
Modular Shape Analysis
for Dynamically Encapsulated Programs

N. Rinetzky1⋆, A. Poetzsch-Heffter2, G. Ramalingam3⋆⋆, M. Sagiv1, and E. Yahav4

1 Tel Aviv University{maon,msagiv}@tau.ac.il
2 University of Kaiserlauternpoetzsch@informatik.uni-kl.de

3 Microsoft Research Indiagrama@microsoft.com
4 IBM T.J. Watson Research Centereyahav@us.ibm.com

Abstract. We present amodularstatic analysis which identifies structural (shape)
invariants for a subset of heap-manipulating programs. Thesubset is defined by
means of a non-standard operational semantics which placescertain restrictions
on aliasing and sharing across modules. More specifically, we assume that live
references (i.e., used before set) between subheaps manipulated by different mod-
ules form a tree. We develop a conservative static analysis algorithm by abstract
interpretation of our non-standard semantics. Ourmodularalgorithm also ensures
that the program obeys the above mentioned restrictions.

1 Introduction

Modern programs rely significantly on the use of heap-allocated linked data structures.
In this paper, we present a novel method for automatically verifying properties of such
programs in a modular fashion. We consider a program to be a collection of modules.
We develop a shape (heap) analysis which treats each module separately. Modular anal-
yses are attractive because they promise scalability and reuse.

Modular analysis [1], however, is particularly difficult inthe presence of aliasing.
The behavior of a module can depend on the aliasing created byclients of the module
and vice versa. Analyzing a module making worst-case assumptions about the aliasing
created by clients (or vice versa) can complicate the analysis and lead to imprecise re-
sults. Instead of analyzing arbitrary programs, we restrict our attention to certain “well-
behaved” programs. The main idea behind our approach is to assume a modularly-
checkable program-invariant concerning aliases of live intermodule references.

Motivating Example Fig. 1 shows the code of a module,mRP , which serves as our
running example. The code is written in a Java-like language. ModulemRP contains two
classes: ClassR is a class of resources to be used by clients of the module. A resource
has a recursive field,n, which is used to link resources in an internal list. ClassRPool
is a pool of resources which stores resources using their internal list. We assume that the
n-field is read or written only byRPool’s methods:acquire, which gets a resource
out of the pool, andrelease, which stores a resource in the pool.

⋆ Supported in part by the IBM Ph.D. Fellowship Program, and inpart by a grant from the Israeli
Academy of Science.

⋆⋆ Work done partly when the author was at IBM Research.

public class RPool {
private R rs;
// transferred: { e }
public
void release(R e){

e.n=this.rs;
this.rs=e;

}
// transferred: { }
public R acquire(){

R r = this.rs;
if (r!=null) {

this.rs=r.n;
r.n = null; }

else
r = new R();

return r;
}}

public class R {
R n; ... }

Fig. 1.ModulemRP .

Typical properties we want to verify modularly are that
for any well behavedprogram that usesmRP , the methods
of RPool never leak resources and never issue an acquired
resource before it is released.5 Note that these properties do
not hold for arbitrary programs because of possible aliasing
in the module induced by the client behavior: Consider an
invocation ofp.release(r) in a memory state in which
p points to a non-empty resource pool. Ifr points to the
head of a resource list containing more than one resource,
then the tail of the list might be leaked. If, after being re-
leased into the pool thatp points to,r is released into other
pools, then these pools, along with the one pointed-to byp
share (parts) of their resource lists. Note that after a shared
resource is acquired from one pool, it can still be acquired
from the other pools. Finally, if the resource thatr points
to is already inp’s pool, thenp’s resource list becomes
cyclic. A resource which is acquired from a pool whose list
is cyclic, stays in the pool.

Given a module, and the user specification for the other modules it uses, our analysis
tries to verify that the given module is “well-behaved”. If this verification is unsuccess-
ful, the analysis gives up and reports that the module may notadhere to our constraints.
Otherwise, the analysis computes invariants of the given module that hold in any “well-
behaved” program containing the module. A program comprised only of successfully
verified modules is guaranteed to be “well-behaved”.

1.1 Overview

Non-standard semanticsThe basis for our approach is anon-standard semanticsthat
captures the aliasing constraints mentioned above. In thispaper, a module is a collec-
tion of type-definitions and procedures, and a component is asubheap. Our semantics
represents the heap as an (evolving and changing) collection of (heap)components. Ev-
ery component is comprised of objects whose types are definedin the same module.
(We say that a componentbelongs tothat module.) Note that multiple components be-
longing to the same module may co-exist. References betweencomponents belonging
to different modules are allowed, however, theinternal structureof a component can
be accessed or modified only by the (procedures in the) moduleto which it belongs.6

Components can be in two different states:sealedandunsealed. Sealed components
represent encapsulated data returned by a module to its callers (and, hence, are expected
to satisfy certainmodule invariants). In contrast, unsealed components are components
that are currently being modified and may be in an unstable state.

At any point during program execution, the internal structure of only one compo-
nent is “visible” and can be accessed or mutated,i.e., only one unsealed component is

5 Similarly, in the analysis of a client ofmRP , we would like to verify that the client does not use
a dangling reference to a released resource. Our analysis can establish this property.

6 A modulem can manipulate a component of a modulem′ by an intermodule procedure call.

2

“visible”. We refer to this component as thecurrent component. The only way a sealed
component can beunsealed(permitting its internal structure to be examined and mod-
ified) is to pass it as a parameter of an appropriate intermodule procedure call so that
the component becomes part of the current component for the called procedure. Our
semantics requires that all parameters and the return value(s) of intermodule procedure
calls must be sealed components. For brevity, we do not consider primitive values here.

Constraints So far we have not really placed any constraints on the program. The
above are standard “good modularity principles” and most programs will fit this model
with minor adjustments. Before we describe the constraintswe place on sharing across
modules, we describe the two key issues that motivate these constraints:

1. How can we analyze a moduleM without using any information about the clients
of M (i.e., without using information about the usage context ofM)?

2. When analyzing a client moduleC that makes use of another moduleM , how
do we handleintermodulecalls fromC to M using only the analysis results for
moduleM (i.e., without analyzing moduleM again)?

We say that a componentownsanother component if it has alive reference (i.e.,
used before set) to the other component. The most important constraint we place is that
a component cannot be owned by two or more components. As a result, the heap (or
the program state) may be seen as, effectively, a tree of components. Informally, this
ensures that distinct components do not share (live) state.Furthermore, we require that
all references to a component from its owner have the same target object. We call this
object the component’sheader.7 We refer to a program which satisfies these constraints
as adynamically encapsulatedprogram. Recall that our analysis also verifies that a
program isdynamically encapsulated.

In this paper, we require that the module dependency relation (see Sec. 2) be acyclic.
This constraint simplifies our semantics (and analysis) as module reentrancy does not
need to be considered: When a module is invokedall of its components are guaranteed
to be sealed. We note that our techniques can be generalized to handle cyclic dependen-
cies, provided that the ownership relation is required to beacyclic.
Benefits.The above constraints let us deal with the two issues mentioned above in a
tractable way. The restriction on sharing between components simplifies dealing with
intermodule calls as they cannot have unexpected side-effects:e.g., an intermodule call
on one componentC1 cannot affect the state of another componentC2 that is accessible
to the caller. As for the first issue,we conservatively identify all possible input states for
an intermodule call by iteratively identifying all possible sealed components that can
be generated by a module.

SpecificationWe now describe the extra specification a user must provide for the mod-
ular analysis. This specification consists of: (i) amodule specificationthat partitions a
program’s types and procedures into modules; (ii) an annotation for every (public) pro-
cedure that indicates for every parameter whether it is intended to be “transferred” to the

7 Note the slight difference in terminology: In ownership type systems, owners are objects and
do not belong to their ownership contexts. In our approach, components are the owners; the
component header belongs to the component that is dominatedby the header.

3

callee or not; these annotations are only considered in intermodule procedure calls. A
sealed component that is passed as atransferredparameter of an intermodule call can-
not be subsequently used by the calling module (e.g., to be passed as a parameter for a
subsequent intermodule call). This constraint serves to directly enforce the requirement
that the heap be a tree of components. For example, forrelease we specify that the
caller transfer ownership only of the resource parameter.

Given the above specification, our modular analysis can automatically detect the
boundaries of the heap-components and (conservatively) determine whether the pro-
gram satisfies the constraints described above

Abstraction Our modular analysis is obtained as an abstract interpretation of our non-
standard semantics. We use a 2-step successive abstraction. We first apply a noveltrim-
ming abstractionwhich abstracts away the contents of sealed components whenana-
lyzing a module. (Loosely speaking, only the heap structureof the current component,
and the aliasing relationships between intermodule references leaving the current com-
ponent, are tracked.) We then apply aboundedconservative abstraction of trimmed
memory states. Rather than providing a new intraproceduralabstraction, we show how
to lift existingintraprocedural shape analyses,e.g., [2–4], to obtain a modular shape ab-
straction (see Sec. 4). Our analysis is parametric in the abstraction of trimmed memory
states and can use different (bounded) abstractions when analyzing different modules.

AnalysisOur static analysis is conducted in an assume-guarantee manner allowing each
module to be analyzed separately. The analysis, computes a conservative representation
of every possible sealed components of the analyzed module in dynamically encap-
sulated programs. This process, in effect, identifies structural invariants of the sealed
components of the analyzed module,i.e., it infers module invariants (for dynamically
encapsulated programs). Technically, the module is analyzed together with itsmost-
general-clientusing a framework for interprocedural shape analysis,e.g., [5,6].

ExtensionsIn this paper, we use a very conservative abstraction of sealed components
and inter-component references (for simplicity). The abstraction, in effect, retains no in-
formation about the state of a sealed component (which typically belongs to other mod-
ules used by the analyzed module). This can lead to an undesirable loss in precision in
the analysis (in general). We can refine the abstraction by using component-digests[7],
which encode (hierarchical) properties of wholecomponentsin a typestate-like man-
ner [8]. This,e.g., can allow our analysis to distinguish between a reference to a pool of
closed socket components from a reference to a pool of connected socket components.

1.2 Main Contributions

(i) We introduce an interesting class of dynamically encapsulated programs; (ii) We
define a natural notion ofmodule invariant for dynamically encapsulated programs;
(iii) We show how to utilize dynamic encapsulation to enablemodular shape analysis;
and (iv) We present a modular shape analysis algorithm which(conservatively) verifies
that a program is dynamically encapsulated and identifies its module invariants.

Due to space restrictions, many formal details and the possible extensions of our
techniques are omitted and can be found in [9].

4

2 Program Model and Specification Language

Program model We analyze imperative object-based (i.e., without subtyping) pro-
grams. A program consists of a collection of procedures and adistinguishedmain
procedure. The programmer can also define her own types (à laC structs).
Syntactic domains.We assume the syntactic domainsx ∈ V of variable identifiers,
f ∈ F of field identifiers,T ∈ T of type identifiers,p ∈ PID of procedure identifiers,
andm ∈ M of module identifiers. We assume that types, procedures, andmodules have
unique identifiers in every program.
Modules.We denote the module that a procedurep belongs to bym(p) and the module
that a type identifierT belongs to bym(T). A modulem1 dependson modulem2 if
m1 6= m2 and one of the following holds: (i) a procedure ofm1 invokes a procedure
of m2; (ii) a procedure ofm1 has a local variable whose type belongs tom2; or (iii) a
type ofm1 has a field whose type belongs tom2.
Procedures.A procedurep has local variables (Vp) and formal parameters (Fp), which
are considered to be local variables,i.e., Fp ⊆ Vp. Only local variables are allowed.

Specification languageWe expect to be given a partitioning of the program types and
procedures into modules. Every procedure should have an ownership transfer specifica-
tion given by a setF t

p ⊆ Fp of transferred (formal) parameters. (A formal parameter is
a transferred parameter if it points to a transferred component in an intermodule call.)
For example,e is release’s only transferred parameter, andacquire has none.

Simplifying assumptionsWe assume that procedure invocations should becutpoint-
free [5]. (We explain this assumption, and a possible relaxation, in Sec. 3.2.) In addi-
tion, to simplify the presentation, we make the following assumptions: (a) A program
manipulates only pointer-valued fields and variables; (b) Formal parameterscannotbe
assigned to; (c) Objects of typeT can be allocated and references to such objects can
beused as l-valuesby a procedurep only if m(p) = m(T); (d) Actual parameters to
an intermodule procedure call should not be aliased and should point to a component
owned by the caller. In particular, they should have a non-null value; and (e) The caller
always becomes the owner of the return value of an intermodule procedure call.

3 Concrete Dynamic-Ownership Semantics

In this section, we defineDOS, a non-standard semantics which checks whether a
program executes in conformance with the constraints imposed by the dynamic encap-
sulation model. (DOS stands fordynamic-ownership semantics.) DOS provides the
execution traces that are the foundation of our analysis. For space reasons, we only
discuss key aspects of the operational semantics, formallydefined in [9].

DOS is a store-basedsemantics (see,e.g., [10]). A traditional aspect of a store-
based semantics is that a memory state represents a heap comprised of all the allocated
objects.DOS , on the other hand, is alocal heapsemantics [11]: A memory state which
occurs during the execution of a procedure does not represent objects which, at the time
of the invocation, were not reachable from the actual parameters.

5

DOS is a small-step operational semantics [12]. Instead of encoding a stack of
activation records inside the memory state, as traditionally done,DOS maintains a
stack of program states[9, 13]: Every program state contains a program point and a
memory state. The program state of thecurrent procedureis stored at the top of the
stack, and it is the only one which can be manipulated by intraprocedural statements.
When a procedure is invoked, theentry memory stateof the callee is computed by a
Call operation according to the caller’s current memory state, and pushed into the stack.
When a procedure returns, the stack is popped, and the caller’s return memory stateis
updated using aRet operation according to its memory state before the invocation (the
call memory state) and the callee’s (popped)exit memory state.

The use of a stack of program states allows us to represent in every memory state
the (values of) local variables and the local heap of just oneprocedure. An execution
trace of a programP always begins withP ’s main procedure starts executing on an
initial memory statein which all variables have anull value and the heap is empty. We
say that a memory state isreachablein a programP if it occurs as the current memory
state in an execution trace ofP .

3.1 Memory States

Fig. 2 defines the concrete semantic domains and the meta-variables ranging over them.
We assumeLoc to be an unbounded set of locations. A valuev ∈ Val is either a
location,null, or ⊖, the inaccessible value used to represent references whichshould
not be accessed.

l ∈ Loc

v ∈ Val = Loc ∪ {null} ∪ {⊖}
ρ ∈ E = V →֒ Val

h ∈ H = Loc →֒ F →֒ Val

t ∈ T M = Loc →֒ T
σ ∈ Σ = E×2Loc×H×TM×M

Fig. 2.Semantic domains.

A memory state in theDOS semantics is a
5-tupleσ = 〈ρ, L, h, t, m〉. The first four compo-
nents comprise, essentially, a2-level store:ρ ∈ E
is an environment assigning values for the vari-
ables of thecurrentprocedure.L ⊂ Loc contains
the locations of allocated objects. (An object is
identified by its location. We interchangeably use
the terms object and location.)h ∈ H assigns val-
ues to fields of allocated objects.t ∈ T M maps
every allocated object to the type-identifier of its
(immutable) type. Implicitly,t associates every
allocated location to a module: The module that
a locationl ∈ L belongs to in memory stateσ, denoted bym(t(l)), is m(t(l)). The
additional component,m ∈ M, is the module of the current procedure. We refer tom

as thecurrent moduleof σ. (We denote the current module of a stateσ by m(σ).)
Note that inDOS, reachability, and thus domination,8 are defined with respect to

theaccessible heap, i.e.,⊖-valued references do not lead to any object.

8 An objectl2 is reachable from(resp.connected to) an objectl1 in a memory stateσ if there is
a directed (resp. undirected) path in the heap ofσ from l1 to l2. An objectl is reachablein σ if
it is reachable from a location which is pointed-to by some variable. An objectl is adominator
if every access path pointing to an object reachable froml, must traverse throughl.

6

e

2 3
n

4 5

this
�

rs

e

2 5
n

3 4

this
�

nrs

entry-state : (σe) exit-state : (σx)

�
y

2

1

3
n

4 5

cx

rs

pl

�
y1

2 5
rs n

3 4
n

ΘΘΘΘ
cx

pl

call-state : (σc) return-state : (σr)

2

1

5

pl

�
y

2

1

5

c

pl
x
�

(c⋆ = c⋆(σc)) (σ⋆ = trim(σc))

2 3
rs n

4 5

(cP ∈ C(σc)) (cR ∈ C(σc))

Fig. 3.(σc, σe, σx, σr): DOS memory states occurring in an invocation ofx.release(y) onσc.
(c⋆, cP , cR): The implicit components ofσc. (σ⋆): The trimmed memory state induced byσc.

Example 1.Fig. 3 (σc) depicts a possibleDOS memory state that may arise in the execution of a
program using the modulemRP . The state contains aclientobject (shown as an hexagon) pointed-
to by variablec and having apl-field pointing to a resource pool (shown as a rectangle). The
resource pool, containing two resources (shown as diamonds) is also pointed-to by a variablex.
In addition, a local variabley points to a resource outside the pool. (The numbers attachedto
nodes indicate the location of objects. The value of a (non-null) pointer variable is shown as an
edge from a label consisting of the variable name to the object pointed-to by the variable. The
value of a (non-null) fieldf of an object is shown as anf -labeled edge emanating from the object.
Other graphical elements can be ignored for now.) The statesσc andσe (also shown in Fig. 3),
depict, respectively, the call- and the entry-memory states of an invocation ofx.release(y)
which we use as an example throughout this section. Note thatσe represents only the values of the
local variables ofrelease and does not represent the (unreachable) client-object. Inthe return
memory state of the invocation, depicted in Fig. 3 (σr), the dangling referencey has the⊖-value,
and the resource pool dominates the resources in its list. (The return statedoes notrepresent the
value ofy before the call, indicated by the dashed arrow.)

ComponentsIntuitively, a component provides a partial view of aDOS memory stateσ.
A component ofσ consists of a set of reachable objects inσ, which all belong to the
same module, and records their types, their link structure,and theirspatial interface
i.e., references to and from immediately connected objects and variables.

More formally, a componentc ∈ C = 2Loc×2Loc×2Loc×H×T M×M is a 6-
tuple. A componentc = 〈I, L, R, h, t, m〉 is a component ofa DOS memory stateσ
if the following holds:L, the set ofc’s internal objects, contains only reachable objects
in σ. I ⊆ L andR ⊆ Loc \ L constitutec’s spatial interface:I records theentry loca-
tions into c. An object insidec is anentry locationif it is pointed-to by a variable or by
a field of areachableobject outsidec. R is c’s rim. An object outsidec is in c’s rim if
it is pointed-to by a field of an object insidec. h defines the values of fields for objects
insidec. We refer to a field pointing to an internal resp. rim object asan intra- resp.
inter-component reference.h should be the restriction ofσ’s heap onL. t defines the
types of the objects insidec and in its rim.t should be the restriction ofσ’s type map

7

onL∪R. m is c’s component module. We say that componentc belongs tom. The type
of every object insidec must belong tom. (If L is empty thenm must be the current
module ofσ.) Note that a componentc records (among other things) all the aliasing
information available inσ pertaining to fields ofc’s internal objects. For reasons ex-
plained below, we treat a variable pointing to a location outside the current component
as an inter-component reference leaving the current component, and add that location
to its rim (and relax the definition of a component accordingly).

Example 2.Memory stateσc = 〈ρc, Lc, hc, tc, mc〉, depicted in Fig. 3, is comprised of three
components. A rectangular frame encompasses the internal objects of every component. The cur-
rent component, marked with a star, belongs tomc, the client’s module. The sealed components,
drawn shaded, belong to modulemRP . Fig. 3(c⋆) depictsc⋆ = 〈I⋆, L⋆, R⋆, h⋆, t⋆, mc〉, the cur-
rent component ofσc, separately fromσc. The client-object is the only object insidec⋆. It is
also an entry location,i.e., I⋆ = L⋆ = {1}. An entry location is drawn with a wide arrow point-
ing to it. The resource pool and the resource are rim objects,i.e., R⋆ = {2, 5}. Rim objects are
drawn opaque. Thepl-labeled edge depicts the only (inter-component) reference inc⋆. Note that
h⋆ =hc|{1} andt⋆ = tc|{1,2,5}. Fig. 3 (cP) and (cR) depictσc’s sealed components.

The types of the reachable objects in a memory stateσ induce a (unique)implicit
component decompositionof σ: (i) a single implicit current component, denoted by
c⋆(σ), containing all thereachableobjects inσ that belong toσ’s current module and
(ii) a set of implicit sealed components, denoted byC(σ), containing (disjoint subsets
of) all theother reachable objects. Two objectsreside withinthe same implicit sealed
component if they belong to the same modulems 6=m(σ) and are connected inσ’s heap
via anundirected heap pathwhich only goes through objects that belong to modulems.

The component decomposition of a memory stateσ induces animplicit component
(directed) graph. The nodes of the graph are the implicit components ofσ. The graph
has an edge fromc1 to c2 if there is a rim object inc1 which is an entry location inc2,
i.e., if there is a reference from an object inc1 to an object inc2. For simplicity, we
assume that the graph is connected, and treat local variables in a way that ensures that.

Example 3.Componentc⋆, cP , andcR are the implicit components ofσc, i.e., c⋆ = c⋆(σc) and
{cP , cR} = C(σc). Double-line arrows depict the edges of the component graph. This graph is
connected becausec⋆’s rim contains the resource pointed-to byy.

From now on, whenever we refer to a component of a memory stateσ, we mean an
implicit component ofσ, and use the termimplicit componentonly for emphasis. (For
formal definitions of components and of component graphs, see [9].)

Dynamically encapsulated memory stateWe define the constraints imposed on mem-
ory states by the dynamic encapsulation model by placing certain restrictions on the
allowed implicit components and induced implicit component graphs.

Definition 1 (Dynamic encapsulation).A DOS memory stateσ ∈ Σ is said to be
dynamically encapsulated, if (i) the implicit component graph ofσ is a directed tree
and (ii) every (implicit) sealed component inσ has exactly one entry location.

We refer to the parent (resp. child) of a componentc in the component tree as the
ownerof c (resp. a subcomponent ofc). We refer to the single entry location of a sealed
componentc in a dynamically encapsulated memory stateσ asc’s header, and denote
it by hdr (c). We denote the module of a componentc by m(c).

8

Invariant 1 The following properties hold in every dynamically encapsulatedDOS
memory stateσ ∈ Σ and its implicit decomposition: (i) A local variable can only
point to a location insidec⋆(σ), the current component ofσ, or to the header of one of
c⋆(σ)’s subcomponents. (ii) For every component, every rim object is the header of a
sealed component ofσ. (iii) A field of an object in a component ofσ can only point to
an object insidec, or to the header of one ofc’s subcomponents. (iv) All the objects in a
sealed component are reachable from the component’s header. (v) A header dominates
its reachable heap.8 (vi) Every reachable object is inside exactly one component. (vii) If
c1 ∈ C(σ) ownsc2 ∈ C(σ) thenm(c1) dependsonm(c2).

DOS preserves dynamic encapsulation. Thus, from now on, whenever we refer to
a DOS memory state, we mean adynamically encapsulatedDOS memory state. As
a consequence of our simplifying assumptions and the acyclicity of the module depen-
dency relation, the following holds for everyDOS memory stateσ: (i) The internal
objects ofc⋆(σ) are exactly those that the current procedure can manipulatewithout
an (indirect) intermodule procedure call. (ii) The rim ofc⋆(σ) contains all the objects
which the current procedure can pass as parameters to an intermodule procedure call.

3.2 Operational Semantics

Intraprocedural Statements Intraprocedural statements are handled as usual in a two-
level store semantics for pointer programs (see,e.g., [10]). The only unique aspect of
DOS, formalized in [9], is that it aborts if an inaccessible-valued pointer is accessed.

Interprocedural StatementsDOS is a local-heap semantics [11]: when a procedure
is invoked, it starts executing on aninput heapcontaining only the set ofavailable
objects for the invocation. An object isavailable for an invocationif it is a parameter
object, i.e., pointed-to by an actual parameter, or if it is reachable from one. We refer to
a component whose header is a parameter object as aparameter component.

A local-heap semantics and its abstractions benefit from nothaving to represent un-
available objects. However, in general, the semantics needs to take special care of avail-
able objects that are pointed-to by an access path which bypasses the parameters (cut-
points[11]). In this paper, we do not wish to handle the problem of analyzing programs
with an unbounded number of cutpoints [11], which we consider a separate research
problem. Thus, for simplicity, we require thatintramoduleprocedure calls should be
cutpoint-free[5], i.e., the parameter objects should dominate8 the available objects for
the invocation. (In general, we can handle aboundednumber of cutpoints.9)

Fig. 4 defines the meaning of theCall andRet operations pertaining to an arbitrary
procedure cally = p(x1, . . . , xk).
Procedure calls.The Call operation computes the callee’sentry memory state(σe).
First, it checks whether the call satisfies oursimplifyingassumptions. In case of an in-
tramodule procedure invocation, the caller’s memory state(σc) is required to satisfy

9 We can treat a bounded number of cutpoints as additional parameters: Every procedure is mod-
ified to havek additional (hidden) formal parameters (wherek is the bound on the number of
allowed cutpoints). When a procedure is invoked, the (modified)semanticsbinds the additional
parameters with references to the cutpoints. This is the essence of [6]’s treatment of cutpoints.

9

〈Cally=p(x1,...,xk), σc〉
D
 σe mc =m(p) ⇒ CPF Dρc,hc

(dom(ρc), Fp)
σe = 〈ρe, Lc, hc|Lrel

, tc|Lrel
, m(p)〉 mc 6=m(p) ⇒ DIF ∀1≤ i<j ≤ k : ρc(xi) 6= ρc(xj)

ρe = [zi 7→ ρc(xi) | 1≤ i≤k] LOC ∀1≤i≤k : ρc(xi) ∈ Loc

where: Lrel = Rhc
({ρc(xi) ∈ Loc | 1≤ i≤k})

〈Rety=p(x1,...,xk), σc, σx〉
D
 σr mc 6=m(p) ⇒ OWN ∀z ∈ F nt

p : ρx(z) ∈ Loc

σr = 〈ρr, Lx, hr, tr, mc〉 DOM ∀z ∈ F nt

p : D
ρ

⊖
x ,hx

(F nt

p , {z})

ρr = (block ◦ ρc)[y 7→ρx(ret)]
hr = (block ◦ hc|Lc\Lrel

) ∪ hx

tr = tc|Lc\Lrel
∪ tx

where: Lrel = Rhc
({ρc(xi) ∈ Loc | 1≤ i≤k})

ρ⊖

x = ρx[z 7→ ⊖ | mc 6=m(p), z ∈ F t
p]

block = λv ∈ Val .

{

ρ⊖

x (zi) v = ρc(xi), 1 ≤ i ≤ k

v otherwise

Fig. 4. Call an Ret operations for an arbitrary procedure cally = p(x1, . . . , xk) assuming
p’s formal variables arez1, . . . , zk. σc = 〈ρc, Lc, hc, tc, mc〉. σx = 〈ρx, Lx, hx, tx, mx〉.
F nt

p = {ret} ∪ (Fp \ F t
p). Variableret is used to communicate the return value. We use the

following functions and relations, formally defined in [9]:Rh(L) computes the locations which
are reachable in heaph from the set of locationsL. The auxiliary relationDρ,h(VI , VD) holds if
the set of objects pointed-to by a variable inVD , according to environmentρ, dominates the part
of heaph reachable from them, with respect to the objects pointed-toby the variables inVI .

the domination condition (CPF) ensuring cutpoint-freedom. Intermodule procedure calls
are invoked under even stricter conditions which are fundamental to our approach: Ev-
ery parameter object must dominate the subheap reachable from it. This ensures that
distinct components are unshared. However, there is no needto check these conditions
as they are invariants in our semantics: Inv. 1(i,iv,v) ensures that every parameter ob-
ject to an intermodule procedure call is a header which dominates its reachable heap.
(Note that Inv. 1(iv) can be exploited to check whether an object is a dominator by only
inspecting access paths traversing through its component.) Thus, only our simplifying
assumptions pertaining to non-nullness (LOC) and non-aliasing of parameters (DIF) need
to be checked.

The entry memory state is computed by binding the values of the formal parameters
in the callee’s environment to the values of the corresponding actual parameters; pro-
jecting the caller’s heap and type map on the available objects for the invocation; and
setting the module of the entry memory state to be the module of the invoked procedure.

Note that in intermodule procedure calls, the change of the current module implic-
itly changes the component tree: all the available objects for the invocation which be-
long to the callee’s module constitute the callee’s currentcomponent. By Inv. 1 (vi,vii),
these objects must come from parameter components.

Example 4.Fig. 3 (σe) shows the entry memory state resulting from applying theCall operation
pertaining to the procedure callx.release(y) on the call memory stateσc, also shown in
Fig. 3. All the objects inσe belong tomRP , and thus, to its current component. Note that the latter
is, essentially, a fusion ofcP andcR, the sealed components inσc.

10

Note:The current component of aDOS memory stateσ ∈ Σ is the root of the compo-
nent tree induced by thelocal heaprepresented inσ. In aglobal heap, this current com-
ponent might have been one or more non-root subcomponents ofa larger component-
tree which is only partially visible to the current procedure. For example, the current
component of the client procedure is not visible during the execution ofrelease.
Procedure returns.The caller’s return memory state (σr) is computed by aRet oper-
ation. When anintermoduleprocedure invocation returns,Ret first checks that in the
exit memory state (σx) every non-transferred formal parameter points to an object (OWN)
which dominates its reachable subheap (DOM). This ensures that returned components
are disjoint and, in particular, that the procedure’s execution respected its ownership
transfer specification. (Here we exploit simplifying assumption (b) of Sec. 2.)

Ret updates the caller’s memory state (which reflects the program’s state at the
time of the call) by carving out the input heap passed to the callee from the caller’s
heap and replacing it instead with the callee’s (possibly) mutated heap. InDOS , an
object never changes its location and locations are never reallocated. Thus, any pointer
to an available object in the caller’s memory state (either by a field of an unavailable
object or a variable) points after the replacement to an up-to-date version of the object.

Most importantly, the semantics ensures that any future attempt by the caller to
access a transferred component is foiled: We say that a localvariable of the caller is
danglingif, at the time of the invocation, it points to (the header of)a component trans-
ferred to the callee. A pointer field of an object in the caller’s memory state which was
unavailable for the invocation is considered to bedanglingunder the same condition.
The semantics enforces the transfer of ownership byblocking: assigning the special
value⊖ to every dangling reference in the caller’s memory state. (Blocking also occurs
when anintramodule procedure invocation returns to propagate ownership transfers
done by the callee.) Note that cutpoint-freedom ensures that the only object that sepa-
rate the callee’s heap from the caller’s heap are parameter objects. Thus, in particular,
the only references that might be blocked point to parameterobjects.

When an intermodule call returns, and the current module changes, the component
tree is changed too: The callee’s current component may be split into different compo-
nents whose headers are the parameter objects pointed-to bynon-transferred parame-
ters. These components may be different from the (input) parameter components.

Example 5.Fig. 3 (σr) depicts the memory state resulting from applying theRet operation per-
taining to the procedure callx.release(y) on the memory stateσc andσx, also shown in
Fig. 3. The insertion of the resource pointed-to byy at the call-site into the pool has (implicitly)
fused the twomRP -components. By the standard semantics,y should point to the first resource
in the list (as indicated by the dashed arrow). This would violate dynamic encapsulation.DOS,
however, utilizes theownership specificationto blocky thus preserving dynamic encapsulation.

3.3 Observational Soundness

We say that two values arecomparablein DOS if neither one is⊖. We say that a
DOS memory stateσ is observationally soundwith respect to a standard semanticsσG

if every pair of access paths that have comparable values inσ, has equal values inσ
iff they have equal values inσG. DOS simulatesthe standard2-level store semantics:

11

Executing the same sequence of statements in theDOS semantics and in the standard
semantics either results in aDOS memory states which is observationally sound with
respect to the resulting standard memory state, or theDOS execution getsstuckdue
to a constraint breach (detected byDOS). A program isdynamically encapsulatedif it
does not have have an execution trace which gets stuck. (Notethat the initial state of an
execution inDOS is observationally sound with respect to its standard counterpart).

Our goal is to detect structural invariants that are true according to thestandard
semantics. DOS acts like the standard semantics as long as the program’s execution
satisfies certain constraints.DOS enforces these restrictions by blocking references
that a program should not access. Similarly, our analysis reports an invariant concerning
equality of access paths only when these access paths have comparable values.

An invariant concerning equality of access paths inDOS for a dynamically en-
capsulated program is also an invariant in the standard semantics. This makes abstract
interpretation algorithms ofDOS suitable for verifying data structure invariants, for de-
tecting memory error violations, and for performing compile-time garbage collection.

4 Modular Analysis

This section presents a conservative static analysis whichidentifies conservativemodule
invariants. These invariants are true inanyprogram according to theDOS semantics
and inany dynamically encapsulatedprograms according to the standard semantics.

The analysis is derived by two (successive) abstractions ofthe DOS semantics:
The trimming semanticsprovides the basis of ourmodular analysis by representing
only components of the analyzed module. Theabstract trimming semanticsallows for
an effective analysis by providing aboundedabstraction of trimmed memory states
(utilizing existingintraprocedural abstractions).

Module Invariants A module invariantof a modulem is a property that holds for all
the components that belong tom when they are not being used (i.e., for sealed compo-
nents). Our analysis finds module invariants by computing a conservative description
of the set of all possible sealed components of the module. More formally, themodule
invariant of modulem for typeT , denoted by[[Invm T]] ⊆ 2C, is a set of sealed com-
ponents of modulem whose header is of typeT : a sealed componentc is in [[Invm T]]
iff there exists a reachableDOS memory stateσ in some program such thatc ∈ C(σ).

For example, the module invariant of modulemRP for typeRPoll in our running
example is the set containing all resource pools with a (possibly empty)acyclicfinite
list of resources. The module invariant of modulemRP for typeR is the singleton set
containing a single resource with anullifiedn-field: An acquired resource always has a
null-valuedn-field and a released resource is inaccessible.

Trimming semantics The trimming semantics represents only the parts of the heap
which belong to the current module. In particular, it abstracts away all information
contained in sealed components and the shape of the component tree.

More formally, thedomain of trimmed statesis Σ⋆ = E × C. The trimmed state
induced by aDOS memory stateσ ∈ Σ, denoted bytrim(σ), is 〈ρ, c⋆(σ)〉. (For exam-
ple, Fig. 3 (σ⋆) depicts the trimmed memory state induced by theDOS memory state

12

shown in Fig. 3 (σc).) We say that two trimmed memory states areisomorphic, denoted
by σ⋆

1∼σ⋆
2 , if σ⋆

1 can be obtained fromσ⋆
2 by a consistent location renaming. A trimmed

memory stateσ⋆ abstractsaDOS memory stateσ if σ⋆∼ trim(σ).
A trimmed memory state contains enough information to determine the induced ef-

fect [14] under the trimming abstraction of intraprocedural statements and intramodule
Call andRet operations by applying the statement toanymemory state it represents.
Intuitively, the reason for this uniform behavior is that the aforementioned statements
are indifferent to thecontentsof sealed components: They only consider the values of
fields of objects inside the current component (inter-component references included).
Analyzing intermodule procedure calls.The main challenge lies in the handling of inter-
module procedure calls: Applying the induced effect ofCall is challenging because the
most importantinformation required to determine the input heap of an intermodule call
is the contents of parameter components. However, this is exactly the information lost
under thetrimming abstractionof the call memory state. Applying the induced effect of
Ret operations pertaining to intermodule procedure calls is challenging as it considers
information about the contents of heap parts manipulated bydifferentmodules.

We overcome the challenge pertaining toCall operations by utilizing the fact that
DOS always changes components as a whole,i.e., there is no sharing between compo-
nents, thus changes to one component cannot affecta part of the internal structure of
another component. In particular, we areanticipating the possible entry memory states
of an intermodule procedure call: In theDOS semantics, the current component of
an entry memory state to an intermodule procedure call is comprised, essentially, as a
necessarilydisjoint union of parameter components. Note that components are sealed
only when an intermodule procedure call returns. Furthermore, the only way a sealed
component can be mutated is to pass it back as a parameter to a procedure of its own
module. Thus, a partial view of the execution trace, which considers only the executions
of procedures that belong to the analyzed module, and collects the sealed components
generated when an intermodule procedure invocation returns, can (conservatively) an-
ticipate the possible input states for the next intermoduleinvocations. Specifically,only
a combination ofalready generated sealed componentsof the module can be the com-
ponent parameters in an intermodule procedure invocation.

We resolveRet’s need to consider components belonging to different modules uti-
lizing the ownership transfer specification and the limitedeffect of intermodule pro-
cedure invocations on the caller’s current component: The only effect an intermodule
procedure call has on the current component of the caller is that (i) dangling references
are blocked and (ii) the return value is assigned to a local variable. (By our simplifying
assumptions, the return value must point either to a parameter object or to a component
not previously owned by the caller. The latter case amounts to a new object in the rim of
the caller’s current component). Given a sound ownership specification for the invoked
procedures we can apply this effect directly to the caller’smemory state. This approach
can be generalized (and made more precise) to handle richer specifications concerning,
e.g., nullness of parameters, aliasing of parameters (and return values), and digests.

Abstract trimming semantics We provide an effective conservative abstract interpreta-
tion [14] algorithm which determines module invariants by devising a bounded abstrac-
tion of trimmed memory states. Rather than providing a new intraprocedural abstraction

13

and analyses, we show how tolift existing intraprocedural shape analyses to obtain a
modular shape abstraction. An abstraction of a trimmed memory state, being comprised
of an environment of a single procedure and a subheap, is verysimilar to an abstraction
of a standard two-level store. The additional elements thatthe abstraction needs to track
is a bounded number of entry-locations and a distinction between internal objects and
rim objects. In addition, the abstract domain, expected to support operations pertaining
to basic pointer manipulating statements, should be extended to allow for: checking if
a⊖-valued reference is accessed; the operations required forcutpoint-free local-heap
analysis: carving out subheaps reachable from variables and combining disjoint sub-
heaps; and the ability to answer queries regarding domination by variables. The only
additional operation required to implement our analysis isof blocking, i.e., setting the
values of all reference pointing to a given variable-pointed object to⊖. The abstract do-
mains of [2–4], which already support the operations required for performing standard
local-heap cutpoint-free analysis, can be extended with these operations.

Modular analysis We conduct our modular static analysis by performing an interpro-
cedural analysis of a module together with itsmost-general-client. The most-general-
client simulates the behavior of an arbitrary dynamically encapsulated (well behaved)
client. Essentially, it is a collection of non-deterministic procedures that execute ar-
bitrary sequences of procedure calls to the analyzed module. The parameters passed
to these calls also result from an arbitrary (possibly recursive) sequence of procedure
calls. The most-general client exploits the fact thatdifferent components are effectively
disjoint to separately create the value of every parameter passed to an intermodule pro-
cedure call. Thus, any conservative interprocedural analysis of the most-general client
(which uses an extended abstract domain, as discussed above, and utilizes ownership
specification to determine the effect of intermodule procedure calls made by the ana-
lyzed module) can modularly detect module invariants. In particular, the analysis can be
performed by extending existing interprocedural frameworks for interprocedural shape
analysis,e.g., [5, 6]. Note that during the analysis process we also find conservative
module implementation invariants: Properties that hold for all possible current compo-
nents at different program points inside the component in every possible execution. [9]
provides a scheme for constructing the most-general-client of a module. ([9] also pro-
vides a characterization of the module invariants based on afixpoint equation system).

5 Related Work

A distinguishing aspect of our work is that we integrate a shape analysis with encapsula-
tion constraints. Our work presents a nice interplay between encapsulation and modular
shape analysis: it uses dynamic encapsulation to enable modular shape analysis, and
uses shape analysis to determine that the program is dynamically encapsulated. In this
section, we review some closely related work to both aspectsof our approach. More
discussion on related work can be found in [9].
Modular static analysis.[1] describes the fundamental techniques for modular static
program analysis. These techniques allow to compose separate analyses of different
program parts. We use their techniques, in particular, we use simpleuser provided
interfacesto communicate the (limited) effect of mutations done by different modules.

14

Modular heap analysis.[15] presents a modular analysis which infers class invariants
based on an abstraction of program traces. [16] is an extension which handles subtyping.
The determined invariants concern values of atomic fields ofobjects of the analyzed
class and of subobjects, provided that they are never leakedto the context,e.g., passed
as return values. [17] modularly determines invariants regarding the value of an integer
field and the length of an array field of thesameobject. Our analysis, computes shape
invariants of subheaps comprised of objects that may be passed as parameters
Interprocedural shape analysis.[18,19] utilize user-specified pre- and post- conditions
to achieve modular shape analysis which can handle a boundednumber of flat set-
like data structures. It allows objects to be placed in multiple sets. In our approach,
an object can be placed only in a single separately-analyzedbut arbitrarily-nested set.
Other interprocedural shape analysis algorithmse.g., [5, 6, 11, 20–22], compute pro-
cedure summaries, but are not modular. [22] tracks properties of single objects. The
other algorithms abstract whole local heaps. Our abstraction, on the other hand, repre-
sent only a part of the local heap (i.e., only the current component). We note that the
aforementioned approaches do not require a user specification, which we require.
Encapsulation.Deep ownership models structure the heap into a tree of so-called owner
contexts(see [23] for a survey). Our module-induced decomposition of a memory state
into a tree of components is similar to the package-induced partitioning of a mem-
ory state into a tree of memory-regions in [24]. Our constraints are similar to external
uniqueness [25], which requires that there be auniquereference pointing to an object
from outside its (transitively) owned context. Our ownership specification is also in
the spirit of [25]’s destructive reads and borrowing. [26] uses shape analysis to mod-
ularly verify (specified) uniqueness of alive reference to anobject. Our use of sealed
and unsealed components is close to the use of packed and unpacked owner contexts
in Boogie [27, 28]. The latter, however, can handle reentrancy. The central difference
between the approaches is that our techniques infer module invariants whereas Boogie
verifies class invariants provided by the programmer.
Local reasoning.[29] and [30] allow to modularly conduct local reasoning [10] about
abstract data structures and abstract data types with inheritance, respectively. The rea-
soning requires user-specified resource invariants and loop invariants. Our analysis au-
tomatically infers these invariants based on an ownership transfer specification (and an
instance of the bounded parametric abstraction). [30], however, allows for more shar-
ing than in our model. Our use of rim-objects (resp. abstractsealed components) is
analogous to [30]’s use ofabstract predicates’ names (resp. resource invariants).

ConclusionsOur long term research goal is to devise precise and efficientstatic shape
analysis algorithms which are applicable to realistic programs. We see this work as an
important step towards a modular shape analysis. While the ownership model is fairly
restrictive with respect to the coupling between separate components, it is very permis-
sive about what can happen inside a single component. This model is also sufficient to
express several, natural, usage constraints that arise in practice. (In particular, when ac-
companied with digests.) We believe that our restrictions can be relaxed to help address
a larger class of programs. We plan to pursue this line of research in future work.

Acknowledgments.We are grateful for the helpful comments of T. Lev-Ami, R. Mane-
vich, S. Rajamani, J. Reineke, G. Yorsh, and the anonymous referees.

15

References

1. Cousot, P., Cousot, R.: Modular static program analysis,invited paper. In: CC. (2002)
2. Lev-Ami, T., Immerman, N., Sagiv, M.: Abstraction for shape analysis with fast and precise

transformers. In: CAV. (2006)
3. Manevich, R., Yahav, E., Ramalingam, G., Sagiv, M.: Predicate abstraction and canonical

abstraction for singly-linked lists. In: VMCAI. (2005)
4. Distefano, D., O’Hearn, P.W., Yang, H.: A local shape analysis based on separation logic.

In: TACAS. (2006)
5. Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural shape analysis for cutpoint-free pro-

grams. In: SAS. (2005)
6. Gotsman, A., Berdine, J., Cook., B.: Interprocedural shape analysis with separated heap

abstractions. In: SAS. (2006)
7. Rinetzky, N., Ramalingam, G., Sagiv, M., Yahav, E.: Componentized heap abstractions.

Tech. Rep. 164, Tel Aviv University (2006)
8. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhancing soft-

ware reliability. IEEE Trans. Software Eng.12(1) (1986) 157–171
9. Rinetzky, N., Poetzsch-Heffter, A., Ramalingam, G., Sagiv, M., Yahav, E.: Modular shape

analysis for dynamically encapsulated programs. Tech. Rep. 107, Tel Aviv University (2006)
10. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: LICS. (2002)
11. Rinetzky, N., Bauer, J., Reps, T., Sagiv, M., Wilhelm, R.: A semantics for procedure local

heaps and its abstractions. In: POPL. (2005)
12. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report DAIMI

FN-19, University of Aarhus (1981)
13. Knoop, J., Steffen, B.: The interprocedural coincidence theorem. In: CC. (1992)
14. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of

programs by construction of approximation of fixed points. In: POPL. (1977)
15. Logozzo, F.: Class-level modular analysis for object oriented languages. In: SAS. (2003)
16. Logozzo, F.: Automatic inference of class invariants. In: VMCAI. (2004)
17. Aggarwal, A., Randall, K.: Related field analysis. In: PLDI. (2001)
18. Lam, P., Kuncak, V., Rinard, M.: Hob: A tool for verifyingdata structure consistency. In:

CC (tool demo). (2005)
19. Wies, T., Kuncak, V., Lam, P., Podelski, A., Rinard, M.: Field constraint analysis. In: VM-

CAI. (2006)
20. Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relational approach to interprocedural shape

analysis. In: SAS. (2004)
21. Chong, S., Rugina, R.: Static analysis of accessed regions in recursive data structures. In:

SAS. (2003)
22. Hackett, B., Rugina, R.: Region-based shape analysis with tracked locations. In: POPL.

(2005)
23. Noble, J., Biddle, R., Tempero, E., Potanin, A., Clarke,D.: Towards a model of encapsula-

tion. In: IWACO. (2003)
24. Zhao, T., Noble, J., Vitek, J.: Scoped types for real-time java. In: RTSS. (2004)
25. Clarke, D., Wrigstad, T.: External uniqueness is uniqueenough. In: ECOOP. (2003)
26. Boyland, J.: Alias burying: unique variables without destructive reads. Softw. Pract. Exper.

31(6) (2001) 533–553
27. Barnett, M., DeLine, R., Fähndrich, M., Leino, K.R.M.,Schulte, W.: Verification of object-

oriented programs with invariants. Journal of Object Technology 3(6) (2004) 27–56
28. Leino, K.R.M., Müller, P.: A verification methodology for model fields. In: ESOP. (2006)
29. O’Hearn, P., Yang, H., Reynolds, J.: Separation and information hiding. In: POPL. (2004)
30. Bierman, G., Parkinson, M.: Separation logic and abstractions. In: POPL. (2005)

16

