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ABSTRACT 
In most modern operating systems, a process is a 

hardware-protected abstraction for isolating code and data. 

This protection, however, is selective. Many common 

mechanisms—dynamic code loading, run-time code 

generation, shared memory, and intrusive system APIs—

make the barrier between processes very permeable. This 

paper argues that this traditional open process architecture 

exacerbates the dependability and security weaknesses of 

modern systems. 

As a remedy, this paper proposes a sealed process 

architecture, which prohibits dynamic code loading, self-

modifying code, shared memory, and limits the scope of 

the process API. This paper describes the implementation 

of the sealed process architecture in the Singularity 

operating system, discusses its merits and drawbacks, and 

evaluates its effectiveness. Some benefits of this sealed 

process architecture are: improved program analysis by 

tools, stronger security and safety guarantees, elimination 

of redundant overlaps between the OS and language 

runtimes, and improved software engineering.  

Conventional wisdom says open processes are required for 

performance; our experience suggests otherwise. We 

present the first macrobenchmarks for a sealed-process 

operating system and applications. The benchmarks show 

that an experimental sealed-process system can achieve 

performance competitive with highly-tuned, commercial, 

open-process systems. 

Categories and Subject Descriptors 
D.2.3 [Software Engineering] Coding Tools and Techniques; 

D.2.4 [Software Engineering] Software/Program Verification; 

D.4.1 [Operating Systems]: Process Management; D.4.5 

[Operating Systems]: Reliability; D.4.6 [Operating Systems]: 

Organization and Design; D.4.7 [Operating Systems]: Security 

and Protection. 

General Terms 
Design, Reliability, Experimentation. 

Keywords 
Open process architecture, sealed process architecture, sealed 

kernel, software isolated process (SIP). 

1. INTRODUCTION 

Processes debuted, circa 1965, as a recognized operating 

system abstraction in Multics [48]. Multics pioneered 

many attributes of modern processes: OS-supported 

dynamic code loading, run-time code generation, cross-

process shared memory, and an intrusive kernel API that 

permitted one process to modify directly the state of 

another process. 

Today, this architecture—which we call the open process 

architecture—is nearly universal. Although aspects of this 

architecture, such as dynamic code loading and shared 

memory, were not in Multics’ immediate successors (early 

versions of UNIX [35] or early PC operating systems), 

today’s systems, such as FreeBSD, Linux, Solaris, and 

Windows, embrace all four attributes of the open process 

architecture. 

The open process architecture is commonly used to extend 

an OS or application by dynamically loading new features 

and functionality directly into a kernel or running process. 

For example, Microsoft Windows supports over 100,000 

third-party, in-kernel modules ranging in functionality 

from device drivers to anti-virus scanners. Dynamically 

loaded extensions are also widely used as web server 

extensions (e.g., ISAPI extensions for Microsoft’s IIS or 

modules for Apache), stored procedures in databases, 

email virus scanners, web browser plug-ins, application 

plug-ins, shell extensions, etc. While the role of open 

processes in Windows is widely recognized, like any 

versatile technology they are widely use in other systems 

as well [10, 42]. 

1.1. Problems with Open Processes 

Systems that support open processes almost always 

implement process isolation through hardware mechanisms 

such as memory management protection and differentiated 
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user and kernel instructions [37]. These mechanisms are 

not free, and their cost is a major motivation for open 

processes. In Aiken et al. [2], we measured hardware 

isolation costs ranging from 2.5% (in a compute-bound 

task with no paging) to 33% (in an IPC-bound task). This 

overhead arises from page table management and cache 

and TLB misses.  

Developers avoid the performance overhead of hardware 

protection by using the open process architecture to closely 

couple software components. Software components 

located in a common process can communicate through 

shared data structures and use simple mechanisms, such as 

procedure calls, to transfer control. These mechanisms are 

particularly attractive because programming languages 

provide far richer data and control structures within a 

process than between processes. 

Not surprisingly, the open process architecture has 

drawbacks. In particular, eliminating the isolation between 

a host process and an extension is a major source of 

software reliability, security, and compatibility problems. 

Although extensions are rarely trusted, verified, or fully 

correct, they are routinely loaded directly into a host kernel 

or process, with no hard interface or boundary between 

host and extension. The outcome is often unpleasant. For 

example, Swift reports that faulty device drivers cause 

85% of diagnosed Windows system crashes [43]. 

Unpublished data from Microsoft Online Crash Analysis 

tools shows that in-process extensions are an important 

source of failure in many software products, including 

Windows, Word, Outlook, Exchange, and Internet 

Explorer. Results from a static analysis survey [9] suggest 

that in-process and in-kernel extensions are a major source 

of errors in open source code as well. 

Open processes also weaken enforcement of security 

policies. Few, if any, operating systems provide a strong 

guarantee of application identity or include applications as 

principals in access control decisions. The complete code 

running in an open process cannot be known a priori, so 

an access control decision based on the identity of the 

program started in the process would be suspect. Instead, 

most systems control access to data based on the identity 

of an authenticated user [51].  

In practice, the open process architecture also impairs 

software engineering. An extension gains unrestrained 

access to its host’s memory. Extensions can, and 

frequently do, reach inside their host’s implementation to 

access private data structures or functions. These 

undocumented and unwanted dependencies constrain the 

evolution of the host program and require software 

vendors to perform extensive compatibility testing to avoid 

breaking undisciplined extensions [12]. 

We can draw an instructive analogy between sealed 

processes and sealed classes in object-oriented languages. 

Experience with programming languages has shown that 

class designers and implementers need mechanisms to 

limit class extension and to force extensions to use 

declared interfaces, in order to enforce a software 

architecture and reduce implementation errors [7]. 

Similarly, sealed processes offer application developers 

explicit and enforceable interfaces for extensions. 

Dynamic code loading also imposes less visible penalties 

on performance and correctness. A host program that can 

load code is an open environment in which it is difficult to 

make sound assumptions about states, invariants, or valid 

transitions. Consider, for example, the Java Virtual 

Machine (JVM). An interrupt, exception, or thread switch 

can invoke code that loads a new file, overwrites class and 

method bodies, and modifies global state to change code 

semantics [41]. This possibility either limits permissible 

compiler optimizations or requires extensive run-time 

support to recompile affected code. 

In addition, static program analysis, which underlies both 

compiler optimizations and static defect detection, is 

complicated by open processes. A code extension must be 

analyzed in the context of its host environment, which can 

be complicated and expensive to specify and model [4]. 

The host itself cannot be fully or accurately analyzed 

without complete specification of extensions’ behavior. To 

be practical, defect detection tools make assumptions 

about absent code that reduce the quality of their results. 

1.2. Contributions 

This paper defines a new sealed process architecture that 

addresses many shortcomings of the open process 

architecture. We describe the implementation and our early 

experience with a sealed process system. We present the 

first macrobenchmark results showing that a sealed-

process system can have performance competitive with 

open-process systems even when the sealed-process 

system is written in a safe language with garbage 

collection. We also present an analysis of the costs of 

trade-offs of moving a major software component, the 

register allocator of a compiler, to a child process. 

With the sealed process architecture, the OS ensures that 

code in a process cannot be altered once the process starts 

executing. The system prohibits dynamic code loading, 

self-modifying code, cross-process sharing of memory, 

and provides a process-limited kernel API.  

Sealed processes offer many advantages. They increase the 

ability of program analysis tools to improve performance 

and reliability. They enable stronger security mechanisms. 

They can eliminate the need to duplicate OS-style access 

control in execution environments such as the Sun’s JVM 



 

and Microsoft’s Common Language Runtime (CLR). 

Finally, they encourage better software engineering. 

We have implemented the sealed process architecture in 

our Singularity OS. Our experience demonstrates that the 

sealed process architecture and the process-based 

extension model it encourages are both feasible and 

desirable. Singularity uses sealed processes as its single 

extension mechanism for both the OS and applications: 

extension code always executes in a process distinct from 

its host’s process. We have built a system in which all of 

the major subsystems and drivers reside in processes 

outside the kernel. We have also used the same process 

architecture to extend non-trivial applications, with a small 

programming effort and minimal effect on performance. 

The rest of the paper is organized as follows. Section 2 

describes the sealed process architecture and discusses its 

qualitative merits. Section 3 describes the implementation 

of sealed processes in Singularity. Sections 4 and 5 contain 

qualitative and quantitative evaluations of the sealed 

process architecture in Singularity. Section 6 describes 

related work and Section 7 contains conclusions and a 

discussion of future work. 

2. SEALED PROCESS ARCHITECTURE 

The sealed process architecture imposes two restrictions: 

the code in a process cannot be altered once the process 

starts executing and the state of a process cannot be 

directly manipulated by another process.  

In this context, the definition of ―code‖ is somewhat 

subjective. For a run-of-the-mill binary program, ―code‖ 

would mean the binary instructions for the program. For an 

interpreted program, ―code‖ would mean both the binary 

instructions of the interpreter as well as the code to be 

interpreted, whatever its form. Any case, the core 

restriction is that once the program has begun execution its 

code cannot be augmented. 

A sealed kernel is an OS kernel that conforms to the same 

two restrictions: the code in the kernel cannot be altered 

once the kernel starts executing and the state of the kernel 

cannot be directly manipulated by any process. 

Technically, an operating system with an open kernel can 

provide sealed processes. However, this paper assumes 

that sealed processes will be implemented on top of a 

sealed kernel.  

2.1. Sealed Process Invariants 

A sealed architecture system implements maintains four 

invariants: 

1. The fixed code invariant: Code within a process does 

not change once the process starts execution. 

2. The state isolation invariant: Data within a process 

cannot be directly accessed by other processes. 

3. The explicit communication invariant: All 

communication between processes occurs through 

explicit mechanisms, with explicit identification of the 

sender and explicit receiver admission control over 

incoming communication. 

4. The closed API invariant: The system’s kernel API 

respects the fixed code, state isolation, and explicit 

communication invariants. 

The fixed code invariant does not limit the code in a 

process to a single executable file, but it does require that 

all code be identified before execution starts. A process 

cannot dynamically load code and should not generate 

code into its address space. 

Because the code loaded in a process is known a priori, its 

identity can be verified against certificates provided by the 

code’s publisher. This identity makes it is possible to 

assign access rights to the process [51]. For example, a 

process might have a security principal consisting of its 

authenticated user, authenticated program, and a publisher. 

Making a program part of a security principal enables the 

system to limit access to the application’s data files to the 

application itself or its trusted peers. This is a much 

simpler and more robust mechanism than protecting the 

files with very restrictive access rights and requiring the 

application to assume superuser privileges to access its 

data. 

The state isolation invariant ensures that only code within 

a process can directly access and modify its data. Without 

this invariant, a program cannot control information 

sharing and a developer cannot expect a program to behave 

predictably. 

This invariant disallows communication through shared 

memory. Processes can pass data through a shared address 

space, but ownership and access to the data must be 

exchanged, so one process is not able to modify the 

contents of the memory while another is reading it. 

The explicit communication invariant ensures that all 

communication is visible to and controllable by the 

system. Implicit or anonymous communication channels, 

such as shared memory or direct manipulation of another 

process’s data structures, are forbidden. Furthermore, both 

the kernel and the recipient process have the ability to 

prevent communications by denying a request to establish 

a communication channel. Finally, the explicit 

communication invariant allows a process to invest one or 

more communication rights into a child process at creation 

time. 

For example, in Singularity, the inter-process 

communication mechanisms allow a process to create a 



 

communication channel and pass that channel (and its 

implied communication rights) to another process. 

Similarly, a process can receive a channel from one 

process and hand it off to a third process. The Singularity 

API for creating a child process allows a process to invest 

one or more communication rights into a child process at 

creation time. 

In general, the explicit communication invariant ensures 

that a process can only communicate with the transitive 

closure of processes reachable through its existing 

communication graph (or extensions of the graph caused 

by creation of child processes). In practice, intermediate 

processes (including the kernel) and the OS 

communication mechanisms can further restrict the 

communication graph. For example, an intermediate 

process can use access control to decide whether to 

forward a communication.  

The closed API invariant ensures that the API provided by 

the operating system to an unprivileged process does not 

include a mechanism to subvert the fixed code, state 

isolation, or explicit communication invariants. For 

example, the closed API invariant ensures that the base 

API does not include a mechanism to write to the memory 

of any other process. 

Debuggers may need to violate some or all of these 

invariants in order to enable a developer to examine and 

control an executing process. Debuggers consequently 

must be privileged programs that are given access to 

functionality not available outside of a system’s kernel. In 

practice, very few users write code or run debuggers, so 

production systems can enhance security by omitting this 

functionality or by limiting debuggers to read-only access. 

3. SINGULARITY 

Singularity is an experimental operating system under 

development in our lab as a basis for building more 

dependable applications and systems [28]. A key design 

criterion for Singularity was to increase isolation among 

software components. This motivation was based on 

widespread experience with Microsoft’s software systems, 

which in general are very extensible and rely heavily on 

open process architectures. While we recognize both the 

practical and commercial benefits of open process 

architectures, we felt compelled to explore alternatives to 

improve dependability. 

Singularity’s sealed process architecture is constructed 

from a number of mechanisms: a sealed micro-kernel, 

light-weight software isolated processes (SIPs), a light-

weight language runtime, light-weight inter-process 

communication channels, a process-limited API, light-

weight threads, isolated process heaps, and verifiable code. 

3.1. Sealed Kernel 

Figure 1 depicts the key components of the Singularity 

operating system. The microkernel provides the core 

functionality of the system, including page-based memory 

management, process creation and termination, 

communication channels, scheduling, I/O, security, and a 

local directory service. The microkernel uses a hardware 

abstract layer (HAL) to communicate with low-level 

devices, such as interrupt controllers and timers. Most of 

Singularity’s functionality resides in processes outside of 

the sealed kernel. In particular, all subsystems and device 

drivers run in separate processes. 

Most of the kernel and language runtimes are verifiably 

type safe C# or Sing# [13], but small portions of trusted 

code are written in assembler, C++, or unsafe C#. All code 

outside the trusted computing base is written in a safe 

language (such as C#), translated to safe MSIL1, and then 

verified and compiled to the native instruction set by the 

Bartok compiler [16] at install time. Currently, we trust 

that Bartok correctly generates safe code. In the long term 

we are moving to typed assembly language (TAL) to 

verify the safety of compiled code and to eliminate the 

compiler from the trusted computing base [30]. 

3.2. Software Isolated Processes  

A Singularity process, called a software isolated process 

(SIP), consists of a set of memory pages, a set of threads, 

and a set of channel endpoints. Singularity’s SIPs depend 

on language safety and the invariants of the sealed process 

architecture to provide low-cost process isolation. This 

isolation starts with verification that all untrusted code 

running in a SIP is type and memory safe. Language safety 

ensures that untrusted code cannot create or mutate 

pointers to access the memory pages of another SIP. The 

                                                           
1Microsoft Intermediate Language (MSIL) is the CPU-independent 

instruction set accepted by the Microsoft CLR. Singularity uses the MSIL 

format. Features specific to Singularity are expressed through metadata 

extensions in MSIL. 
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Singularity communication mechanisms and kernel API do 

not allow pointers to be passed from one SIP to another. 

Taken together, these mechanisms ensure the sealed 

process invariants, even for SIPs executing in the same 

address space. 

A SIP starts with a single thread, enough memory to hold 

its code, an initial set of channel endpoints, and a small 

heap. It obtains additional memory by calling the kernel’s 

page manager, which returns new, unshared pages. These 

pages need not be adjacent to the SIP’s existing address 

space, since safe programming languages do not require 

contiguous address spaces.  

Because user code is verified safe, several SIPs can share 

the same address space. Moreover, SIPS can safely 

execute at the same privileged level as the kernel. 

Eliminating these hardware protection barriers reduces the 

cost to create and switch contexts between SIPs. 

Low cost, in turn, makes it practical to use SIPs as a fine-

grain isolation and extension mechanism. With software 

isolation, system calls and inter-process communication 

execute significantly faster (30–500%) and 

communication-intensive programs run up to 33% faster 

than on hardware-protected operating systems. Aiken et al. 

[2] present an extensive comparison of hardware and 

software isolation in Singularity.  

SIPs are created from a signed manifest [39]. The manifest 

describes the SIP’s code, resources, and dependencies on 

the kernel and on other SIPs. All code within a SIP must 

be listed in the manifest. Singularity SIP manifests are 

entirely declarative. They describe the desired state of the 

application configuration after an installation, not the 

algorithm for installing the application. This frees the OS 

to employ consistent algorithms to update system 

configuration and to verify that an update has the desired 

effect. 

Upon creation, SIPs receive an immutable security 

principal name based on their manifest. Because SIPs are 

sealed, security policies can place high confidence that a 

SIP will not be subverted by third party code. Wobber et 

al. [51] describe how the Singularity security architecture 

builds robust security policies on the foundation of sealed 

processes. 

3.3. Light-Weight Language Runtime 

Unlike previous systems that relied on language safety 

(e.g., Smalltalk, Cedar/Mesa, etc.), Singularity SIPs 

execute autonomously. Each SIP contains its own memory 

pages, language runtime, and garbage collector (GC). 

Moreover, even communicating SIPs need not share a 

common runtime or GC.  

Because of the state isolation invariant, the runtime and 

garbage collector can employ data layout and GC 

algorithms appropriate for code in a particular SIP. 

Experience and the large number of published garbage 

collection algorithms strongly suggest that no one garbage 

collector is appropriate for all applications [17]. 

Singularity’s sealed process architecture decouples the 

algorithm, data structures, and execution of each SIP’s 

garbage collector. Each SIP can select a GC to 

accommodate its objectives. Moreover, the GC in a SIP 

can run without coordinating with any other SIP.  

A light-weight, customizable runtime is an integral part of 

Singularity’s implementation of the closed process 

architecture because it allows developers to use SIPs 

liberally without incurring large memory overheads. 

Because programs are compiled to native code at install 

time, Singularity’s language runtime can be quite small. 

The language runtime includes a GC, exception handling 

mechanisms, and a limited amount of reflection to 

determine the type of objects at runtime. Above the 

language runtime sits the base class library. Because SIPs 

are sealed, Bartok can reduce the footprint of the runtime 

and base class library even further by removing unused 

code, a process called ―tree shaking‖ [16]. 

3.4. Channels 

Singularity SIPs communicate exclusively by sending 

messages over channels [14]. Channels enforce stronger 

semantics than the low-level IPC mechanisms of other 

systems. Channel communication is governed by statically 

verified channel contracts, which describe messages, 

message field types, and valid message interaction 

sequences as finite state machines. 

Messages are tagged collections of values or message 

blocks in the Exchange Heap. Object references are 

excluded from messages by the type system. Messages are 

ownership is transferred from a sending SIP to a receiving 

SIP during communication. 

Endpoints and message data reside in a special set of pages 

known as the Exchange Heap. The Exchange Heap is not 

garbage collected, but instead uses reference counts to 

Exchange Heap

Process 1 Process 2 Process 3

 

Figure 2. The Exchange Heap. 

 



 

track usage of blocks of memory (Figure 2). An allocation 

within the Exchange Heap is owned by one SIP at any 

given time with ownership enforced by static verification. 

When data or endpoints are sent over a channel, ownership 

passes from the sending SIP, which may not retain a 

reference, to the receiving SIP. This ownership invariant 

maintains the state isolation invariant and is enforced by 

the language using linear types and by the run-time 

systems [14]. 

Channel endpoints can be sent in messages. Thus, a 

communication network can evolve dynamically while 

conforming to the explicit communication invariant. 

The operation of sending and receiving, as opposed to 

creating a message, entails no memory allocation. Sends 

are non-blocking and non-failing. Receives block 

synchronously until a message arrives or the send endpoint 

is closed. 

3.5. Process-Limited API 

In addition to the message-passing mechanism of channels, 

SIPs communicate with the kernel through a limited API 

that invokes static methods in kernel code. This interface 

isolates the kernel and SIP object spaces. All parameters to 

this API are values, not pointers, so the kernel’s and SIP’s 

garbage collectors need not coordinate.  

The Singularity API maintains the closed API invariant. 

Only two API calls affect the state of another SIP. The call 

to create a child SIP specifies the child’s manifest 

(identifying of all code allowed to run in the child) and 

gives an initial set of channel endpoints before the child 

SIP begins execution. The call to stop a child SIP stops its 

threads and then destroys its state. 

3.6. Light-Weight Threads 

Singularity employs light-weight threads to decouple 

execution in one SIP from another. A SIP with multiple 

channels must handle asynchronous message arrivals, 

through either an event-driven or threaded architecture. 

We chose threads for Singularity, though this design 

decision is not fundamental to the sealed process 

architecture. We are also investigating alternative thread 

synchronization, such as transactional memory [29]. 

A SIP can call kernel API functions to create and start 

threads on demand. Singularity uses linked stacks to 

reduce the memory overhead of a thread. These stacks 

grow on demand by adding non-contiguous segments of 

4KB or more. The compiler performs static interprocedural 

analysis to optimize placement of overflow tests [47].  

To reduce the overhead of API calls, Singularity does not 

switch stacks when a SIP calls the kernel. Instead, the 

Singularity runtime uses stack markers to track the 

ownership of stack frames so that the kernel’s GC can 

traverse kernel frames and the SIP’s GC can traverse SIP 

frames thus maintaining the state isolation invariant. These 

markers also facilitate terminating SIPs cleanly. When a 

SIP is killed, a kernel exception is thrown in each of its 

threads, which unwinds and frees the SIP’s stack frames. 

4. QUALITATIVE BENEFITS 

The sealed process architecture increases the accuracy and 

precision of program analysis tools. The fixed code 

invariant allows a static program analysis to safely assume 

that it has knowledge of all code that will ever execute in a 

process. For example, in a sealed process, a whole-

program optimizing compiler can perform aggressive 

inter-procedural optimization, such as eliminating from 

class libraries those methods, fields, and classes that are 

unused within a specific program.  

This aggressive optimization cannot be performed safely in 

an open architecture. Imagine, for example, aggressively 

optimizing an open OS kernel that supports dynamically 

loaded device drivers. A compiler might remove an 

apparently unused field, to reduce the size of a data 

structure, only to later find that an unfortunate user loaded 

a driver that accesses this field. 

The soundness of program correctness tools, such as 

Microsoft’s Static Driver Verifier (SDV) [4], is limited by 

open process architectures. Tools of this kind are forced to 

make unsound, simplifying assumptions about worst case 

program behavior of missing code. For example, SDV 

incorporates a complex, conservative model of the 

Windows kernel’s interface to device drivers. Constructing 

the model was a laborious process that was economically 

feasible only because the model can be reused across tens 

of thousands of device drivers. An equivalent expenditure 

is infeasible for most application or extension developers.  

Sealed processes enable stronger security guarantees than 

open architectures. Code-based security systems, such as 

Microsoft Authenticode or Java [23], attempt to make 

security guarantees by validating the signature of a 

program residing on disk. However, these guarantees do 

not hold once the code is loaded into an open process and 

extended.  

To compensate for the weakness of open processes, both 

the JVM and the CLR employ complex and expensive run-

time code access security mechanisms. To estimate the 

cost of code access security (CAS) mechanisms in the 

CLR, we built a custom version of the Microsoft .NET 1.1 

base class library (mscorlib.dll) without CAS. We 

removed all classes in the System.Security.-

Permissions namespace from the CLR and all metadata 

tags and assertions related to it. The resultant 



 

mscorlib.dll file was 30% smaller than the original 

mscorlib.dll. 

With a sealed process, the certification of disk contents can 

be extended to the executable contents of a process. A 

sealed architecture can guarantee that a program will 

execute in its certified form because of the state isolation 

and closed API invariants. No open process architecture 

can make such a claim. When coupled with hardware 

support for attestation [46] sealed processes can enable an 

execution model in which a process is a trustable entity. 

Sealed processes encourage—but obviously cannot 

guarantee—that developers practice better software 

engineering by encouraging modularity and abstraction. In 

a sealed architecture, OS and application extensions, such 

as device drivers and plug-ins, can communicate only 

through well-defined interfaces. The process boundary 

between host and extension ensures that an extension 

interface cannot be subverted. 

At least for an OS kernel, the benefits of a sealed 

architecture have long been at least partially recognized by 

the OS community. Successive generations of 

microkernels have explored the advantages of removing 

OS kernel extensions to separate processes [1, 11, 22, 24, 

27] or to separate execution contexts [6, 38]. These 

microkernels found value in closing the kernel, but none 

extended this principle to applications as we have with 

sealed user processes.  

4.1. Limitations 

Although a sealed architecture offers benefits, it also 

imposes costs. The most prominent is that the set of 

programs that naturally conforms to a sealed architecture is 

limited by design. To encourage adoption, a system must 

provide mechanisms that are general enough to supplant 

prohibited techniques. 

4.1.1 Communications 

Communication that passes through memory shared 

between processes is notoriously prone to concurrency 

bugs. Sealed processes can prevent this class of errors, but 

they require message passing, which is also difficult to use 

correctly. Common message-passing errors include 

marshalling code that violates type-safety properties and 

communication protocol violations that lead to deadlocks 

and livelocks. These problems can be mitigated by 

programming language extensions that concisely specify 

communication protocols and by verification tools [14]. 

Sealed processes also increase the complexity of writing 

program extensions, as the host program’s developer must 

define a proper interface that does not rely on sharing data 

structures. The extension’s developer must program to this 

interface and possibly re-implement or import 

functionality available in the parent. Nevertheless, the 

widespread problems caused by dynamically loaded 

extensions strongly argue for increasing isolation between 

an extension and its parent. Singularity demonstrates that 

an out-of-process extension mechanism works for 

applications as well as system code. This general extension 

mechanism does not depend on the semantics of a specific 

interface, unlike domain-specific approaches such as 

Nooks [43]. Finally, the extension mechanism provides 

simple semantic guarantees that can be understood by 

developers and used by tools for defect detection. 

4.1.2 Dynamic Code Generation 

The inability to generate code into a running sealed 

process precludes common coding practices such as just-

in-time compilation and the inline compilation of 

abstractions such as a regular expression. In a sealed 

architecture, these mechanisms must generate the code into 

a separate process, start this process, and communicate 

over a well-defined communication channel. We are 

investigating mechanisms, such as compile-time reflection, 

which can eliminate some uses of dynamic code 

generation [15]. Note that programming language 

interpreters can still be written in the sealed process 

architectures, since the interpreted program just invokes 

code that is part of the process. 

4.1.3 Data Sharing 

In an open process OS, shared libraries and DLLs are a 

common way to reduce the code footprint of the system. 

For example, a typical Windows Sever 2003 system 

running a mix of user applications shows 74 processes 

using a total of 5.4GB of virtual address space, but only 

760MB of private data/code. Furthermore, in an open 

process system, extensions co-located in a single process 

share read-write, as well as read-only data.  

A sealed process system can share read-only code and data 

pages among processes, which is similar to shared libraries 

in conventional systems. There is, however, a tradeoff 

between extensive compiler optimization, which 

customizes a library for a particular process and prevents 

code sharing, and sharing libraries among processes. 

4.1.4 Scheduling Overhead 

Since a sealed process can only be extended by creating a 

child process, it may require more processes than a 

conventional system to service a request. These additional 

processes introduce communication overheads, such as 

data copying, and exacerbate the scheduling problem faced 

by the kernel. In particular, a large number of (non-

blocked) threads may preclude sophisticated scheduling 

algorithms. Multiplexing server processes among multiple 

clients also makes resource accounting more difficult.  



 

In practice, we have found that a typical Singularity 

system contains a large number of threads (hundreds of 

threads are not uncommon even on small systems), but the 

number of non-blocked threads at any time is usually quite 

small. However, this may not be true for all sealed 

architectures. 

5. QUANTITATIVE EVALUATION 

The sealed process architecture represents a significant 

departure from the open process architecture in general 

use. In this section we evaluate the sealed process 

architecture by qualitatively comparing the performance of 

the current version of Singularity with existing open 

architecture systems, most notably Windows Server 2003 

R2. Singularity is a research prototype. The evaluation in 

this section should be considered as more demonstrative 

than definitive. 

All experiments were run using an AMD Athlon 64 X2 

3800+ CPU(2 GHz, with second core disabled) with an 

NVIDIA nForce4 Ultra chipset, 1GB RAM, a Western 

Digital WD2500JD 250GB 7200RPM SATA disk 

(command queuing disabled), and the nForce4 Ultra native 

Gigabit NIC (TCP offload disabled). Versions of systems 

used were FreeBSD 5.3, Red Hat Fedora Core 4 (kernel 

2.6.11-1.1369_FC4), and Windows Server 2003 R2.  

5.1. SPECweb99 

To quantify the overhead of the sealed process 

architecture, we measured the performance of Singularity 

and Windows running the SPECweb99 benchmark [40]. 

SPECweb99 measures the maximum number of 

simultaneous connections an HTTP server can support, 

while maintaining a minimum bandwidth of 320 Kbps on 

each connection. The benchmark consists of both static 

and dynamic content. Static content is selected using a 

Zipf distribution consisting of 35% files smaller than 1KB, 

50% files larger than 1KB and smaller than 10KB, 14% 

files larger than 10KB and smaller than 100KB, and 1% 

files larger than 100KB and smaller than 1MB. 

The Singularity implementation uses six SIPs: a NIC 

driver, the TCP/IP stack, the HTTP server, the 

SPECwebApp which processes both dynamic and static 

content requests, the file system, and a disk driver (Figure 

3). The Singularity implementation of SPECweb99 is not 

fully conformant to the requirements for formal 

benchmarking. In particular, our HTTP server does not 

support logging and we used a slightly smaller execution 

time and both the Singularity and Windows tests use 

smaller ramp up time (30 seconds) and run time (180 

seconds) than is required for formal SPECweb99 results. 

The Windows implementation of SPECweb99 runs on IIS 

6.0 and takes advantage of all optimizations available in an 

open process architecture (Figure 4). In this 

implementation, the NIC driver, TCP/IP stack, disk driver, 

file system, and HTTP dispatcher code are all loaded into 

the Windows kernel using the device driver extension 

model. The HTTP dispatcher transfers content directly 

from the file system (or file system cache) to the TCP/IP 

stack without leaving the kernel. Dynamic content requests 

travel directly from the http.sys driver in the kernel to 

the IIS worker process, which contains the SPECwebApp 

dynamic content plug-in running as an ISAPI extension. 

The inetinfo.exe controller process is executed only on 

the first dynamic content request to start the worker 

process.  
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Figure 3. SPECweb99 in six SIPs on Singularity. 
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Figure 4. SPECweb99 on Windows 

 

 



 

Table 1 shows the comparative performance of the 

Singularity and Windows running the SPECweb99 

benchmark.  In its current implementation, the Singularity 

system can sustain less than half (244/519) of the number 

of concurrent connections as the Windows system.  The 

Singularity system is CPU bound whereas the Windows 

system is bound by disk I/O; it runs at roughly 60% CPU 

utilization.  Average response time for the two systems is 

quite close; Singularity has an average response time with 

5% of Windows.  

Four factors accounts for much (48%) of the CPU 

utilization performance in the Singularity implementation 

(Table 2): the overhead of selecting which message has 

been received in a Sing# ―switch receive‖ statement, the 

scheduler and raw send/receive operations on channels, the 

cost of allocating and duplicating and garbage collecting 

in-process byte[] arrays, and the cost of allocating cross-

process ExHeap byte vectors.  We believe that the ―switch 

receive‖ statement cost can be significantly improved as it 

has a minimum overhead of approximately 1600 cycles 

over the cost of a similar non-switched receive operation.  

Our experience as we have driven from prototype code to 

―commercial grade‖ code is that we can substantially 

reduce the costs of both byte[] arrays and ExHeap byte 

vectors.  The current implementation of the NetStack is an 

awkward port of C# code from the CLR to Singularity.  

Data is copied from byte vectors at the top of the network 

stack into byte[] arrays.  The network stack then processes 

data in the form of these byte[] arrays, and then they are 

copied into new byte vectors at the bottom of the network 

stack to send to the NIC driver. 

A more natural style in Singularity would be to use byte 

vectors throughout.  The results of such a conversion can 

be seen in the file system which spends just 1% of its total 

CPU time in garbage collection (Table 3).  This contrasts 

with the HTTP server which spends over 11% of its CPU 

time in garbage collection.  In the extreme case, the disk 

driver does no memory allocation as it exclusively uses 

byte vectors passed in from higher layers.  The NIC drivers 

uses byte vectors on the transmit, but not the receive path.  

We see significant room for improvement in the TCP/IP 

stack, HTTP Server, and SPECwebApp as these are 

converted to zero-copy implementations using byte 

vectors.   

5.2. Register Allocator 

To further evaluate the practicality of sealed processes and 

process-based extension, we modified the Bartok compiler 

by moving its register allocator into a child SIP and using 

the modified compiler to compile the Singularity kernel. 

The register allocator is a good example of a complex 

component that might be an extension to a large 

application.  

The register allocator runs as one of roughly 50 phases in 

the Bartok compiler. Given a graph representing register 

lifetimes in a single function with unlimited virtual 

registers, the allocator implements a graph-coloring 

algorithm to assign virtual registers to physical registers. In 

the SIP, it updates the function graph to assign real 

registers and inserts register spill instructions as necessary. 

The register allocator uses various data structures that 

describe the physical hardware, calling conventions, etc. 

The Bartok compiler is approximately 220K lines of C# 

code, a 5.7MB executable. The register allocator is 

approximately 10K lines of C# code, but when compiled 

with its necessary libraries, it is a 1.6MB executable.  

The register allocator is a challenging extension. It 

exchanges numerous, complex data structures with its host. 

The interface between the compiler and allocator has 156 

unique data structure classes. Over the 6,441 functions in 

the Singularity kernel, the median invocation of the 

allocator marshals approximately 2,400 unique objects. 

The smallest invocation marshaled over 1,400 unique 

objects and the largest invocation marshaled over 30,000 

unique objects. The total data marshaled per invocation 

ranged from 50KB to 1.5MB, with a median of 85KB. 

Table 1. Performance on SPECweb99 benchmark. 
 

System 

Concurrent 
Connections 

(higher is better) 

Average 
Response in ms. 
(lower is better) 

Windows 519 332.1 

Singularity 244 348.1 

Table 2. CPU usage by Major Function for Singularity. 
 

Overhead Function % of Total CPU 

Message Switch-Receive  16.61% 

Message Receive operations 8.59% 

Heap Byte[] operations 18.41% 

ExHeap Byte[] operations 4.45% 

Total 48.06% 

Table 3. CPU usage by SIP for SPECweb99 on Singularity. 
 

Process 
% of Total 

CPU 
% of Total 
CPU in GC % in GC 

NIC Driver 5.81% 0.35% 6.09% 

TCP/IP Stack 44.51% 3.17% 7.12% 

HTTP Server 15.44% 1.80% 11.65% 

SPECwebApp 7.88% 0.67% 8.52% 

File System 25.96% 0.30% 1.17% 

Disk Driver 0.40% 0.00% 0.00% 

Kernel n/a 0.84% n/a 

 



 

Our strategy with the Bartok implementation was to 

produce the smallest set of changes with ―reasonable‖ 

performance.  The changes consisted primarily of 

annotating classes that needed to be marshaled. Beyond 

tagging non-updated objects, we spent no effort to reduce 

communication across the interface between Bartok and 

the register allocator.  For example, we did not alter the 

data structures within Bartok to more cleanly separate 

parent-only state from exchanged state.  

Table 4 summarizes the execution time in cycles and 

overhead for running the Bartok register allocator as a 

child SIP.  The version of Bartok with the separate child 

SIP executes approximately 11% slower then original 

version.  While the overhead is not trivial, it is small 

enough that its cost might easily be justified for the 

improved system dependability.  Furthermore, the cost 

might also be reduced by altering the data structures to 

better segregate the data structures required by the child 

SIP and therefore reduce marshalling costs.  The overheads 

might be completely eliminated by using linear Sing# 

types that can be exchanges between SIPS without 

marshalling. 

5.3. Program Complexity 

The sealed architecture replaces access to shared memory 

and shared functions with explicit message passing. Hosts 

and extensions in sealed processes must incorporate code 

for communicating; in an open architecture they could 

directly access each other’s state. Developers must now 

write contracts explicit communication code, and only use 

information obtained through the host’s published 

interfaces. The resulting benefit is communication 

sufficiently explicit to be statically verified.  

Table 5 summarizes the additional cost of explicit 

communication in the Cassini web server. The original 

Cassini web server was implemented on the CLR and 

exchanged state with plug-ins through a shared property 

bag structure for each HTTP request. On Singularity, 

Cassini uses two contracts (one for page requests and one 

for the HTTP properties). We added 263 lines of IPC code 

in the web server, 52 lines of channel contract, and 76 lines 

of extension stub, for a total increase of 391 lines (26%) 

over the original. 

Table 6 summarizes the work required to turn the Bartok 

register allocator into an extension.  We modified 3 lines 

of code in the Bartok compiler to invoke the register 

allocator as a child process and added about 400 lines of 

channel contracts and boilerplate code to turn the allocator 

into a separate program and to have Bartok create a child 

SIP. We added one line annotations (using C# custom 

attributes) to tag 107 classes as having objects that needs 

to be copied only once to the child SIP.  We also applied a 

tool that automatically generates the class marshalling 

code from the compiled MSIL files for Bartok. Overall, the 

changes were minor and consisted primarily of annotating 

classes that needed to be marshaled. Beyond tagging non-

updated objects, we spent no effort to reduce 

communication across the interface between Bartok and 

the register allocator.  For example, we did not alter the 

data structures within Bartok to more cleanly separate 

parent-only state from exchanged state. Total code change 

for Bartok was less than 0.25%. 

While the 26% increase in code in Cassini is non-trivial, 

our experience suggests that this is the upper bound. In 

practice, the brunt of additional code is paid by the host 

developer and re-used across many extensions. For 

example, of 9445 lines of device driver code in 

Singularity, 1597 lines (17%) are related to interprocess 

communication with either client SIPs or the I/O 

subsystem. 

5.4. Improved Static Analysis 

Sealed processes offer improved opportunities for static 

analysis because all code that will run in a process is 

known before the process begins execution. Static analysis 

is available to any process architecture, but sound static 

analysis of a complete process is possible only when the 

code is fixed and known in advance.  

Table 4. Performance of Bartok Compiler with Register 

Allocator as an in-process module or as a child SIP. 
 

Implementation Cycles Normalized 

Original, In-Process 194.7 billion 1.000 

Child SIP 215.9 billion 1.109 

Overhead for SIP 10.9% 

Table 5. Code added to Cassini for explicit communication. 
 

Code Description Lines % of Orig. 

Original web server 1486 100% 

New host code 263 18% 

New channel contract 52 3% 

New extension code 76 5% 

Total 1877 126% 

Table 6. Code added to Bartok to move register allocator 

into a child process. 
 

Code Description Lines % of Orig. 

Original Bartok compiler 220,000 100.00% 

Altered lines in Bartok 3 0.00% 

Channel contract and child SIP 400 0.18% 

Custom attribute tags 107 0.05% 

Total 220,510 100.23% 

 



 

Table 7, tree shaking can reduce program code size by as 

much as 75%. Most importantly, tree shaking of extensible 

programs, such as the web server, can reduce code size by 

as much as 72%. The latter is important because without 

sealed processes, the compiler could not remove code 

because it would not know which code might be required 

by future plug-ins. On Singularity, even though a plug-in 

includes its own libraries (as it runs in a separate SIP), the 

combined code size of the web server and the SPECweb99 

plug-in is still 54% smaller than just the web server alone 

before tree shaking. 

Other static analysis tools and techniques benefit from 

sealed processes. For example, Bartok checks that methods 

annotated [NoAlloc] do not invoke any code that might 

perform a heap allocation. This check is useful for 

verifying that portions of the kernel, such as interrupt 

handlers, do not allocate memory. 

5.5. Costs of Primitive Operations 

Table 8 reports the cost of primitive operations in 

Singularity and three other systems. For each system, we 

conducted an exhaustive search to find the cheapest API 

call. The FreeBSD and Linux ―thread yield‖ tests use user-

space scheduled pthreads, as kernel scheduled threads 

performed significantly worse. Windows and Singularity 

both used kernel scheduled threads. The ―message ping 

pong‖ test measured the cost of sending a 1-byte message 

from one process to another. On FreeBSD and Linux, we 

used sockets, on Windows, a named pipe, and on 

Singularity a channel with a single message argument.  

A basic thread operation, such as yielding the processor, is 

roughly three times faster on Singularity than the other 

systems. ABI calls and cross-process operations run 

significantly faster (5 to 10 times faster) than the mature 

systems because of Singularity’s SIP architecture.  

Singularity’s process creation time is significantly lower 

than the other systems because SIPs do not need MMU 

page tables and because Singularity does not need to 

maintain extra data structures for dynamic code loading. 

Process creation time on Windows is significantly higher 

than other systems because of its extensive side-by-side 

compatibility support for dynamic load libraries. 

Singularity encorporates first class language support to 

achieve zero-copy communication between SIPs [14]. 

Soundness of zero-copy semantics are verified by static 

analysis on the entire contents of sealed process. Table 9 

shows the cost of sending a payload message from one 

process to another on Singularity, Linux, and Windows for 

comparison.  

6. RELATED WORK 

The large amount of related work can be divided to two 

major areas: OS architecture and specific mechanisms for 

extension isolation. 

6.1. OS Architecture 

Microkernel operating systems, such as Mach [1], L4 [24], 

SPIN [6], VINO [38], Taos/Topaz [45], and the Exokernel 

[11], partition the components of a monolithic operating 

system kernel into separate processes to increase the 

system’s failure isolation and reduce development 

complexity. The sealed process architecture generalizes 

this sound engineering methodology (modularity) to the 

entire system. Singularity provides lightweight processes 

and inexpensive interprocess communication, which 

enable a partitioned application to communicate 

effectively. 

Previous systems did not seal the kernel or processes. 

Hardware-enforced process isolation has considerable 

overhead, and so microkernels evolved to support kernel 

extensions, while adopting mechanisms to protect system 

integrity. SPIN was closest to Singularity, as its extensions 

were written in a safe language and relied on language 

features to restrict access to kernel interfaces [6]. Vino 

used sandboxing to prevent unsafe extensions from 

Table 7. Reduction in code size of OS and SpecWeb99 

components via tree shaking, enabled by sealed processes. 
 

Program Whole 
w/ Tree 
Shake 

% 
Reduction 

Kernel 2371 KB 1291 KB 46% 

Web Server 2731 KB 765 KB 72% 

SPECweb99 Plug-in 2144 KB 502 KB 77% 

Ide Disk Driver 1846 KB 455 KB 75% 

Table 8. Cost of basic operations. 
 

System 

Cost (in CPU Cycles) 

API 
Call 

Thread 
Yield 

Message 
Ping/Pong 

Create 
Process 

Singularity  91 346 803 352,873 

FreeBSD 878 911 13,304 1,032,254 

Linux 437 906 5,797 719,447 

Windows 627 753 6,344 5,375,735 

Table 9. IPC costs. 
 

Message 
Size (bytes) 

CPU Cycles 

Singularity Linux Windows 

4 933 5,544 6,641 

16 928 5,379 6,600 

64 942 5,549 6,999 

256 929 5,519 7,353 

1,024 926 5,971 10,303 

4,096 919 8,032 17,875 

16,384 928 19,167 47,149 

65,536 920 87,941 187,439 

 



 

accessing kernel code and data and lightweight 

transactions to control resource usage [38]. However, both 

systems allowed extensions to directly manipulate kernel 

data, which left open the possibility of corruption through 

incorrect or malicious operations and of inconsistent data 

after extension failure. Exokernel defined kernel 

extensions for packet filtering in a domain-specific 

language and generated code in the kernel for this safe, 

analyzable language [19]. None of these systems 

generalized the mechanisms for system extensions to 

isolate application extensions. 

Other operating systems were written in safe programming 

languages, but all used open process architectures.  These 

range from single-user completely open systems  [21, 50] 

to closed kernels with open processes [5, 44].  

Several recent operating systems have included major 

components written in Java. JavaOS is a port of the Java 

virtual machine to bare hardware [36]. It replaces a host 

operating system with a microkernel written in an unsafe 

language and a JVM hosting Java code libraries. JavaOS 

supports a single open process shared between all 

applications.  

The JX system [22] is very similar to JavaOS, but 

improves on it by moving each process (called a domain in 

JX) in the shared system address space into its own set of 

pages with its own GC heap. JX incorporates an open 

process architecture because domains can be altered 

through dynamic class loading. JX supports shared 

memory regions called memory portals, which require that 

each domain use the same class library and runtime 

system. 

Software attestation solutions, such as Terra [20] and 

NGSCB [33] provide a strong identity based on the hash of 

the code in a process at a specific point in execution. 

However, neither Terra nor NGSCB prevents a process 

from loading new untrusted code or sharing its memory 

with other processes after attestation. 

6.2. Extension Isolation 

Independent of sealed processes, there has been many 

attempts to alleviate problems caused by open processes. 

Device drivers are both the most common operating 

system extension and largest prime source of defects [9, 

31, 43]. Nooks provides a protected environment in the 

Linux kernel to execute existing device drivers [43]. It 

uses memory management hardware to isolate a driver 

from kernel data structures and code. Calls across this 

protection boundary go through the Nooks runtime, which 

validates parameters and tracks memory usage. 

Singularity, without the pressure for backward 

compatibility, provides mechanisms (SIPs and channels) 

that are general programming constructs, suitable for 

application and system code, as well as for device drivers.  

Software fault isolation (SFI) isolates code in its own 

domain by inserting run-time tests to validate memory 

references and indirect control transfers, a technique called 

sandboxing [49]. Sandboxing can incur high costs and only 

provides memory isolation between a host and an 

extension. It does not offer the full benefits of language 

safety for either the host or extension. Sandboxing also 

does not control data shared between the two, so they 

remain coupled in case of failure. 

Sun’s JVM and Microsoft’s CLR are execution 

environments that use fine-grain isolation and security 

mechanisms to compensate for the weaknesses of open 

processes. Both are open environments that encourage 

dynamic code loading (e.g., Applets) and run-time code 

generation. Both require complex and expensive security 

mechanisms and policies, such as Java’s fine grain access 

control or the CLR’s code access security, to restrict the 

behavior of extensions [32]. These mechanisms are 

difficult to use properly and impose considerable 

overhead. Singularity runs extensions in separate sealed 

SIPs, which provide a stronger assurance of isolation and a 

more tractable security model imposed at process 

granularity. 

In both the JVM and CLR, computations sharing a process 

are not isolated upon failure. A shared object can be left in 

an inconsistent or locked state when a thread fails [18]. 

When a program running in a JVM fails, the entire JVM 

process typically is restarted because it is difficult to 

isolate and discard corrupted data and find a clean point to 

restart the failed computation [8]. 

Other projects have implemented OS-like functionality to 

control resource allocation and sharing and facilitate 

cleanup after failure in open environments. J-Kernel 

implemented protection domains in a JVM process, 

provided revocable capabilities to control object sharing, 

and developed clean semantics for domain termination 

[25]. Luna refined the J-Kernel’s run-time mechanisms 

with an extension to the Java type system that 

distinguishes shared data and permits control of sharing 

[26]. KaffeOS provides a process abstraction in a JVM 

along with mechanisms to control resource utilization in a 

group of processes [3]. Java has incorporated many of 

these ideas into a new feature called isolates [34] and 

Microsoft’s CLR has had a similar concept called 

AppDomains since its inception. 

By embracing the sealed process architecture, Singularity 

eliminates the duplication between an operating system 

and these run-time systems by providing a consistent 

extension mechanism across all levels of the system. 



 

Singularity’s SIPs are sealed and non-extensible, which 

provides a greater degree of isolation and fault tolerance 

than Java or CLR approaches. 

7. CONCLUSIONS AND FUTURE WORK 

In a quest to improve system dependability, we have 

defined a new sealed process architecture that offers a 

number of important advantages over the widely used open 

process architecture. At one level, this architecture 

compels explicit interfaces between a program and its 

extensions and prohibits shared data structures. This 

discipline can improve reliability in the presence of 

extension failures, a well-known source of unreliability in 

operating systems and applications. These restrictions also 

allow defect detection tools and compilers to make sound 

assumptions about program behavior. And, they encourage 

applications and developers to practice better software 

engineering. At another level, sealed processes enable an 

operating system to provide stronger security guarantees. 

They also eliminate the need to replicate OS access control 

mechanisms in language runtimes such as the JVM and 

CLR. 

We implemented the sealed process architecture in the 

Singularity OS and demonstrated that a sealed process OS 

can offer performance competitive with commercial open 

process systems. Our results suggest that the restrictions of 

sealed processes are not overly burdensome and are at least 

partially compensated by improved detection of coding 

errors.  

We believe the sealed architecture shows sufficient 

promise to merit further consideration by the research 

community. We see two important avenues of future 

research. The first is to implement more extensible 

programs on the architecture to further evaluate its validity 

and utility. For example, porting a large database server 

would be a valuable experiment. The second is to evaluate 

the feasibility of sealed processes in a hardware-protected 

operating system, such as Windows, Linux, or MINIX 3.  
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