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ABSTRACT

Sound Source Localization (SSL) based on microphone ar-
rays has numerous applications, and has received significant
research attention. Common to all published research is the ob-
servation that the accuracy of SSL degrades with reverberation.
Indeed, early (strong) reflections can have amplitudes similar
to the direct signal, and will often interfere with the estimation.
In this paper, we show that reverberation is not the enemy, and
can be used to improve estimation. More specifically, we are
able to use early reflections to significantly improve range and
elevation estimation. The process requires two steps: during
setup, a loudspeaker integrated with the array emits a probing
sound, which is used to obtain estimates of the ceiling height,
as well as the locations of the walls. In a second step (e.g.,
during a meeting), the device incorporates this knowledge into
a maximum likelihood SSL algorithm. Experimental results on
both real and synthetic data show huge improvements in range
estimation accuracy.

Keywords— Sound source localization, SSL, circular micro-
phone array, image method, distance discrimination.

1. INTRODUCTION

Sound source localization (SSL) has been an active area of re-
search for many years [1], and finds applications in many ar-
ray processing algorithms. Several methods have been proposed
with varying degrees of accuracy, noise robustness and compu-
tational complexity. Most algorithms can be classified into three
categories: beamformer steering [2], subspace methods [3, 4],
and methods based on time delay of arrival (TDOA) [1, 5, 6, 7].
Common to all these is the fact that performance decreases with
reverberation. Another characteristic of these algorithms when
used with small circular or linear arrays is their emphasis on es-
timating only azimuth, since in these scenarios estimating range
and elevation is usually considered an almost impossible task.
The difficulty in estimating range is easily explained by con-
sidering that SSL requires implicit or explicit estimates of the
relative time delay of arrival between array microphones. Rel-
ative delays for targets located at the same azimuth and eleva-
tion but at different ranges only differ due to the curvature of
the wavefront. If the array is small, the curvature sampled by
the microphones is negligible, and range estimation becomes
essentially impossible. While elevation estimation is generally

978-1-4244-7493-6/10/$26.00 (©2010 IEEE

not as difficult, planar array geometries privilege azimuth es-
timation in detriment of elevation. Furthermore, certain array
geometries are intrinsically ambiguous for elevation estimation,
regardless of their size.

In this paper, we propose a novel approach to significantly
improve the accuracy of range and elevation estimation: use a
room model to extract the indirect source location information
contained in the early reflections. We extend the method pro-
posed in [7] to include strong reflections from walls and ceil-
ings, accounting for reflection coefficients and attenuations due
to propagation, in a method that reduces gracefully to previous
model in an anechoic scenario.

We note that previous research has tried to improve robust-
ness to reverberation by incorporating models to account for
room reverberation [6, 7], or by directly trying to estimate room
impulse responses (RIRs) [8]. However, both proposals have
limited effect: generic reverberation models will only reduce
the interference caused by reverberation, and estimating RIRs
is a difficult task. Furthermore, RIRs change rapidly and signif-
icantly with the position and orientation of the source.

We solve the room estimation problem with an indirect ap-
proach: instead of trying to directly estimate RIRs, we estimate
the position of main reflectors (walls and ceiling) in relation
to the array. Given this information and a hypothetical source
location, one can analytically compute the time delays and am-
plitudes for the strong reflections. As we show in the following
sections, we can incorporate these reflections into the SSL al-
gorithm to significantly improve range and elevation estimates,
even with imperfect modeling.

The remainder of this paper is organized as follows: Sec-
tion 2 gives a brief overview of the room estimation method.
Section 3 derives a maximum likelihood SSL algorithm that in-
corporates the room model’s early reflections. Section 4 shows
experimental results on real and synthetic data, and Section 5
presents some of our conclusions and future work.

2. ROOM ESTIMATION OVERVIEW

Rooms are potentially complex environments, which may con-
tain furniture, people, partial walls, doors, windows, non-
standard corners, etc. Yet, after sampling a few conference
rooms in corporate environments, several things seem so com-
mon we may take them for granted. Almost every room has four
walls, a ceiling and a floor; the floor is leveled, and the ceiling
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Fig. 1. Room model and RoundTable device

parallel to the floor; walls are vertical, straight, and extend from
floor to ceiling and from adjoining wall to adjoining wall. Car-
pet is common, and almost invariably there is a conference table
in the center of the room. In addition, many objects that seem
visually important are small enough that they may actually be
acoustically transparent for most frequencies of interest. Based
on these observations, we adopt a simple room model: four
walls and a ceiling. We assume the floor absorption coefficient
is high enough and that sound trapping under the table absorbs
most of the energy that goes below table level.

Even with such a simplified room model, it would be difficult
to passively estimate the components of the model (wall posi-
tions and reflection coefficients) based only on unknown sig-
nals already existing in the room. Instead, we actively probe the
room by emitting a known signal (e.g., a sweep) from a known
location (e.g., a loudspeaker co-located with the array), as pro-
posed in [9]. While this method is convenient since it does not
require additional hardware, alternative methods for room mod-
eling could be used [10, 11, 12]. The proposed method for SSL
is quite robust and will work with underestimated reflection co-
efficients, such that only the knowledge of the wall geometry is
strictly necessary.

Although other arrays and devices could be used in sim-
ilar fashion, for the purposes of this paper we consider the
RoundTable device [13], a uniform circular array with a speaker
rigidly mounted in its center (see Fig. 1). The room estimation
step detects the reflections from the walls, indicated by the black
segments in each of the four walls. However, the locations of
interest for the walls are in fact the ones indicated by the red
wall segments in Fig. 1. The underlying assumption is that the
walls extend linearly and with similar acoustic characteristics.

Note that this modeling is performed during device initial-
ization, and only has to be repeated if the array is moved or if
the room geometry changes (the first being far more likely). A
motion detector can be used to test if the device moves. The
device could be also equipped with ultrasound emitters and mi-
crophones, which could not only aid in the wall detection phase,
but could also be used to dynamically monitor and adapt the
acoustic environment.

3. ML SSL FRAMEWORK

Consider an array of M microphones in a reverberant environ-
ment. Given a signal of interest s (¢) with frequency represen-

tation S (w), a simplified model for the signal arriving at each
microphone is

X; (W) = a; (w) e 478 (w) + H; (w) S (w) + N; (w), (1)

where ¢ € {1,..., M} is the microphone index; 7; is the TDOA
from the source to the i*" microphone; «; (w) is a gain factor
which includes the microphone frequency dependent sensitiv-
ity and directionality, the source gain and directionality, and the
attenuation due to the distance to the source; H; (w) S (w) is a
reverberation term corresponding to the room’s response con-
volved with the signal of interest; N; (w) is the noise captured
by the i*" microphone. This was the treatment given in [7, 14],
and which resulted in an ML SSL estimator for direction of ar-
rival.

A more detailed version of (1) can be obtained by explic-
itly considering R reflections. In this case, H; (w) S (w) only
models reflections which were not explicitly accounted for. The
microphone signals can then be written as

Z o (w

eien” g (W)+H; (w) S (w)+N; (w),

2
where aET) (w) represents a gain factor which considers the mi-
crophone frequency dependent directionality for the reflection’s
direction of arrival, the source gain and directionality in the di-
rection which results in a reflection, reflection coefficients and

attenuation due to the distance to the source; Ti(r) is the time

(0) (

delay for the 7" reflection. We also define o,

and Ti(o)

w) = ai (W),
= 7;, which correspond to the direct path signal.

Let Gi(w) = Zfi o ( ) (w )efj‘”im, which can be further
decomposed into gain and phase shift components G;(w) =
gi(w)e™7%(«) where:
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We approximate the phase shift components by modeling each
agr) (w) with only attenuations due to reflections and path

lengths, such that

e iei(w) i (5)

and d")
th

where d§.0> are respectively the path lengths for the di-

rect path and r*" reflection; pl(- ) = =1,and p( ") is the rt reflec-

tion coefficient. Note that reflection coefficients are assumed to
be frequency independent. We will show that g;(w) can be esti-
mated from the data, such that it need not be inferred from the
room model and thus does not require a similar approximation.



Considering this approximation, (2) can be rewritten as
X; (w) = gi(w)e 7S (w) + H; (w) S (w) + Ni (w). (6)

Even though wall reflection coefficients have some frequency
dependency, they can always be decomposed into constant and
frequency dependent components, such that the frequency de-
pendent part which represents a modeling error is absorbed
into the H; (w) S (w) term. In general, approximation errors
can be treated as unmodeled reflections, and thus absorbed into
H; (w) S (w). Even if there are modeling errors, if the reflec-
tion modeling term g;(w)e=7%(“) § (w) reduces the amount of
energy carried by H; (w) S (w) + N; (w), one should have an
improvement over (1).

Rewriting (6) in vector form, we obtain

Xw)=Sw)Gw) +S(wH(W) +N(w),

where
X(w)=[X1(w), -, Xum (w)]T
G (w) = [gl (w) e*%ﬂl(w)’ N (%) e—den (@)
H(w) = [Hy (w),---, Hy (w)]"
Nw) =[Nt (w), - ,Nu (w)}T

We assume that the combined noise
N¢(w) =S (w)H (w) + N (w) (8)

follows a zero-mean, independent between frequencies, joint
Gaussian distribution with a covariance matrix given by

Q(w) = B{N(w) [N (w)]"}
= B{N (@) N¥ ()} + | (w)* E(H (v) H” ()}
9)
Making use of a voice activity detector, E{N (w) [N (w)]g}
can be directly estimated from audio frames which do not con-
tain speech. We assume that the noise is uncorrelated between
microphones, such that

. 2 2
E{N(w)N"(w)} ~ diag(E{|N1(w)["}, -+, E{|[Nar ()["}).

(10)
We also assume that term corresponding to unmodeled rever-
beration is diagonal, such that

1S (W)|? E{H () HY (W)} = diag(A1,--- , ) (1)

with
i = E{IS ()* |H; ()"} (12)
~ (X (@)[F = B{|N; (@)"}), (13)
where 0 < v < 1 is an empirical parameter which mod-
els the amount of reverberation residue, under the assump-

tion that the reverberation noise energy is proportional to the
source signal energy. In reality, neither E{N (w) N¥ (w)} nor

S (w)|° E{H (w) H¥ (w)} should be diagonal. In particular,

reverberation terms should be correlated between microphones.
However, estimating Q (w) would be intractable if not for
these simplifications, and the algorithm’s main loop would be-
come significantly more expensive as well, since it requires
computing Q! (w) for every frame. In addition, the above
assumptions do produce satisfactory results in practice.

Under these assumptions,

Q (w) = diag (K1, - ,kar) (14)
Ko = 71X @)+ (L= E{N; ()7} (19)
The log-likelihood for receiving X (w) can be obtained as in

[7], and (neglecting an additive term which does not depend on
the hypothetical source location) is given by

2
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(16)
The gain factor g; (w) can be estimated by assuming
l9: ()7 1S @) ~ | X (@)I7 = iy (17)

i.e., that the power received by the i*” microphone due to the
signal of interest can be modeled by the total received power,
minus the combined estimate for noise and reverberation power.
Solving for g; (w) we obtain

9i (@) = \/<1 =) (1% @)F = BN @)}) /18 @)1

(18)
Substituting (18) into (16),
M 2
S L 1K) = BN () P} X ) e891)
J = = 7 dw.
S YA (X @P BN @)
i=1 (19)

The proposed method for SSL consists of evaluating (19) over
a grid of hypothetical source locations inside the room, and re-
turning the location for which it attains its maximum. To eval-
uate (19), one must know which reflections to use in (5). Given
the location of the walls determined with the room modeling
step, we assume that the dominant reflections will be the first
and second order reflections originating from the closest walls.
We apply the image model [15] to analytically determine the
contributions to gain and phase shift due to these dominant re-
flections, which are used in (5), and therefore, in (19). As we
show with experiments, determining the position of only the
ceiling and one close wall is sufficient for accurate SSL.

4. EXPERIMENTAL RESULTS

4.1. Results for Synthetic Data

Using the image model, we generated synthetic signals simu-
lating the signals that would be received by the RoundTable
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device, which is a uniform circular array with six directional
microphones and a radius of 13.5 cm (see Fig. 1). A three-
dimensional cardioid-like gain pattern r (6) = 1.1 + cos (#)
was used for each microphone. The frequency responses for
each microphone were assumed to be flat, and the sampling fre-
quency was set to 16 kHz.

A virtual room with dimensions 6 x 7 x 3 m was created, with
noise sources simulating a ceiling fan and a desktop computer
(which were recorded from a real fan and computer), as shown
in Fig. 2. The coordinates for the ceiling fan, desktop computer
and array were simulated at 3 X 3.5 X 3m, 6 x 7 x 0.5 m and
4.5 x 3 x 1 m, respectively. The speaker was always at a dis-
tance r = 1.3 m to the array, elevation ¢ = 0° and azimuth
8 = 0°, 36°, 72°,..., 324°. The room was set to have a re-
verberation time Ty = 250 ms. Note that the simulation does
not model obstacles — in particular, it does not model a confer-
ence room table. Since the RoundTable microphones are very
close to the bottom of the unit (almost on the plane of the ta-
ble), computing first and second order images with respect to
the table would not have a significant effect.

The first set of synthetic data corresponds the the room esti-
mation step, i.e., sweeps played from the loudspeaker, located
at the center of the device. We use this data to estimate the
room, as described in [9]. The wall positions were estimated
within 1 cm of their true position, and reflection coefficients
within 0.12 of their true value, which was 0.77 for all surfaces.
If only the three dominant reflectors were needed, this method
would produce their exact positions and reflection coefficients.
As will be presented in this section, only two dominant reflec-
tors are required for unambiguous three-dimensional SSL.

The second set of synthetic data simulates a male speaker,
sitting at 1.3 m from the array, and is used to test the SSL step.
The SSL algorithm samples (19) in azimuth over the whole cir-
cle with 4° resolution, in elevation from —10° to +10° with
0.5° resolution, and in range from 0.5 to 2 m with 0.05 m reso-
lution. The reported results are the average for 10 speaker loca-
tions distributed equally in azimuth around the array, all located
at a distance of 1.3 meters and a 0° elevation. At each location
the speech utterance lasted 5 seconds, and was preceded by 2
seconds of background noise. The MCLT [16] was used as the
frequency domain transform, and the analysis frame of the SSL
was set to 160 ms, overlapping by 80 ms.

A simple speech activity detector (VAD) was used to esti-

mate noise and signal powers, and to decide on which frames to
run the SSL algorithm. If the VAD classified a frame as speech,
the SSL algorithm consisted of estimating azimuth using the
algorithm from [7], which corresponds to ignoring reflections.
After estimating azimuth, the algorithm jointly estimated range
and elevation. The azimuth estimation is quite insensitive to
range and elevation, so the decoupled estimation does not sig-
nificantly impact performance. Even though better robustness
and accuracy could be achieved by jointly estimating azimuth,
range and elevation, doing so would require a computation-
ally expensive three-dimensional search. Using the proposed
method for estimating only azimuth with an initial (fixed) es-
timate for range and elevation (for example, 1.0 m and 30°)
would also work but would deliver worse results, since it would
incorrectly compute reflections.

In order to show that the method is robust to calibration
and modeling errors, the SSL code assumed an omnidirectional
model for the microphones. Simulations and real-world exper-
iments show that in the presence of calibration or modeling er-
rors, it is useful to underestimate reflection coefficients. This
can be justified by referring to (5), where we implicitly ne-
glected the source and microphone directivities and assumed
agr) (w) ~ pgr) / dgr). However, if the microphones are known
g
tionally underestimated plm, we can indirectly account for the
directional attenuation. Underestimating reflection coefficients
is also prudent in practical scenarios, where due to movable ob-
stacles such as chairs and people, the reflection from the walls
might not be as strong as estimated from the calibration step.

Table 1 presents simulation results, in terms of frames with
azimuth errors larger than 5°, elevation errors larger than 1°
and range errors larger than 0.15 m. We name our proposal
R-ML-SSL, and compare it to ML-SSL [7]. Both algorithms
use v = 0.2 to model reverberation energy. As it can be seen,
estimation of elevation and range is dramatically improved.

To better understand how using walls helps to estimate range
and elevation, we show on Fig. 3 the joint log likelihood for
range and elevation when not accounting for reflections (i.e.,
with ML-SSL), obtained by processing a single 25 dB SNR
speech frame obtained in the synthetic room. When compared
to the likelihood surfaces obtained with reflections (Figs. 4-6),
this surface is very smooth and nearly flat.

For small arrays, the ML-SSL log likelihood maximum is
very sensitive to variations in the estimated delays of arrival.
Indeed, varying range will have a small effect on the signals ar-
riving at the microphones, other than the distance attenuation
and a constant delay over all microphones, which cannot be de-
tected since we do not have the original signal. Thus, range es-
timation becomes an ill conditioned inverse problem, and even
a small amount of noise can introduce large errors in the es-
timation. This problem is especially severe for the simulated
scenario, because a circular array has maximum noise sensi-
tivity for sources at ¢ = 0°, even when using omnidirectional
microphones. This sensitivity increases due to the cardioid mi-
crophone models, because the source is only captured well by
the 3-4 microphones facing it.

The sensitivity is such that at 25 dB SNR, even the concavity

to be directive, then a; ' (w) < pgr)/dl(.r). By using an inten-
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of the ML-SSL surface can change from one frame to the next.
In fact, close inspection of Fig. 3 shows that it features the
opposite concavity that one would expect for this problem, with
a minimum at ¢ = 0°. This is why the elevation errors from
Table 1 tend to decrease with increasing SNR. For low SNR, the
ML-SSL range-elevation surface often changes from the saddle
shown in Fig. 3 to a concave function symmetrical with respect
to ¢ = 0°, for which the estimate is coincidentally correct.
Now compare Fig. 3 with Fig. 4, where we introduce the
modeling for the ceiling. There is now a strong ridge, which
crosses the correct range-elevation pair. This is introduced by
the ceiling reflection of the sound source. Note that there is
still ambiguity, as a different elevation coupled with a different
range could produce similar results at the array. Now compare
those two figures with Fig. 5, where we introduce a single wall.
Note that it also produces a ridge (similar to the one produced
by introducing the ceiling), and the ridge has a different orien-
tation. Thus, each wall or ceiling produces a ridge, each with
a different orientation. The correct estimate is, as one would
expect, at the intersection of these ridges, as Fig. 6 shows.

4.2. Results for a Real Conference Room

In addition to the simulated data, real data was recorded in a typ-
ical conference room. The room measured 5.30x 7.00 x 2.77 m,
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and the RoundTable device was placed on top of a large confer-
ence table at coordinates 2.81 x 4.49 x 0.78 m. A diagram of
the room is presented on Fig. 2. In the first step, the room was
estimated as prescribed in [9] by playing a 3-second linear sine
sweep from 30 Hz to 8 kHz through the RoundTable’s inter-
nal speaker, and recorded simultaneously by all 6 microphones.
Particularities of the device design (which was not originally de-
signed for this purpose) produce an extremely accurate estimate
of the ceiling, but less reliable estimates of walls, particularly
distant walls. Fortunately, as we argue in Section 4.1, to un-
ambiguously determine range and elevation, two reflectors are
sufficient. Therefore, we decided to only use the distance to the
ceiling and to the closest wall.

Table 2 shows the corresponding error percentages. Note
that error thresholds were relaxed due to difficulty in measuring
ground truth values. It is clear that R-ML-SSL shows much bet-
ter range estimation than ML-SSL. It was interesting to notice
that ML-SSL could correctly estimate qAS = 0°, except for one
frame. Even though the RoundTable microphones are direc-
tional, their enclosures and assembly make them significantly
less directional than the cardioid model, so that the source sig-
nal is captured reasonably well by all microphones and not only
by the 3-4 facing the source. Thus, even though resolution for
elevation is still poor, the log likelihood surfaces are typically



Table 1. Error rates for synthetic data

Closest | # Voice ML-SSL R-ML-SSL
Mic. SNR | Frames | A0 >5° [ A¢p>1° [Ar>.15m [ A >5° [ Ap >1° [ Ar > 15m
25 dB 48 0.4 % 92.0 % 84.6 % 0.4 % 0.2 % 0.2 %
20 dB 47 0.2 % 90.6 % 81.6 % 0.2 % 0.0 % 0.0 %
15dB 44 1.1 % 88.2 % 80.9 % 1.1% 0.9 % 0.4 %
10 dB 38 3.4 % 85.6 % 81.6 % 3.4 % 2.9 % 2.1 %
5dB 29 15.0 % 86.0 % 90.1 % 15.0 % 143 % 6.9 %
0dB 16 24.8 % 85.1 % 94.3 % 24.8 % 22.2 % 15.5 %
Table 2. Error rates for real-world utterances
Speaker # Voice ML-SSL R-ML-SSL
Position Frames | A§ >10° | A¢ >5° [ Ar >0.15 | A9 >10° | Ag >5° | Ar >0.15
0=0°¢p~3°r~170m 11 0% 0% 55% 0% 0% 0%
0=60° =3 r~147Tm 21 0% 5% 95% 0% 9% 9%
0=120° ¢~ 3° r=~137Tm 9 0% 0% 33% 0% 11% 11%
concave and symmetrical around ¢ = 0°, resulting in correct [6] Y. Rui and D. Florencio, “Time delay estimation in the presence
estimates. While ML-SSL was able to perform some range esti- of correlated noise and reverberation,” in Proc. OfICASSP, 2004.
mation, its performance is not reliable, as seen in the results for [71 C. Zhang, Z. Zhang, and D. Florencio, “Maximum likelihood
position #2. sound source localization for multiple directional microphones,”
in Proc. of ICASSP, 2007.
[8] E. Weinstein, A.V. Oppenheim, M. Feder, and J.R. Buck, “Iter-
5. CONCLUSIONS ative and sequential algorithms for multisensor signal enhance-
. . ment,” IEEE Trans. Signal Process., vol. 42, no. 4, pp. 846-859,
We have presented an SSL algorithm which uses strong reflec- 1994.
tions tp estlmat'e source elevation and range, tasks cons@ered [9] D. Ba, E. Ribeiro, C. Zhang, and D. Florencio, “LI-regularized
very difficult with previous approaches. It performs effectively room modeling with compact microphone arrays,” in Proc. of
even under low SNR, and does not require an accurate model ICASSP, 2010.
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