 while node C needs
to modify its minimum bounding rectangle that points to G to accommodate its size
change. The changes in both nodes are stored in the tree modif ications table depicted

428 Geoinformatica (2013) 17:417–448

Fig. 5 FAST logging and
recovery example Log# Operation Node Modification

1 MOD C 1, K, 2, (12,4,14,2)

2 MOD G 2, K, 2, O7

3 MOD B 3, K, 2, (5,10,8,7)

4 MOD D 4, K,2, O8

5 FLUSH B, C, D *

Log# Operation Node Modification

1 MOD G 2, K, 2, O7

(a) FAST Log File

(a) FAST Log File after Crash Recovery

in Fig. 4c. The log entries for this operation are depicted in the first two entries of the
log file of Fig. 5a. Similarly, inserting O8 results in modifying nodes, D and B

Cost analysis For a given update operation U applied to a tree index structure T,
let yi,U ∈ {0, 1} represent whether or not node i of T has been modified by U . Let N
be the total number of nodes in T at the time U is applied, then the total cost CU of
update operation U applied on T is as follows:

CU = CQ +
N∑

i=0

yi,U ∗ [WF +WM + L] (1)

The update operation (e.g., insert, delete, modify) requires first a search query Q
for a proper leaf node in T. This also takes the same search time CQ as illustrated
above. For each updated node i due to applying U , yi,U = 1, and for each of these
updates we write a sequential log entry to the log file that each takes WF time. Hence,
the total time to write all log entries is equal to

∑N
i=0 yi,U ∗WF . For each updated

node i, we also perform a lookup on the tree modifications table to get the entry for
node i, which is performed in constant time L. In addition, the total time to write
the modifications to all nodes (for which yi,U = 1) in the tree modifications table is∑N

i=0 yi,U ∗WM. All of the above sums up to give the update cost given in Eq. 1

6 Searching in FAST

Given a query Q, the search operation returns those objects indexed by FAST and
satisfy Q. The search query Q could be a point query that searches for objects with
a specific (point) value, or a range query that searches for objects within a specific
range. An important promise of FAST is that it does not change the main search
algorithm for any tree it represents. Instead, FAST complements the underlying
searching algorithm to consider the latest tree updates stored in memory.

Main idea As it is the case for any index tree, the search algorithm starts by fetching
the root node from the secondary storage, unless it is already buffered in memory.
Then, based on the entries in the root, we find out which tree pointer to follow to

Geoinformatica (2013) 17:417–448 429

fetch another node from the next level. The algorithm goes on recursively by fetching
nodes from the secondary storage and traversing the tree structure till we either find
a node that includes the objects we are searching for or conclude that there are no
objects that satisfy the search query. The challenging part here is that the retrieved
nodes from the flash storage do not include the recent in-memory stored updates.
FAST complements this search algorithm to apply the recent tree updates to each
retrieved node from the flash storage. In particular, for each visited node, FAST
constructs the latest version of the node by merging the retrieved version from the
flash storage with the recent in-memory updates for that node.

Algorithm Algorithm 2 gives the pseudo code of the search operation in FAST.
The algorithm takes two input parameters, the query Q, which might be a point or
range query, and a pointer to the root node R of the tree we want to search in. The
output of the algorithm is the list of objects that satisfy the input query Q. Starting
from the root node and for each visited node R in the tree, the algorithm mainly
goes through two main steps: (1) Constructing the most recent version of R (Line 2 in
Algorithm 2). This is mainly to integrate the latest flash-residant version of R with
its in-memory stored updates. Algorithm 3 gives the detailed pseudo code for this

Algorithm 2 Searching for an Object indexed by the Tree
1: Function Search(Query Q, Tree Node R)

/* STEP 1: Constructing the most recent version of R */
2: N ← RetrieveNode(R)

/* STEP 2: Recursive search calls */
3: if N is non-leaf node then
4: Check each entry E in N . If E satisfies the query Q, invoke Search(Q,

E.NodePointer) for the subtree below E
5: else
6: Check each entry E in N . If E satisfies the search query Q, return the object

to which E is pointing
7: end if

Algorithm 3 Retrieving a tree node
1: Function RetrieveNode(Tree Node R)
2: FlashNode← Retrieve node R from the flash-resident index tree
3: HashEntry← R’s entry in the Tree Modif ications Table
4: if HashEntry is NULL then
5: return FlashNode
6: end if
7: if the status of HashEntry is MOD then
8: FlashNode← FlashNode ∪All the updates in HashEntry list
9: return FlashNode

10: end if
/* We are trying to retrieve either a new or a deleted node */

11: return the node that HashEntry is pointing to

430 Geoinformatica (2013) 17:417–448

step, where initially, we read R from the flash storage. Then, we check if there is
an entry for R in the tree modif ications table. If this is not the case, then we know
that the version we have read from the flash storage is up-to-date, and we just return
it back as the most recent version. On the other hand, if R has an entry in the tree
modif ications table, we either apply the changes stored in this entry to R in case the
entry status is MOD, or just return the node that this entry is pointing to instead of R.
This return value could be null in case the entry status is DEL. (2) Recursive search
calls (Lines 3–7 in Algorithm 2). This step is typical in any tree search algorithm, and
it is basically inherited from the underlying tree that FAST is representing. The idea
is to check if R is a leaf node or not. If R is a non-leaf node, we will check each entry
E in the node. If E satisfies the search query Q, we recursively search in the subtree
below E. On the other hand, if R is a leaf node, we will also check each entry E in
the node, yet if E satisfies the search query Q, we will return the object to which E is
pointing to as an answer to the query.

Example Given the range query Q in Fig. 4a, FAST search algorithm will first
fetch the root node A stored in flash memory. As there is no entry for A in the tree
modif ications table (Fig. 4c), then the version of A stored in flash memory is the most
recent one. Then, node C is the next node to be fetched from flash memory by the
searching algorithm. As the tree modif ications table has an entry for C with status
MOD, the modifications listed in the tree modif ications table for C will be applied
to the version of C read from the flash storage. Similarly, the search algorithm will
construct the leaf nodes F and G by first fetching them from flash memory, and then
reading their recent updates from the tree modif ications table. Finally, the result of
this query is {O4, O5, O6, O7}.

Cost analysis For a given search query Q applied to a tree index structure T, let
xi,Q ∈ {0, 1} represent whether node i of T is visited or not when issuing query Q.
Let Mi,Q be the number of modifications applied to node i and buffered in the tree
modifications table at the time Q is issued. Let N be the total number of nodes in T
at the time Q is issued, then the total search cost CQ on T is as follows:

CQ =
N∑

i=0

xi,Q ∗ [RF + (Mi,Q × RM)+ L] (2)

Assuming a range query, the search operation returns a number of objects within
the query range. In FAST, when reading a node i from the flash-resident R-tree, we
also need to accommodate all the corresponding modifications on i that have been
recorded in the tree modifications table. Then, the total cost of reading a node i
would thus be (RF + Tm) where Tm is the in-memory processing time for each node.
For the in-memory processing part, it first takes constant time L to locate the node
in the tree modification table , and then takes a linear scan of the list to apply all
the modifications. Given that the number of modifications associated with each node
is Mi,Q, then Tm = (Mi,Q × RM)+ L, where Mi,Q is upper bounded by the memory
size.

Geoinformatica (2013) 17:417–448 431

7 Memory flushing in FAST

As discussed in Section 5, the effect of all incoming updates in FAST has to be
buffered in memory. As memory is a scarce resource, it will eventually be filled up
with incoming updates. In that case, FAST triggers its flushing module, equipped
with a f lushing policy, to free some memory space by evicting a selected part of the
memory, termed a f lushing unit, to the flash storage. Such flushing is done in a way
that amortizes the cost of expensive random write operations over a high number of
update operations. In this section, we first define the flushing unit. Then, we discuss
the flushing policy used in FAST. Finally, we explain the FAST flushing algorithm.

The motivation of having a f lushing policy that flushes only part of the memory
is twofold: (1) Clearing the whole memory at once will cause a significant pause to
the system due to the need of erasing all the flash blocks that include at least one
update record in memory. As a result, it is better to consider clearing only part of the
memory in a way that does not really pause the system. In this paper, we present two
main flushing policies employed by the system, and we empirically evaluate both of
them, (2) Considering that we need to flush only part of the memory, it is crucial to
select that part in a way that reduces the overhead of the block erase operation.

7.1 Flushing unit

An important design parameter, in FAST, is the size of a f lushing unit, the granularity
of consecutive memory space written in the flash storage during each flush operation.
Our goal is to find a suitable f lushing unit size that minimizes the average cost of
flushing an update operation to the flash storage, denoted as C. The value of C
depends on two factors: C1 = average writing cost

number of written b ytes ; the average cost per bytes written,

and C2 = number of written b ytes
number of updates ; the number of bytes written per update. This gives C =

C1 × C2.
Interestingly, the values of C1 and C2 show opposite behaviors with the increase

of the f lushing unit size. First consider C1. On raw flash devices (e.g., ReMix [19]),
for a f lushing unit smaller than a flash block, C1 decreases with the increase of
the flushing unit size (see [29] for more detail experiments). This is intuitive, since
with a larger f lushing unit, the cost of erasing a block is amortized over more bytes
in the flushing unit. The same is also true for SSDs since small random writes
introduce large garbage collection overheads, while large random writes approach
the performance of sequential writes. Previous work has shown that, on several SSDs
including the ones from Samsung, MTron, and Transcend, random write latency per
byte increases by≈32×when the write size is reduced from 16 KB to 0.5 KB [7]. Even
on newer generation SSDs from Intel, we observed an increase of ≈4× in a similar
experimental setup. This suggests that a flushing unit should not be very small, as that
would result in a large value of C1. On the other hand, the value of C2 increases with
increasing the size of the f lushing unit. Due to non-uniform updates of tree nodes, a
large flushing unit is unlikely to have as dense updates as a small flushing unit. Thus,
the larger a f lushing unit is, the less the number of updates per byte is (i.e., the higher
the value of C2 is). Another disadvantage of large f lushing unit is that it may cause a
significant pause to the system. All these suggest that the f lushing unit should not be
very large.

432 Geoinformatica (2013) 17:417–448

Deciding the optimal size of a f lushing unit requires finding a sweet spot between
the competing costs of C1 and C2. Our experiments show that for raw flash devices, a
f lushing unit of one flash block minimizes the overall cost. For SSDs, a f lushing unit
of size 16 KB is a good choice, as it gives a good balance between the values of C1

and C2. Note that a flushing unit size of 16 KB also matches the optimal size of a tree
node, as suggested by Gray et al. [13]. Thus, with a tree of this optimal node size of
16 KB, we can simply flush one node at a time from the memory.

7.2 Flushing policies

FAST is designed so that different flushing policies can be plugged in to the system.
In the rest of this section, we discuss two main flushing policies adopted by FAST:
(1) FAST Flushing Policy, and (2) FAST* Flushing Policy.

7.2.1 FAST f lushing policy

The main idea of FAST f lushing policy is to minimize the average cost of writing
each update to the underlying flash storage. To that end, FAST flushing policy aims
to flush the in-memory tree updates that belong to the f lushing unit that has the
highest number of in-memory updates. In that case, the cost of writing the f lushing
unit will be amortized among the highest possible number of updates. Moreover,
since the maximum number of updates are being flushed out, this frees up the
maximum amount of memory used by buffered updates. Finally, as done in the
update operations, the flushing operation is logged in the log file to ensure the
durability of system transactions.

Data structure The flushing policy maintains an in-memory max heap structure,
termed FlushHeap, of all f lushing units that have at least one in-memory tree update.
The max heap is ordered on the number of in-memory updates for each f lushing unit,
and is updated with each incoming tree update. Updates in max heap is O(n), where
n is the number of flash blocks with in-memory updates. In the mean time, retrieving
the flushing unit with maximum number of updates is an O(1) operation.

7.2.2 FAST* f lushing policy

The FAST* f lushing policy is an enhancement over the FAST flushing policy
described in Section 7.2.1. FAST* flushing policy takes into account two parameters
that helps in deciding which unit must be flushed: (1) Number of updates per
flushing unit: It is the same parameter used by the FAST flushing policy explained in
Section 7.2.1; which favors the flash unit that has the highest number of updates, and
(2) Time stamp of the flushing unit: which represents the last time a flash block has
been updated. When deciding which unit needs to be flushed, that parameter gives
higher priority to the flushing unit that has the lowest time stamp (i.e., least recently
updated).

FAST* Flushing Policy employs a Top-1 selection algorithm to select a flushing
unit to be evicted to flash memory with the objective of maximizing the number of
updates per flushing unit and minimizing the time stamp of the flushing unit. The
intuition behind such a policy is that it is sometimes better to keep the block that
has the highest number of updates in the tree modifications table (i.e., in memory)

Geoinformatica (2013) 17:417–448 433

and not to flush it, especially if that block is expected to receive more updates
(i.e., recently updated block). On the other hand, it might be better to flush a flash
block that has a bit less number of updates, but it is not expected to be updated
frequently (i.e., least recently updated block). Hence, FAST* flushing policy makes
that tradeoff between the two parameters in order to amortize the total number of
erase operations on flash memory storage systems.

7.3 Flushing algorithm

Algorithm 4 gives the pseudo code for flushing tree updates. The algorithm has two
main steps: (1) Finding out the list of f lushed tree nodes (Lines 2–9 in Algorithm 4).
This step starts by finding out the victim f lushing unit, MaxUnit, using the flushing
policy passed to the algorithm. Then, we scan the tree modif ications table to find
all updated tree nodes that belong to MaxUnit. For each such node, we construct
the most recent version of the node by retrieving the tree node from the flash
storage, and updating it with the in-memory updates. This is done by calling the
RetrieveNode(N) function, given in Algorithm 3. The list of these updated nodes
constitute the list of to be flushed nodes, FlushList. (2) Flushing, logging, and cleaning
selected tree nodes (Lines 10–15 in Algorithm 4). In this step, all nodes in the
FlushList are written once to the flash storage. As all these nodes reside in one
f lushing unit, this operation would have a minimal cost due to our careful selection
of the f lushing unit size. Then, similar to update operations, we log the flushing
operation to ensure durability. Finally, all flushed nodes are removed from the tree
modif ications table to free memory space for new updates.

Algorithm 4 Flushing Tree Updates
1: Function FlushTreeUpdates(FlushPolicy)

/* STEP 1: Finding out the list of flushed tree nodes */
2: FlushList← {φ}
3: MaxUnit← Retrieve Unit to be Flushed uisng FlushPolicy
4: for each Node N in tree modif ications table do
5: if N ∈MaxUnit then
6: F ← RetrieveNode(N)
7: FlushList← FlushList ∪ F
8: end if
9: end for

/* STEP 2: Flushing, logging, and cleaning selected nodes */
10: Flush all tree updates ∈ FlushList to a clean flash memory block
11: Add (Flush, All Nodes in FlushList) to the log file
12: Erase the old flash memory block and update the index pointer to refer the new

block
13: for each Node F in FlushList do
14: Delete F from the Tree Modif ications Table
15: end for

Example In our running example given in Fig. 4, assume that the memory is full,
hence FAST triggers its flushing module. Assume also that nodes B, C, and D reside

434 Geoinformatica (2013) 17:417–448

in the same f lushing unit B1, while nodes E, F, and G reside in another f lushing
unit B2. The number of updates in B1 is three as each of nodes B, C and D has
been updated once. On the other hand, the number of updates in B2 is one because
nodes E and F has no updates at all, and node G has only a single update. Hence,
as per FAST flushing policy, MaxUnit is set to B1, and we will invoke RetrieveNode
algorithm for all nodes belonging to B1 (i.e., nodes B, C, and D) to get the most
recent version of these nodes and flush them to flash memory. Then, the log entry
(Flush; Nodes B, C, D) is added to the log file (depicted as the last log entry
in Fig. 5a). Finally, the entries for nodes B, C, and D are removed from the tree
modif ications table.

Cost analysis For a given flushing operation F applied to a tree index structure T,
Let Pflush be the set of tree nodes that belongs to the block selected to be flushed.
Let Mp be the number of modifications applied to node p and buffered in the tree
modifications table at the time F is applied. Hence, the total cost CF of flushing
operation F applied on T is as follows:

CF = EF + H +
∑

p ∈ Pflush

[RF + (Mp ∗ RM)+WF + L] (3)

We decide which unit to flush by employing the flushing policy passed to the
algorithm. The cost of this in memory operation H varies based on which flushing
policy is activated. For each node p ∈ Pflush, we first need to retrieve the node current
value saved in flash memory which costs

∑
p ∈ Pflush

RF , and then lookup the node in
the tree modifications table in

∑
p ∈ Pflush

L. For each node p ∈ Pflush, we read all
Mp modifications of p that are buffered in the tree modifications table, which sum
up to

∑
p ∈ Pflush

(Mp ∗ RM). Before we write the new nodes values, we first erase the
whole flash block which costs EF time. For each node p ∈ Pflush, we write the flushed
node new value, that costs

∑
p ∈ Pflush

WF . All of the above sum up to give the flushing
operation cost given by Eq. 3.

8 Crash recovery and log compaction in FAST

As discussed before, FAST heavily relies on storing recent updates in memory, to
be flushed later to the flash storage. Although such design efficiently amortizes the
expensive random write operations over a large number of updates, it poses another
challenge where memory contents may be lost in case of system crash. To avoid such
loss of data, FAST employs a crash recovery module that ensures the durability of
in-memory updates even if the system crashed. The crash recovery module in FAST
mainly relies on the log file entries, written sequentially upon the update and flush
operations.

In this section, we will first describe the crash recovery module and logging
mechanism in FAST. Then, we will follow by discussing the log compaction operation
in FAST, which is mainly done to ensure that the log file is within a certain size limit.
Log compaction has a very similar operation to the recovery module, and it is crucial
to keep up the efficiency of FAST. For simplicity, we will not consider the case of
having a system crash during the recovery process, as this can be handled in a similar
way to traditional recovery modules in database systems.

Geoinformatica (2013) 17:417–448 435

8.1 Recovery

The recovery module in FAST is triggered when the system restarts from a crash,
with the goal of restoring the state of the system just before the crash took place.
The state of the system includes the contents of the in-memory data structure, tree
modif ications table, and the flash-resident tree index structure. By doing so, FAST
ensures the durability of all non-flushed updates that were stored in memory before
crash.

Main idea The main idea of the recovery operation is to scan the log file bottom-
up to be aware of the flushed nodes, i.e., nodes that made their way to the flash
storage. During this bottom-up scanning, we also find out the set of operations that
need to be replayed to restore the tree modif ications table. Then, the recovery module
cleans all the flash blocks, and starts to replay the non-flushed operations in the order
of their insertion, i.e., top-down. The replay process includes insertion in the tree
modif ications table as well as a new log entry. It is important here to reiterate our
assumption that there will be no crash during the recovery process, so, it is safe to
keep the list of operations to be replayed in memory. If we will consider a system
crash during the recovery process, we might just leave the operations to be replayed
in the log, and scan the whole log file again in a top-down manner. In this top-down
scan, we will only replay the operations for non-flushed nodes, while writing the new
log entries into a clean flash block. The result of the crash recovery module is that
the state of the memory will be stored as it was before the system crashes, and the
log file will be an exact image of the tree modif ications table.

Algorithm Algorithm 5 gives the pseudo code for crash recovery in FAST, which
has two main steps: (1) Bottom-Up scan (Lines 2–11 in Algorithm 5). In this step,
FAST scans the log file bottom-up, i.e., in the reverse order of the insertion of log
entries. For each log entry L in the log file, if the operation of L is Flush, then
we know that all the nodes listed in this entry have already made their way to the
flash storage. Thus, we keep track of these nodes in a list, termed FlushedNodes,
so that we avoid redoing any updates over any of these nodes later. On the other
side, if the operation of L is not Flush, we check if the node in L entry is in the list
FlushedNodes. If this is the case, we just ignore this entry as we know that it has
made its way to the flash storage. Otherwise, we push this log entry into a stack of
operations, termed RedoStack, as it indicates a non-flushed entry at the crash time.
At the end of this step, we pass the RedoStack to the second step. (2) Top-Down
processing (Lines 13–19 in Algorithm 5). At the beginning, we first create a new log
file Fnew. Then, this step basically goes through all the entries in the RedoStack in a
top-down way, i.e., the order of insertion in the log file. As all these operations were
not flushed by the crash time, we just add each operation to the tree modif ications
table and add a corresponding log entry in the new Log File Fnew. The reason of
doing these operations in a top-down way is to ensure that we have the same order
of updates, which is essential in case one node has multiple non-flushed updates. At
the end of this step, the tree modif ications table will be exactly the same as it was just
before the crash time, while the new log file Fnew will be exactly an image of the tree
modif ications table stored in the flash storage. Finally, we change the log file pointer
to refer to the new log file Fnew and we finally erase the old log file flash blocks.

436 Geoinformatica (2013) 17:417–448

Algorithm 5 Crash Recovery
1: Function RecoverFromCrash()

/* STEP 1: Bottom-Up Cleaning */
2: FlushedNodes← φ
3: for each Log Entry L in the log file in a reverse order do
4: if the operation of L is Flush then
5: FlushedNodes← FlushedNodes ∪ the list of nodes in L
6: else
7: if the node in entry L /∈ FlushedNodes then
8: Push L into the stack of updates RedoStack
9: end if

10: end if
11: end for

/* Phase 2: Top-Down Processing */
12: Create a new Log File Fnew

13: while RedoStack is not Empty do
14: Op← Pop an update operation from the top of RedoStack
15: Insert the operation Op into the tree modif ications table
16: Add a log entry for Op in the new log file Fnew

17: end while
18: Change the Log File pointer to refer to the new Log File Fnew

19: Clean all the old log entries by erasing the old log file flash blocks

Example In our running example, the log entries of inserting Objects O7 and O8

in Fig. 4 are given as the first four log entries in Fig. 5a. Then, the last log entry
in Fig. 5a corresponds to flushing nodes B, C, and D. We assume that the system
is crashed just after inserting this flushing operation. Upon restarting the system,
the recovery module will be invoked. First, the bottom-up scanning process will be
started with the last entry of the log file, where nodes B, C, and D are added to the
list FlushedNodes. Then, for the next log entry, i.e., the fourth entry, as the node
affected by this entry D is already in the FlushedNodes list, we just ignore this entry,
since we are sure that it has made its way to disk. Similarly, we ignore the third log
entry for node B. For the second log entry, as the affected node G is not in the
FlushedNodes list, we know that this operation did not make it to the storage yet,
and we add it to the RedoStack to be redone later. The bottom-up scanning step is
concluded by ignoring the first log entry as its affected node C is already flushed, and
by wiping out all log entries. Then, the top-down processing step starts with only one
entry in the RedoStack that corresponds to node G. This entry will be added to the
tree modif ications table and log file. Figure 5b gives the log file after the end of the
recovery module which also corresponds to the entries of the tree modif ications table
after recovering from failure.

Cost analysis For a given crash recovery operation R applied to a tree index
structure T, let Z be the set of operations recorded in the log file. Let α (0 ≤ α ≤ 1)
be the fraction of operations in Z that had been flushed to T before the system fails.
Let Spage, Sblock, and Slog be the byte size of the flash page, flash block and flash log

Geoinformatica (2013) 17:417–448 437

file, respectively. Hence, the total cost CR of a crash recovery operation R applied
on T is as follows:

CR = Slog ×
[

RF

Spage
+ RF

Sblock

]
+ Z × α × (WM +WF) (4)

As all the Z entries in the log file have to be scanned, then the total cost to scan
them is RF × Slog

Spage
. In addition, only Z × α log file operations need to be redone

(i.e., written back to the tree modifications table), which results to an additional cost
of Z × α ×WM. As all redone operations are written back to memory, an additional
cost of logging them is Z × α ×WF . The old log file blocks needs to be erased, which
incurs a cost of EF × Slog

Sblock
. All of the above sums up to give the recovery cost given

in Eq. 4.

8.2 Log compaction

As FAST log file is a limited resource, it may eventually become full. In this case,
FAST triggers a log compaction module that organizes the log file entries for better
space utilization. This can be achieved by two space saving techniques: (a) Removing
all the log entries of flushed nodes. As these nodes have already made their way to
the flash storage, we do not need to keep their log entries anymore, and (b) Packing
small log entries in a larger writing unit. Whenever a new log entry is inserted, it
mostly has a small size that may occupy a flash page as the smallest writing unit
to the flash storage. At the time of compaction, these small entries can be packed
together to achieve the maximum possible space utilization.

The main idea and algorithm for the log compaction module are almost the same
as the ones used for the recovery module, with the exception that the entries in the
RedoStack will not be added to the tree modif ications table, yet they will just be
written back to the log file, in a more compact way. As in the recovery module,
Fig. 5a and b give the log file before and after log compaction, respectively. The log
compaction have similar expensive cost as the recovery process. Fortunately, with
an appropriate size of log file and memory, it will not be common to call the log
compaction module.

It is unlikely that the log compaction module will not really compact the log file
much. This may take place only for a very small log size and a very large memory size,
as there will be a lot of non-flushed operations in memory with their corresponding
log entries. Notice that if the memory size is small, there will be a lot of flushing
operations, which means that log compaction can always find log entries to be
removed. If this unlikely case takes place, we call an emergency f lushing operation
where we force flushing all main memory contents to the flash memory persistent
storage, and hence clean all the log file contents leaving space for more log entries to
be added.

Cost analysis The log compaction is almost the same as the crash recovery pro-
cedure. The only difference is that records are not redone (written to the tree
modifications table). Similar to recovery cost, the log compaction cost CCis as
follows:

CC = Slog ×
[

RF

Spage
+ RF

Sblock

]
+ Z × α ×WF (5)

438 Geoinformatica (2013) 17:417–448

9 Experimental evaluation

This section experimentally evaluates the performance of FAST, compared to the
state-of-the-art algorithms for one-dimensional and multi-dimensional flash index
structures: (1) Lazy Adaptive Tree (LA-tree) [2]: LA-tree is a flash friendly one
dimensional index structure that is intended to replace the B-tree. LA-tree stores
the updates in cascaded buffers residing on flash memory and, then empties these
buffers dynamically based on the operations workload. (2) FD-tree [24, 25]: FD-tree
is a one-dimensional index structure that allows small random writes to occur only
in a small portion of the tree called the head tree which exists at the top level of
the tree. When the capacity of the head tree is exceeded, its entries are merged in
batches to subsequent tree levels. (3) RFTL [35]: RFTL is a mutli-dimensional tree
index structure that adds a buffering layer on top of the flash translation layer (FTL)
in order to make R-trees work efficiently on flash devices.

We instantiate B-tree and R-tree instances of FAST using both flushing policies
(i.e., FAST flushing policy and FAST* flushing policy), termed FAST-Btree, FAST*-
Btree, FAST-Rtree, and FAST*-Rtree , respectively, by implementing FAST inside
the GiST generalized index structure [15], which is already built inside PostgreSQL
[1]. In our experiments, we use two synthetic workloads: (1) Lookup intensive
workload (WL): that includes 80 % search operations and 20 % update operations
(i.e., insert, delete, or update). (2) Update intensive workload, (WU): that includes
20 % search operations and 80 % update operations.

Unless mentioned otherwise, we set the number of workload operations to
10 million operations, main memory size to 256 KB (i.e., the amount of memory
dedicated to main memory buffer used by FAST), tree index size to 512 MB, and log
file size to 10 MB, which means that the default log size is ≈2 % of the index size.

The experiments in this section mainly discuss the effect of varying the memory
size, log file size, index size, and number of updates on the performance of FAST-
Btree, FAST-Rtree, LA-tree, FD-tree, and RFTL. Also, we study the performance of
flushing, log compaction, and recovery operations in FAST. In addition, we compare
the implementation cost between FAST and its counterparts. Our performance
metrics are mainly the number of flash memory erase operations and the average
response time. However, in almost all of our experiments, we got a similar trend for
both performance measures. Thus, for brevity, we only show the experiments for the
number of flash memory erase operations, which is the most expensive operation in
flash storage. Although we compare FAST to its counterparts from a performance
point of view, however we believe the main contribution of FAST is not in the
performance gain. The generic structure and low implementation cost are the main
advantages of FAST over specific flash-aware tree index structures.

All experiments were run on both raw flash memory storage, and solid state drives
(SSDs). For raw flash, we used the raw NAND flash emulator described in [2].
The emulator was populated with exhaustive measurements from a custom-designed
Mica2 sensor board with a Toshiba1Gb NAND TC58DVG02A1FT00 flash chip. For
SSDs, we used a 32GB MSP-SATA7525032 SSD device. All the experiments were
run on a machine with Intel Core2 8400 at 3Ghz with 4GB of RAM running Ubuntu
Linux 8.04.

Geoinformatica (2013) 17:417–448 439

9.1 Effect of memory size

Figure 6 and b give the effect of varying the memory size from 128 KB to 1,024 KB
(in a log scale) on the number of erase operations, encountered in FAST-Btree, LA-
tree, and FD-tree, for workloads WL and WU , respectively. For both workloads and
for all memory sizes, FAST-Btree consistently has much lower erase operations than
that of the LA-tree. More specifically, Fast-Btree results in having only from half
to one third of the erase operations encountered by LA-tree. This is mainly due to
the choice of f lushing unit and f lushing policy used in FAST that amortize the block
erase operations over a large number of updates. Also, for both experiments, the
number of erase operations decreases with the increase of the memory size, which is
intuitive as more memory means less frequent need for flushing, and hence less need
for block erase operations.

The performance of FAST-Btree is slightly better than that of FD-tree, because
FD-tree does not employ a crash recovery technique (i.e., no logging overhead).
FAST still performs better than FD-tree due to FAST flushing policy that selects
the best block to be flushed to flash memory. Although the performance of FD-tree
is close to FAST-Btree, however FAST has the edge of being a generic framework
which is applied to many tree index structures and needs less work and overhead
(in terms of lines of code) to be incorporated in the database engine. Comparing
the two workloads against each other, we can see that the workload WU encounters
much more erase operations than that of workload WL. This is mainly because WU

is an update intensive workload which results in many in-memory updates that need
to flushed. FAST*-Btree gives a slightly better performance than FAST-Btree as
FAST*-Btree employs a flushing policy that does not only rely on the number of
updates per flash block, but also takes into account the last time a flash block has
been updated. Hence, FAST*-tree gives a chance for those flash blocks that has
higher number of updates to stay in memory if more updates are expected to be
applied to these blocks.

Figures 7a and b give similar experiments to that of Fig. 6 and b, with the exception
that we run the experiments for two-dimensional search and update operations
for both the Fast-Rtree and RFTL. To be able to do so, we have adjusted our

0

10

20

30

40

50

60

70

80

90

128 256 512 1024

of

 e
ra

se
 o

pe
ra

tio
ns

 *
(1

03
)

of

 e
ra

se
 o

pe
ra

tio
ns

 *
(1

03
)

Memory Size (KB)
128 256 512 1024

Memory Size (KB)

FAST*–Btree
FAST–Btree

LA–tree
FD–tree

(a) WL (b) WU

 0

 100

 200

 300

 400

 500

 600
FAST*–Btree
FAST–Btree

LA–tree
FD–tree

Fig. 6 Effect of memory size on one-dimensional index structure

440 Geoinformatica (2013) 17:417–448

of

 e
ra

se
 o

pe
ra

tio
ns

 *
(1

03
)

of

 e
ra

se
 o

pe
ra

tio
ns

 *
(1

03
)

128 256 512 1024
Memory Size (KB)

128 256 512 1024
Memory Size (KB)

(a) Spatial-WL (b) Spatial-WU

20

40

60

80

100
FAST*–Rtree
FAST–Rtree

RFTL

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900
FAST*-Rtree
FAST-Rtree

RFTL

Fig. 7 Effect of memory size on multi-dimensional index structure

workload WL and WU to Spatial-WL and Spatial-WU , respectively, which have two-
dimensional operations instead of the one-dimensional operations used in WL and
WU . The result of these experiments have the same trend as the ones done for one-
dimensional tree structures, where FAST-Rtree has consistently better performance
than RFTL in all cases, with around one half to one third of the number of erase
operations encountered in RFTL. Similar to the one-dimesnional case, FAST*-Rtree
slightly outperforms FAST-Rtree. Comparing the multi-dimensional workload to the
one dimensional one shows that the multi-dimensional workload encounters more
erase operations which is mainly due to the facts that the update operation may span
more nodes. However, even with this, FAST still keeps its performance ratio over its
counterparts.

The experiments in Figs. 6 and 7 not only shows that FAST has better performance
than its counterparts LA-tree, FD-tree and RFTL, but it also shows the power of
the FAST framework where it can be applied to both one-dimensional and multi-
dimensional index structures with the same efficiency. In other words, it is not only
that FAST is better than LA-tree and FD-tree, but it is also the fact that FAST has
the ability to efficiently support multi-dimensional search and update operations in
which LA-tree or FD-tree cannot even support.

9.2 Effect of log file size

Figure 8 gives the effect of varying the log file size from 10 MB (i.e., 2 % of the
index size) to 25 MB (i.e., 5 % of the index size) on the number of erase operations,
encountered in FAST-Btree, LA-tree, and FD-tree for workload WL (Fig. 8a) and
FAST-Rtree and RFTL for workload Spatial-WU (Fig. 8b). For brevity, we do not
show the experiments of FAST-Btree, LA-tree, and FD-tree for workload WU nor
the experiment of FAST-Rtree and RFTL for workload Spatial-WL. As can be seen
from the figures, the performance of both LA-tee, FD-tree, and RFTL is not affected
by the change of the log file size. This is mainly because these three approaches
rely on buffering incoming updates, and hence does not make use of any log file. It
is interesting, however, to see that the number of erase operations in FAST-Btree
and FAST-Rtree significantly decreases with the increase of the log file size, given
that the memory size is set to its default value of 256 KB in all experiments. The

Geoinformatica (2013) 17:417–448 441

of

 e
ra

se
 o

pe
ra

tio
ns

 *
(1

03
)

of

 e
ra

se
 o

pe
ra

tio
ns

 *
(1

03
)

(a) WL (b) Spatial-WU

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

10 15 20 25

Maximum Log File Size (MB)

FAST*–Btree
FAST–Btree

LA–tree
FD–tree

 0

 100

 200

 300

 400

 500

 600

 700

 800

10 15 20 25

Maximum Log File Size (MB)

FAST*–Rtree
FAST–Rtree

RFTL

Fig. 8 Effect of FAST log file size

justification for this is that with the increase of the log file size, there will be less
need for FAST to do log compaction. FAST*-Btree and FAST*-Rtree shows the
same trend as FAST-Btree and FAST-Rtree except that they slightly give better
performance due to the fact that they apply the FAST* Flushing policy.

Revisiting Figs. 6 and 7 in Section 9.1, the number of erase operations encountered
in both LA-tree, FD-tree, and RFTL were only coming from flushing buffered
updates, while the number of erase operations in FAST were coming from two
sources, flushing in-memory updates, and log compaction. Then, the experiment in
this section (Fig. 8) shows that a large fraction of the erase operations in FAST is
coming from the log compaction operation, which can be significantly reduced with
the slight increase of the log file. With this, we can see that FAST achieves close
to an order of magnitude less erase operations than its counterparts for both one-
dimensional and multi-dimensional index structures when having the log file as small
as 5 % of the index size, i.e., 25 MB.

9.3 Effect of index size

Figure 9 gives the effect of varying the index size from 128 MB to 4 GB (in a log
scale) on the number of erase operations, encountered in FAST-Btree, LA-tree,
and FD-tree for workload WL (Fig. 9a) and FAST-Rtree and RFTL for workload
Spatial-WU (Fig. 9b). Same as in Section 9.2, we omit other workloads for brevity. In
all cases, FAST consistently gives much better performance than its counterparts.
Both FAST and other index structures have similar trend of a linear increase of
the number of erase operations with the increase of the index size. This is mainly
because with a larger index, an update operation may end up modifying more nodes
in the index hierarchy, or more overlapped nodes in case of multi-dimensional index
structures. Moreover, FAST*-Btree and FAST*-Rtree give a bit better performance
than FAST-Btree and FAST-Rtree, respectively. This is basically due to the fact that
FAST* flushing policy handles the flash memory updates better than the original
FAST flushing policy, hence when the index size increase the possibility that more
blocks are updated increases leading to such performance gain for both FAST*-Btree
and FAST*-Rtree. The take home message from this experiment is that FAST still
maintains its performance gain over its counterparts even with the large increase of
the index size.

442 Geoinformatica (2013) 17:417–448

of

 E
ra

se
 O

pe
ra

tio
ns

 *
(1

03
)

of

 E
ra

se
 O

pe
ra

tio
ns

 *
(1

03
)

(a) WL (b) Spatial-WU

 0

 20

 40

 60

 80

 100

 120

 140

128M
B

256M
B

512M
B

1GB
2GB

4GB

Index Size

FAST*–Btree
FAST–Btree

LA–tree
FD–tree

 0

 200

 400

 600

 800

 1000

 1200

128M
B

256M
B

512M
B

1GB
2GB

4GB

Index Size

FAST*–Rtree
FAST–Rtree

RFTL

Fig. 9 Effect of tree index size

9.4 Effect of number of updates

Figure 9 gives the effect of varying the number of update operations from one
million to 100 millions (in a log scale) on the number of erase operations for both
one-dimensional (i.e., FAST-Btree, LA-tree, and FD-tree in Fig. 10a) and multi-
dimensional index structures (i.e., FAST-Rtree and RFTL in Fig. 10b). As we are
only interested in update operations, the workload for the experiments in this section
is just a stream of incoming update operations, up to 100 million operations. As
can be seen from the figure, FAST scales well with the number of updates and still
maintains its superior performance over its counterparts from both one-dimensional
(LA-tree) and multi-dimensional index structures (RFTL). FAST performs slightly
better than FD-tree; this is because FD-tree (one dimensional index structure) is
buffering some of the tree updates in memory and flushes them when needed, but
FAST applies a flushing policy, which flushes only the block with the highest number
of updates. In addition, FAST* slightly outperforms FAST because FAST* flushing
policy employs a Top-1 algorithm that maximizes the number of updates per block
and minimize the timestamp at which the block has been updated, hence the total
amortized update cost in FAST* is less than FAST.

of

 e
ra

se
 o

pe
ra

tio
ns

 *
(1

03
)

of

 e
ra

se
 o

pe
ra

tio
ns

 *
(1

03
)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

1 10 100

of Updates *(106) # of Updates *(106)

FAST*–Btree
FAST–Btree

LA–tree
FD–tree

(a) FAST-Btree

1000

10000

1 10 100

FAST*–Rtree
FAST–Rtree

RFTL

(b) FAST-Rtree

Fig. 10 Effect of number of updates

Geoinformatica (2013) 17:417–448 443

9.5 Flushing performance

Figure 11 illustrates the performance of the f lushing policy employed by FAST
compared to a naive flushing policy, termed f lush-all that just flushes all the memory
contents to the flash storage once. We also compare FAST to a random flushing
policy, termed Rand-Flush that chooses a block at random and flushed its contents
to the flash storage The performance is given with respect to various memory
sizes (Fig. 11a) and log file sizes (Fig. 11a). Both experiments were run for FAST-
Btree under workload WU . Running these experiments for FAST-Rtree and other
workloads give similar performance, and thus omitted for brevity.

Figure 11a gives the effect of varying the memory size from 128 KB to 1,024 KB
on the number of erase operations for flush-all policy, Rand-Flush policy and FAST
flushing policy. In all cases, FAST has much lower erase operations than the flush-
all and Rand-Flush policies, which is about one fourth of the erase operations for a
memory size of 512 KB. The main reason behind this gain in FAST is that it amortizes
the cost of the block erase operation over a large number of updates, and hence, will
free more memory with each flushing operation. On the other side, in the flush-all or
Rand-Flush policy, a block may be erased just because it has only one single update in
the memory. In this case, although a block is erased, it does not free much memory
space. The Rand-Flush policy performance is slightly better than that of flush-all
policy because the Rand-Flush flushes only one block and hence keeping all other
blocks in memory, which decrease the cost of random writes on these blocks.

FAST* flushing policy is better than FAST flushing policy as it better amortizes
the update cost. FAST* policy may still keep a block that has the highest number of
updates in memory if this block has higher potential to be updated soon, and hence
the decreasing the number of erase operations applied to that block.

Figure 11b gives a similar experiment to that of Fig. 11a with the exception that
we study the effect of changing the log size from 10 MB to 25 MB on the number
of erase operations. In all cases, FAST flushing policy is superior, which is intuitive
given the above explanation for Fig. 11a. However, an interesting observation from
Fig. 11b is that the gain from FAST flushing policy over the flush-all and Rand-
Flush policies increases with the increase of the log file size. This means that FAST
flushing policy makes better use of the log file than the flush-all and Rand-Flush
policies. A justification for this is as follows: As FAST flushing policy evicts a block

of

 e
ra

se
 o

pe
ra

tio
ns

 *
(1

03
)

of

 e
ra

se
 o

pe
ra

tio
ns

 *
(1

03
)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

128 256 512 1024

Memory Size (KB)

FAST*–Flush
FAST–Flush

Flush–All
Rand–Flush

(a) Memory size

 0

 100

 200

 300

 400

 500

 600

10 15 20 25

Log Size (MB)

FAST*–Flush
FAST–Flush

Flush–All
Rand–Flush

(b) Log size

Fig. 11 Flushing performance

444 Geoinformatica (2013) 17:417–448

to the storage only if it has high number of updates, the log entry for this flushing
operation will include many updated nodes. Then, in the log compaction process,
there will be a lot of space for compaction. This would not be the case for the flush-
all and Rand-Flush policies where a log entry for a flush operation may include only
one flushed node. Then, at the time of log compaction, there will be nothing much
to compact, which means that the log compaction will be called again. As discussed
in Section 9.2 and Fig. 9, log compaction is a major factor in the number of erase
operations. Reducing the frequency of log compaction makes FAST flushing policy
more superior than the flush-all policy. Moreover, FAST* flushing policy slightly
outperforms FAST flushing policy because of the fact that FAST* may prefer to
keep the block that has the highest number of updates in memory leading to less
erase operations on the flash memory storage.

9.6 Log compaction

Figure 12a gives the behavior and frequency of log compaction operations in FAST
when running a sequence of 200 thousands update operations for a log file size of
10 MB. The Y axis in this figure gives the size of the filled part of the log file, started
as empty. The size is monotonically increasing with having more update operations
till it reaches its maximum limit of 10 MB. Then, the log compaction operation is
triggered to compact the log file. As can be seen from the figure, the log compaction
operation may compact the log file from 20 to 60 % of its capacity, which is very
efficient compaction. Another take from this experiment is that we have made only
seven log compaction operations for 200 thousands update operations, which means
that the log compaction process is not very common, making FAST more efficient
even with a large amount of update operations.

9.7 Recovery performance

Figure 12b gives the overhead of the recovery process in FAST, which serves also
as the overhead of the log compaction process. The overhead of recovery increases
linearly with the size increase of the log file contents at the time of crash. This is
intuitive as with more log entries in the log file, it will take more time from the FAST

 0

 2

 4

 6

 8

 10

0 50 100 150 200

Lo
g

F
ile

 S
iz

e
(M

B
)

Number of Updates So Far *(103)

(a) Log Compaction

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9

R
ec

ov
er

y
T

im
e

(m
ill

is
ec

)

Log Size (MB)

FAST

(b) Recovery

Fig. 12 Log compaction and recovery

Geoinformatica (2013) 17:417–448 445

recovery module to scan this log file, and replay some of its operations to recover the
lost main memory contents. However, what we really want to emphasize on in this
experiment is that the overhead of recovery is only about 100 ms for a log file that
includes 9 MB of log entries. This shows that the recovery overhead is a low price to
pay to ensure transaction durability.

10 Conclusion

This paper presented FAST; a generic framework for flash-aware data-partitioning
tree index structures. FAST distinguishes itself from all previous attempts of flash
memory indexing in two aspects: (1) FAST is a generic framework that can be applied
to a wide class of tree index structures, and (2) FAST achieves both ef f iciency
and durability of read and write flash operations. FAST has four main modules,
namely, update, search, f lushing, and recovery. The update module is responsible
on buffering incoming tree updates in an in-memory data structure, while writing
small entries sequentially in a designated flash-resident log file. The search module
retrieves requested data from the flash storage and updates it with recent updates
stored in memory, if any. The f lushing module is responsible on evicting flash blocks
from memory to the flash storage to give space for incoming updates. Finally, the
recovery module ensures the durability of in-memory updates in case of a system
crash.

References

1. PostgreSQL. http://www.postgresql.org
2. Agrawal D, Ganesan D, Sitaraman RK, Diao Y, Singh S (2009) Lazy-adaptive tree: an optimized

index structure for flash devices. PVLDB
3. Agrawal N, Prabhakaran V, Wobber T, Davis J, Manasse M, Panigrahy R (2008) Design

tradeoffs for SSD performance. In: Usenix annual technical conference, USENIX
4. Bayer R, McCreight EM (1972) Organization and maintenance of large ordered indices. Acta

Inform 1:173–189
5. Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The R*-tree: an efficient and robust

access method for points and rectangles. In: SIGMOD
6. Birrell A, Isard M, Thacker C, Wobber T (2007) A design for high-performance flash disks. ACM

SIGOPS Oper Syst Rev 41(2):88–93
7. Bouganim L, Jónsson B, Bonnet P (2009) uFLIP: understanding flash IO patterns. In: CIDR
8. Chang Y-H, Hsieh J-W, Kuo T-W (2007) Endurance enhancement of flash-memory storage

systems: an efficient static wear leveling design. In: Proceedings of the annual ACM IEEE Design
Automation Conference, DAC, pp 212–217

9. Chen S (2009) FlashLogging: exploiting flash devices for synchronous logging performance. In:
SIGMOD. New York, NY

10. Comer D (1979) The ubiquitous B-tree. ACM Comput Surv 11(2):121–137
11. Gray J (2006) Tape is dead, disk is tape, flash is disk, RAM locality is king. http://research.

microsoft.com/∼gray/talks/Flash_is_Good.ppt. Accessed Dec 2006
12. Gray J, Fitzgerald B (2008) Flash disk opportunity for server applications. ACM Queue 6(4):18–

23
13. Gray J, Graefe G (1997) The five-minute rule ten years later, and other computer storage rules

of thumb. SIGMOD Rec 26(4):63–68
14. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: SIGMOD
15. Hellerstein JM, Naughton JF, Pfeffer A (1995) Generalized search trees for database systems.

In: VLDB
16. Hutsell W (2007) Solid state storage for the enterprise. Storage Networking Industry Association

(SNIA) Tutorial, Fall

http://www.postgresql.org
http://research.microsoft.com/~gray/talks/Flash_is_Good.ppt
http://research.microsoft.com/~gray/talks/Flash_is_Good.ppt

446 Geoinformatica (2013) 17:417–448

17. Katayama N, Satoh, S (1997) The sr-tree: an index structure for high-dimensional nearest neigh-
bor queries. In: SIGMOD

18. Kim H, Ahn S (2008) BPLRU: a buffer management scheme for improving random writes in
flash storage. In: FAST

19. Lavenier D, Xinchun X, Georges G (2006) seed-based genomic sequence comparison using a
FPGA/FLASH accelerator. In: ICFPT

20. Lee S, Moon B (2007) Design of flash-based DBMS: an in-page logging approach. In: SIGMOD
21. Lee S-W, Moon B, Park C, Kim J-M, Kim S-W (2008) A case for flash memory SSD in enterprise

database applications. In: SIGMOD
22. Lee S-W, Park D-J, sum Chung T, Lee D-H, Park S, Song H-J (2007) A log buffer-based flash

translation layer using fully-associate sector translation. TECS
23. Leventhal A (2008) Flash storage today. ACM Queue 6(4):24–30
24. Li Y, He B, Luo Q, Yi K (2009) Tree indexing on flash disks. In: ICDE
25. Li Y, He B, Yang RJ, Luo Q, Yi K (2010) Tree indexing on solid state drives. Proceedings of the

VLDB Endowment 3(1–2):1195–1206
26. Ma D, Feng J, Li G (2011) LazyFTL: A page-level flash translation layer optimized for NAND

flash memory. In: SIGMOD
27. McCreight EM (1977) Pagination of B*-trees with variable-length records. Commun ACM

20(9):670–674
28. Moshayedi M, Wilkison P (2008) Enterprise SSDs. ACM Queue 6(4):32–39
29. Nath S, Gibbons PB (2008) Online maintenance of very large random samples on flash storage.

In: VLDB
30. Nath S, Kansal A (2007) Flashdb: dynamic self-tuning database for NAND flash. In: IPSN
31. Reinsel D, Janukowicz J (2008) Datacenter SSDs: solid footing for growth. http://www.samsung.

com/us/business/semiconductor/news/downloads/210290.pdf. Accessed Jan 2008
32. Sellis TK, Roussopoulos N, Faloutsos C (1987) The R+-tree: a dynamic index for multi-

dimensional objects. In: VLDB
33. Shah MA, Harizopoulos S, Wiener JL, Graefe G (2008) Fast scans and joins using flash drives.

In: International Workshop of Data Managment on New Hardware, DaMoN
34. White DA, Jain R (1996) Similarity indexing with the SS-tree. In: ICDE
35. Wu C, Chang L, Kuo T (2003) An efficient R-tree implementation over flash-memory storage

systems. In: GIS
36. Wu C, Kuo T, Chang L (2007) An efficient B-tree layer implementation for flash-memory storage

systems. TECS

Mohamed Sarwat is a PhD candidate at the Computer Science and Engineering department,
University of Minnesota, where he also received his master’s degree in computer science in 2011. His
research interest lies in the broad area of Database systems, spatio-temporal databases, distributed
graph databases, social networking, cloud computing, large-scale data management, data indexing
and storage systems. He has been awarded the University of Minnesota Doctoral Dissertation
Fellowship in 2012/2013. He has been a recipient of Best Research Paper Award in the 12th
international symposium on spatial and temporal databases 2011.

http://www.samsung.com/us/business/semiconductor/news/downloads/210290.pdf
http://www.samsung.com/us/business/semiconductor/news/downloads/210290.pdf

Geoinformatica (2013) 17:417–448 447

Mohamed F. Mokbel is an associate professor in the Department of Computer Science and Engi-
neering, University of Minnesota. His current main research interests focus on providing database
and platform support for spatial data, moving objects, and location-based services. Mohamed is the
main architect for the PLACE, Casper, and CareDB systems that provide a database support for
location-based services, location privacy, and personalization, respectively. His research work has
been recognized by two best paper awards at IEEE MASS 2008 and MDM 2009 and by the NSF
CAREER award 2010. Mohamed is currently the general co-chair of SSTD 2011 and program co-
chair for MDM 2011, DMSN 2011, and LBSN 2011. Mohamed was also the proceeding chair of ACM
SIGMOD 2010, and the program co-chair for ACM SIGSPATIAL GIS 2008, 2009, and 2010. He
serves in the editorial board of IEEE Data Engineering Bulletin, Distributed and Parallel Databases
Journal, and Journal of Spatial Information Science. Mohamed is an ACM and IEEE member and a
founding member of ACM SIGSPATIAL.

Xun Zhou received his B.Eng., and M.Eng., in Computer Science and Technology from Harbin
Institute of Technology, Harbin, China in 2007 and 2009 respectively. He is currently a Ph.D. student
in Computer Science at the University of Minnesota, Twin Cities. His research interests include
spatiotemporal data mining, spatial databases and Geographical Information Systems (GIS). His
current application focus is understanding climate change from data.

448 Geoinformatica (2013) 17:417–448

Suman Nath is a researcher in the Sensing and Energy Research Group at Microsoft Research
Redmond. He works on various data management problems in mobile and sensing systems. He
received his PhD from Carnegie Mellon University in 2005. He has authored 20+ patents (granted or
pending), 70+ papers in various computer science conferences and journals, and received Best Paper
Awards at BaseNets 2004, USENIX NSDI 2006, IEEE ICDE 2008, and SSTD 2011. At Microsoft,
he received the Gold Star Award, which recognizes excellence in leadership and contributions for
Microsoft’s long-term success.

	Generic and efficient framework for search trees on flash memory storage systems
	Abstract
	Introduction
	Flash memory storage overview
	Related work
	Fast system overview
	FAST modules
	FAST design goals
	FAST data structure
	Running example
	Operations cost parameters

	Tree updates in FAST
	Searching in FAST
	Memory flushing in FAST
	Flushing unit
	Flushing policies
	FAST flushing policy
	FAST* flushing policy

	Flushing algorithm

	Crash recovery and log compaction in FAST
	Recovery
	Log compaction

	Experimental evaluation
	Effect of memory size
	Effect of log file size
	Effect of index size
	Effect of number of updates
	Flushing performance
	Log compaction
	Recovery performance

	Conclusion
	References

