Modular Shape Analysis
for Dynamically Encapsulated Programs

N. Rinetzky*, A. Poetzsch-Heffté G. Ramalingart*, M. Sagiv, and E. Yahat

1 Tel Aviv University {maon, msagi v}@ au. ac. i |
2 University of Kaiserlauterpoet zsch@ nf or mat i k. uni -kl . de
3 Microsoft Research Indigr ama@i cr osof t. com
4 1BM T.J. Watson Research Ceneyahav@s. i bm com

Abstract. We present anodularstatic analysis which identifies structural (shape)
invariants for a subset of heap-manipulating programs. sifieset is defined by
means of a non-standard operational semantics which ptactsn restrictions
on aliasing and sharing across modules. More specificalyassume that live
referencesi(e., used before set) between subheaps manipulated by diffemh
ules form a tree. We develop a conservative static analigisitnm by abstract
interpretation of our non-standard semantics. @adularalgorithm also ensures
that the program obeys the above mentioned restrictions.

1 Introduction

Modern programs rely significantly on the use of heap-atledtéinked data structures.
In this paper, we present a novel method for automaticallifyieg properties of such
programs in a modular fashion. We consider a program to bélection of modules.
We develop a shape (heap) analysis which treats each mahdeasely. Modular anal-
yses are attractive because they promise scalability arsgre

Modular analysis [1], however, is particularly difficult the presence of aliasing.
The behavior of a module can depend on the aliasing createtidngs of the module
and vice versa. Analyzing a module making worst-case assangmabout the aliasing
created by clients (or vice versa) can complicate the aisady=l lead to imprecise re-
sults. Instead of analyzing arbitrary programs, we retstiic attention to certain “well-
behaved” programs. The main idea behind our approach isstarees a modularly-
checkable program-invariant concerning aliases of litermodule references.

Motivating Example Fig. 1 shows the code of a moduley,,, which serves as our
running example. The code is written in a Java-like langulipslulem;,, contains two
classes: ClasRis a class of resources to be used by clients of the modules@uree
has a recursive fielah, which is used to link resources in an internal list. ClBBsol

is a pool of resources which stores resources using themmiatlist. We assume that the
n-field is read or written only byRPool ’'s methodsacqui r e, which gets a resource
out of the pool, and el ease, which stores a resource in the pool.

* Supported in part by the IBM Ph.D. Fellowship Program, anghirt by a grant from the Israeli
Academy of Science.
** Work done partly when the author was at IBM Research.

Typical properties we want to verify modularly are thatpubl i ¢ cl ass RPool {
for any well behavegirogram that uses;,, the methods });' ;’f‘;ﬁsfe[fgd: (e}
of RPool never leak resources and never issue an acquireghbl i c
resource before it is releasédlote that these properties dg VoL d releastR) {
not hold for arbitrary programs because of possible aliasin this. rs=e;
in the module induced by the client behavior: Consider an/}/ transferred: {}
invocation ofp. r el ease(r) inamemory state in which| public R acquire() {
p points to a non-empty resource pool.rifpoints to the inr(f! ‘::'ufl ;S{
head of a resource list containing more than one resource, this.rs=r.n;

then the tail of the list might be leaked. If, after being re- - = ™!
leased into the pool thatpoints tor is released into other r = new R();
pools, then these pools, along with the one pointed-tp by , "eturn r:

share (parts) of their resource lists. Note that after aeghar &

resource is acquired from one pool, it can still be acquirg! ' a3 R
from the other pools. Finally, if the resource tmapoints :
to is already inp’s pool, thenp’s resource list becomes;

cyclic. A resource which is acquired from a pool whose Iis',:tlg' 1.-Modulerm.

is cyclic, stays in the pool.

Given a module, and the user specification for the other nezdtlises, our analysis
tries to verify that the given module is “well-behaved” tig verification is unsuccess-
ful, the analysis gives up and reports that the module magaio¢re to our constraints.
Otherwise, the analysis computes invariants of the givedutethat hold in any “well-
behaved” program containing the module. A program comgrisdy of successfully
verified modules is guaranteed to be “well-behaved”.

1.1 Overview

Non-standard semanticsThe basis for our approach isnan-standard semanti¢hat
captures the aliasing constraints mentioned above. Iptper, a module is a collec-
tion of type-definitions and procedures, and a componensishaeap. Our semantics
represents the heap as an (evolving and changing) coleatiheap)omponentEv-
ery component is comprised of objects whose types are deifintd same module.
(We say that a componebelongs tahat module.) Note that multiple components be-
longing to the same module may co-exist. References beta@m@aponents belonging
to different modules are allowed, however, th&ernal structureof a component can
be accessed or modified only by the (procedures in the) madwidich it belongs.
Components can be in two different statesaledand unsealed Sealed components
represent encapsulated data returned by a module to gscédind, hence, are expected
to satisfy certairmodule invariants In contrast, unsealed components are components
that are currently being modified and may be in an unstable.sta

At any point during program execution, the internal stroetof only one compo-
nent is “visible” and can be accessed or mutaied,only one unsealed component is

5 Similarly, in the analysis of a client ofiz», we would like to verify that the client does not use
a dangling reference to a released resource. Our analysisstablish this property.
8 A modulem can manipulate a component of a modualéby an intermodule procedure call.

“visible”. We refer to this component as tkarrent componeniThe only way a sealed
component can bensealedpermitting its internal structure to be examined and mod-
ified) is to pass it as a parameter of an appropriate intertequtocedure call so that
the component becomes part of the current component foratedcprocedure. Our
semantics requires that all parameters and the return(galoiintermodule procedure
calls must be sealed components. For brevity, we do notdenprimitive values here.

Constraints So far we have not really placed any constraints on the prnogilde
above are standard “good modularity principles” and mosgj@ams will fit this model
with minor adjustments. Before we describe the constraietplace on sharing across
modules, we describe the two key issues that motivate thossraints:

1. How can we analyze a modulé without using any information about the clients
of M (i.e., without using information about the usage contexdfy?

2. When analyzing a client modulé that makes use of another modulé, how
do we handléntermodulecalls fromC to M using only the analysis results for
module) (i.e., without analyzing moduld/ again)?

We say that a componentvnsanother component if it haslave referencei(e.,
used before set) to the other component. The most impornbaisti@int we place is that
a component cannot be owned by two or more components. AsuH, rise heap (or
the program state) may be seen as, effectively, a tree of coemts. Informally, this
ensures that distinct components do not share (live) starthermore, we require that
all references to a component from its owner have the sargettabject. We call this
object the componentiseader’ We refer to a program which satisfies these constraints
as adynamically encapsulategrogram. Recall that our analysis also verifies that a
program isdynamically encapsulated

In this paper, we require that the module dependency relédige Sec. 2) be acyclic.
This constraint simplifies our semantics (and analysis) adute reentrancy does not
need to be considered: When a module is invoddeédf its components are guaranteed
to be sealed. We note that our techniques can be generalibaditlle cyclic dependen-
cies, provided that the ownership relation is required tadelic.

BenefitsThe above constraints let us deal with the two issues mesdi@bove in a
tractable way. The restriction on sharing between compisremplifies dealing with
intermodule calls as they cannot have unexpected sidetgféeg, an intermodule call
on one componertt; cannot affect the state of another compor@nthat is accessible
to the caller. As for the first issueie conservatively identify all possible input states for
an intermodule call by iteratively identifying all possibéealed components that can
be generated by a module

SpecificationWe now describe the extra specification a user must providthéomod-
ular analysis. This specification consists of: (fnadule specificatiothat partitions a
program’s types and procedures into modules; (i) an aniootéor every (public) pro-
cedure thatindicates for every parameter whether it imated to be “transferred” to the

" Note the slight difference in terminology: In ownership eygystems, owners are objects and
do not belong to their ownership contexts. In our approaomponents are the owners; the
component header belongs to the component that is domibgitée header.

callee or not; these annotations are only considered imnmdule procedure calls. A
sealed component that is passed &masferredparameter of an intermodule call can-
not be subsequently used by the calling modalg.(to be passed as a parameter for a
subsequent intermodule call). This constraint servesraxty enforce the requirement
that the heap be a tree of components. For example,dgbease we specify that the
caller transfer ownership only of the resource parameter.

Given the above specification, our modular analysis cannaatioally detect the
boundaries of the heap-components and (conservativetgyrdme whether the pro-
gram satisfies the constraints described above

Abstraction Our modular analysis is obtained as an abstract interprataf our non-
standard semantics. We use a 2-step successive abstra@idinst apply a novetrim-
ming abstractiorwhich abstracts away the contents of sealed components arteen
lyzing a module. (Loosely speaking, only the heap struatfitee current component,
and the aliasing relationships between intermodule rat&®leaving the current com-
ponent, are tracked.) We then applpaundedconservative abstraction of trimmed
memory states. Rather than providing a new intraproceaistlaction, we show how
tolift existingintraprocedural shape analysesy, [2—4], to obtain a modular shape ab-
straction (see Sec. 4). Our analysis is parametric in thigaadti®n of trimmed memory
states and can use different (bounded) abstractions wtayzamy different modules.

Analysis Our static analysis is conducted in an assume-guarantesenaliowing each
module to be analyzed separately. The analysis, computassaivative representation
of every possible sealed components of the analyzed modudgriamically encap-
sulated programs. This process, in effect, identifies siratinvariants of the sealed
components of the analyzed moduile,, it infers module invariants (for dynamically
encapsulated programs). Technically, the module is amdlyagether with itanost-
general-clienusing a framework for interprocedural shape analysis, [5, 6].

Extensionslin this paper, we use a very conservative abstraction oédeadmponents
and inter-componentreferences (for simplicity). The edudion, in effect, retains no in-
formation about the state of a sealed component (whichajlgibelongs to other mod-
ules used by the analyzed module). This can lead to an uabésioss in precision in
the analysis (in general). We can refine the abstraction inguesmponent-diges{g],
which encode (hierarchical) properties of whalemponentén a typestate-like man-
ner [8]. This,e.g, can allow our analysis to distinguish between a referemegipol of
closed socket components from a reference to a pool of coesheocket components.

1.2 Main Contributions

(i) We introduce an interesting class of dynamically enciégded programs; (ii) We
define a natural notion ahodule invariant for dynamically encapsulated programs
(iif) We show how to utilize dynamic encapsulation to enailedular shape analysis;
and (iv) We present a modular shape analysis algorithm w(eizhservatively) verifies
that a program is dynamically encapsulated and identiasddule invariants.

Due to space restrictions, many formal details and the pleseitensions of our
techniques are omitted and can be found in [9].

2 Program Model and Specification Language

Program model We analyze imperative object-basdde(without subtyping) pro-
grams. A program consists of a collection of procedures adistinguishednai n
procedure. The programmer can also define her own typesJathacts).

Syntactic domainsWe assume the syntactic domains V of variable identifiers,
f € F offield identifiers,I" € 7 of type identifiersp € PZD of procedure identifiers,
andm € M of module identifiers. We assume that types, proceduresnaaldles have
unique identifiers in every program.

ModulesWe denote the module that a procedpitgelongs to byn (p) and the module
that a type identifief” belongs to bymn (7). A modulem; depend®n modulems if
my # ms and one of the following holds: (i) a proceduresaf; invokes a procedure
of mg; (ii) a procedure ofn, has a local variable whose type belongsig; or (i) a
type ofm, has a field whose type belongsitg.

ProceduresA procedurep has local variablesi{,) and formal parametergy), which
are considered to be local variables,, I, C V,,. Only local variables are allowed.

Specification languageNe expect to be given a partitioning of the program types and
procedures into modules. Every procedure should have aarsWip transfer specifica-
tion given by a seF; C F, of transferred (formal) parametergA formal parameter is

a transferred parameter if it points to a transferred corapbim an intermodule call.)
For exampleg isr el ease’s only transferred parameter, aadqui r e has none.

Simplifying assumptions We assume that procedure invocations shouldutpoint-

free [5]. (We explain this assumption, and a possible relaxafioiec. 3.2.) In addi-
tion, to simplify the presentation, we make the following@®ptions: (a) A program
manipulates only pointer-valued fields and variables; @)ral parametersannotbe
assigned to; (c) Objects of tyf¥e can be allocated and references to such objects can
beused as I-valueby a procedure only if m(p) = m(T); (d) Actual parameters to

an intermodule procedure call should not be aliased anddlpmint to a component
owned by the caller. In particular, they should have a nalivalue; and (e) The caller
always becomes the owner of the return value of an internegahalcedure call.

3 Concrete Dynamic-Ownership Semantics

In this section, we defin®OS, a non-standard semantics which checks whether a
program executes in conformance with the constraints iegby the dynamic encap-
sulation model. POS stands fordynamic-ownership semantitOS provides the
execution traces that are the foundation of our analysis.space reasons, we only
discuss key aspects of the operational semantics, forrdefiged in [9].

DOS is astore-basedsemantics (see.g, [10]). A traditional aspect of a store-
based semantics is that a memory state represents a heapsaahgf all the allocated
objects DOS, on the other hand, islacal heapsemantics [11]: A memory state which
occurs during the execution of a procedure does not reprebgatts which, at the time
of the invocation, were not reachable from the actual patarse

DOS is a small-step operational semantics [12]. Instead of @ingoa stack of
activation records inside the memory state, as traditiprddne, DOS maintains a
stack of program statef®, 13]: Every program state contains a program point and a
memory state. The program state of therent procedurds stored at the top of the
stack, and it is the only one which can be manipulated by pntreedural statements.
When a procedure is invoked, tleatry memory statef the callee is computed by a
Call operation according to the caller’s current memory state paished into the stack.
When a procedure returns, the stack is popped, and the’'sadfarrn memory states
updated using #&et operation according to its memory state before the invondthe
call memory stateand the callee’s (poppedxit memory state

The use of a stack of program states allows us to represerneny mmemory state
the (values of) local variables and the local heap of justpmoeedure. An execution
trace of a progran® always begins withP’s mai n procedure starts executing on an
initial memory stateén which all variables have aull value and the heap is empty. We
say that a memory statensachablein a programP if it occurs as the current memory
state in an execution trace 6%

3.1 Memory States

Fig. 2 defines the concrete semantic domains and the matbherranging over them.
We assumeloc to be an unbounded set of locations. A values Val is either a
location,null, or ©, the inaccessible value used to represent references whalkld
not be accessed.

A memory state in th©OS semantics is a
5-tuplec = (p, L, h, t,m). The first four compo-
nents comprise, essentially2devel storep € £ | ¢ Loc
is an environment assigning values for the vatiy ¢ Val = Loc U {null} U {©}
ables of thecurrentprocedureL C Loc contains |y ¢ £ =V — Val
the locations of allocated objects. (An object i$, ¢ H = Loc — F — Val
identified by its location. We interchangeably use ¢ 7M = Loc — T
the terms object and locatiork)e H assignsval- |o € 3 = Ex2Lo¢ x Hx T M x M
ues to fields of allocated objectsc 7 M maps
every allocated object to the type-identifier of its Fig. 2. Semantic domains.
(immutable) type. Implicitly,t associates every
allocated location to a module: The module that
a location! € L belongs to in memory state, denoted bym (¢(1)), is m(t(1)). The
additional componentp € M, is the module of the current procedure. We refemto
as thecurrent moduleof o. (We denote the current module of a statby m(o).)

Note that inDOS, reachability, and thus dominatiSrare defined with respect to
theaccessible hegjp.e., ©-valued references do not lead to any object.

8 An objectl, is reachable fronresp.connected tpan object; in a memory state if there is
a directed (resp. undirected) path in the heap ffbm I, to l>. An objectl is reachablein o if
itis reachable from a location which is pointed-to by soméalde. An object is adominator
if every access path pointing to an object reachable famust traverse through

- - Wy

this

e this e pl
<£> ®

entry-state : (o) exit-state : (o) (¢* = c*(o.)) (o* = trim(o.))

X

call-state: (o) return-state : (o) (cp € C(oe)) (cr € C(oc))

Fig.3.(oc, 0, 02, 0r): DOS memory states occurring in an invocationxofr el ease(y) onoe.
(c*, cp, cr): The implicit components af.. (¢*): The trimmed memory state induced by.

Example 1.Fig. 3 (o) depicts a possibl®OS memory state that may arise in the execution of a
program using the modute;». The state containsdient object (shown as an hexagon) pointed-
to by variablec and having &l -field pointing to a resource pool (shown as a rectangle). The
resource pool, containing two resources (shown as diamdmdsso pointed-to by a variable

In addition, a local variablg points to a resource outside the pool. (The numbers attached
nodes indicate the location of objects. The value of a (n@i)-pointer variable is shown as an
edge from a label consisting of the variable name to the tipeiated-to by the variable. The
value of a (hon-null) fieldf of an object is shown as gflabeled edge emanating from the object.
Other graphical elements can be ignored for now.) The statesido. (also shown in Fig. 3),
depict, respectively, the call- and the entry-memory stafean invocation ok. r el ease(y)
which we use as an example throughout this section. Noterthr&presents only the values of the
local variables of el ease and does not represent the (unreachable) client-objetitelreturn
memory state of the invocation, depicted in Figo3)(the dangling referenge has theo-value,
and the resource pool dominates the resources in its lisé @turn stateoes notrepresent the
value ofy before the call, indicated by the dashed arrow.)

Componentsintuitively, a component provides a partial view adb&S memory state.
A component ofr consists of a set of reachable objectsrinwhich all belong to the
same module, and records their types, their link structame, theirspatial interface
i.e.,, references to and from immediately connected objects aridbles.

More formally, a component € C = 259¢ x 2L0¢ x 2Lo¢ x Hx T M x M is a 6-
tuple. Acomponent = (I, L, R, h, t, m) is acomponent ofa DOS memory stater
if the following holds:L, the set ot’s internal objectscontains only reachable objects
ino. I C LandR C Loc\ L constitutec’s spatial interfacel records theentry loca-
tionsinto c. An object inside: is anentry locationif it is pointed-to by a variable or by
a field of areachableobject outside:. R is ¢'s rim. An object outside: is in ¢'s rim if
it is pointed-to by a field of an object insideh defines the values of fields for objects
insidec. We refer to a field pointing to an internal resp. rim objectasintra- resp.
inter-component referenck.should be the restriction of's heap onL. ¢ defines the
types of the objects insideand in its rim.t should be the restriction af's type map

on LUR. m is ¢'s component modul&Ve say that componentelongs tan. The type

of every object inside must belong ton. (If L is empty thenn must be the current
module ofs.) Note that a componemtrecords (among other things) all the aliasing
information available inr pertaining to fields of's internal objects. For reasons ex-
plained below, we treat a variable pointing to a locatiors@lg the current component
as an inter-component reference leaving the current coergpand add that location
to its rim (and relax the definition of a component accordimgl

Example 2.Memory states. = {pc, L¢, he, te, mc), depicted in Fig. 3, is comprised of three
components. A rectangular frame encompasses the intdyjeaite of every component. The cur-
rent component, marked with a star, belongsitg the client's module. The sealed components,
drawn shaded, belong to modute:r. Fig. 3(c*) depictsc* = (I*, L*, R*, h*,t*, m.), the cur-
rent component of., separately fromv.. The client-object is the only object insidé. It is
also an entry location,e., I* = L* = {1}. An entry location is drawn with a wide arrow point-
ing to it. The resource pool and the resource are rim objeetsR* = {2,5}. Rim objects are
drawn opaque. Thel -labeled edge depicts the only (inter-component) refexéme*. Note that

h* =hc|q1y andt™ =t.|{1 2,53 - Fig. 3 cp) and ¢r) depicto.’s sealed components.

The types of the reachable objects in a memory stateduce a (uniquelmplicit
component decompositiaf o: (i) a singleimplicit current componentdenoted by
¢*(0), containing all theeachableobjects ino that belong tas’s current module and
(i) a set ofimplicit sealed componentdenoted byC (o), containing (disjoint subsets
of) all the otherreachable objects. Two objeatsside withinthe same implicit sealed
componentif they belong to the same modulg#m (o) and are connected iris heap
via anundirected heap patihich only goes through objects that belong to module

The component decomposition of a memory stateduces anmplicit component
(directed) graph The nodes of the graph are the implicit components.ofhe graph
has an edge from, to ¢, if there is a rim object ir;; which is an entry location i,
i.e, if there is a reference from an objectdn to an object inco. For simplicity, we
assume that the graph is connected, and treat local vagigibéeway that ensures that.

Example 3.Component*, cp, andcr are the implicit components of,, i.e,, ¢* = ¢*(o.) and
{cp,cr} = C(o.). Double-line arrows depict the edges of the component grapis graph is
connected becaug#’s rim contains the resource pointed-to oy

From now on, whenever we refer to a component of a memory state mean an
implicit component ofr, and use the ternmplicit componenbnly for emphasis. (For
formal definitions of components and of component graples[3e)

Dynamically encapsulated memory stat&Ve define the constraints imposed on mem-
ory states by the dynamic encapsulation model by placingpicerestrictions on the
allowed implicit components and induced implicit compographs.

Definition 1 (Dynamic encapsulation).A DOS memory stater € X' is said to be
dynamically encapsulated, if (i) the implicit component graph of is a directed tree
and (ii) every (implicit) sealed componentdrhas exactly one entry location.

We refer to the parent (resp. child) of a componeirt the component tree as the
ownerof ¢ (resp. a subcomponentgf We refer to the single entry location of a sealed
component in a dynamically encapsulated memory statasc’s header and denote
it by hdr(c). We denote the module of a componetty m (c).

Invariant 1 The following properties hold in every dynamically encdatd DOS
memory stater € X and its implicit decomposition: (i) A local variable can gnl
point to a location inside* (o), the current component ef, or to the header of one of
¢*(o)’s subcomponents. (ii) For every component, every rim aligethe header of a
sealed component of (iii) A field of an object in a component efcan only point to
an object inside, or to the header of one efs subcomponents. (iv) All the objectsin a
sealed component are reachable from the component’s he@jlér header dominates
its reachable heap (vi) Every reachable object is inside exactly one companii) If

c1 € C(o) ownsey € C(o) thenm(cy) depend®nm(cz).

DOS preserves dynamic encapsulation. Thus, from now on, wieves refer to
aDOS memory state, we meandynamically encapsulateBOS memory state. As
a consequence of our simplifying assumptions and the aityctif the module depen-
dency relation, the following holds for evefyOS memory states: (i) The internal
objects ofc* (o) are exactly those that the current procedure can manipwigteut
an (indirect) intermodule procedure call. (i) The rim@f o) contains all the objects
which the current procedure can pass as parameters to amauele procedure call.

3.2 Operational Semantics

Intraprocedural Statements Intraprocedural statements are handled as usual in a two-
level store semantics for pointer programs (seg, [10]). The only unique aspect of
DOS, formalized in [9], is that it aborts if an inaccessiblewed pointer is accessed.

Interprocedural StatementsDOS is a local-heap semantics [11]: when a procedure
is invoked, it starts executing on amput heapcontaining only the set ofvailable
objects for the invocatiarAn object isavailable for an invocatiorif it is a parameter
object i.e., pointed-to by an actual parameter, or if it is reachablefome. We refer to
a component whose header is a parameter objecpasaaneter component

A local-heap semantics and its abstractions benefit frorhawng to represent un-
available objects. However, in general, the semanticssieetdke special care of avail-
able objects that are pointed-to by an access path whichsbgpahe parameteisug-
points[11]). In this paper, we do not wish to handle the problem @flyring programs
with an unbounded number of cutpoints [11], which we consa&leeparate research
problem. Thus, for simplicity, we require thimtramoduleprocedure calls should be
cutpoint-freg[5], i.e., the parameter objects should domifatee available objects for
the invocation. (In general, we can handlecndechumber of cutpoint§)

Fig. 4 defines the meaning of tlieu/l and Ret operations pertaining to an arbitrary
procedure caly = p(x1,...,xx).
Procedure callsThe Call operation computes the calleestry memory statéo.).
First, it checks whether the call satisfies gimplifyingassumptions. In case of an in-
tramodule procedure invocation, the caller's memory stat¢ is required to satisfy

% We can treat a bounded number of cutpoints as additionafpeas: Every procedure is mod-
ified to havek additional (hidden) formal parameters (whéres the bound on the number of
allowed cutpoints). When a procedure is invoked, the (medj§emanticdinds the additional
parameters with references to the cutpoints. This is thenegesof [6]'s treatment of cutpoints.

(Cally—p(ar,....z)1 Oc) 2o, me=m(p) = cpr Dpcyhlc(df)m(pc),Fp)
Oc = (pe; Le, helL, telL,,m(p)) me#m(p) = pir V1<i<j<k:pe(z:) # pe(w;)

Pe = [zi — pe(ms) | 1<i<k] Loc V1<i<k : p.(zi) € Loc
where: Ly = Ru, ({pc(xs) € Loc | 1<i<k})
(Rety—p(o1,....x1)s Oc, Ox) Z o me#m(p) = ownVz € Fpm : p2(z) € Loc
r = {pry Lo, hry tr,me) pom Vz € F;” : ng)’hm(F;", {z})

pr = (block o pc)[y— pa(ret)]
hr = (block o he|p\L,,) U ha
tr = tel\p,, Ut
where: Ly = Ru, ({pc(xs) € Loc | 1<i<k})
pS = palz = O | me#m(p),z € Fy]
block = v € Val. {pg(zi) v=pe(ri), 1 < i<k
v

rel

otherwise
Fig. 4. Call an Ret operations for an arbitrary procedure call= p(z1,...,zs) assuming
p’'s formal variables arex, ..., zx. 0c = (pc, Leyhe,te,me). 0o = (pa, Lz, ha,tz, ms).

F = {ret} U (F, \ F}). Variabler et is used to communicate the return value. We use the
following functions and relations, formally defined in [9%, (L) computes the locations which
are reachable in hedpfrom the set of location&. The auxiliary relatiorD, » (V7, Vp) holds if

the set of objects pointed-to by a variablélip, according to environment, dominates the part

of heaph reachable from them, with respect to the objects pointduittihe variables ifv;.

the domination condition-¢x) ensuring cutpoint-freedom. Intermodule procedure calls
are invoked under even stricter conditions which are furefatai to our approach: Ev-
ery parameter object must dominate the subheap reachabfeitfr This ensures that
distinct components are unshared. However, there is notoestbck these conditions
as they are invariants in our semantics: Inv. 1(i,iv,v) easuhat every parameter ob-
ject to an intermodule procedure call is a header which dataiits reachable heap.
(Note that Inv. 1(iv) can be exploited to check whether areobis a dominator by only
inspecting access paths traversing through its compdriemis, only our simplifying
assumptions pertaining to non-nullnessd) and non-aliasing of parameters) need

to be checked.

The entry memory state is computed by binding the valueseofdimal parameters
in the callee’s environment to the values of the correspamdctual parameters; pro-
jecting the caller's heap and type map on the available tbfec the invocation; and
setting the module of the entry memory state to be the modtilednvoked procedure.

Note that in intermodule procedure calls, the change of tineeat module implic-
itly changes the component tree: all the available objemt$hie invocation which be-
long to the callee’s module constitute the callee’s curcemiponent. By Inv. 1 (vi,vii),
these objects must come from parameter components.

Example 4.Fig. 3 (o) shows the entry memory state resulting from applyingitaél operation
pertaining to the procedure call r el ease(y) on the call memory state., also shown in
Fig. 3. All the objects irr. belong tomgp, and thus, to its current component. Note that the latter
is, essentially, a fusion efp andcr, the sealed componentsadn.

10

Note: The current component ofROS memory stater € Y is the root of the compo-
nent tree induced by tHecal heaprepresented ia. In aglobal heapthis current com-
ponent might have been one or more non-root subcomponeattaojer component-
tree which is only partially visible to the current proceeluFor example, the current
component of the client procedure is not visible during tkecetion ofr el ease.
Procedure returnsThe caller’s return memory state,{) is computed by &ket oper-
ation. When arintermoduleprocedure invocation returnf&et first checks that in the
exit memory stated,.) every non-transferred formal parameter points to an oljec:)
which dominates its reachable subheap). This ensures that returned components
are disjoint and, in particular, that the procedure’s ekeaurespected its ownership
transfer specification. (Here we exploit simplifying asguion (b) of Sec. 2.)

Ret updates the caller's memory state (which reflects the progratate at the
time of the call) by carving out the input heap passed to thleedrom the caller’s
heap and replacing it instead with the callee’s (possiblyjated heap. I'DOS, an
object never changes its location and locations are nea#iocated. Thus, any pointer
to an available object in the caller's memory state (eithealfiield of an unavailable
object or a variable) points after the replacement to arougiate version of the object.

Most importantly, the semantics ensures that any futuesgit by the caller to
access a transferred component is foiled: We say that a Vacglble of the caller is
danglingif, at the time of the invocation, it points to (the headerafomponent trans-
ferred to the callee. A pointer field of an object in the calenemory state which was
unavailable for the invocation is considered todaglingunder the same condition.
The semantics enforces the transfer of ownershifplbgking assigning the special
value© to every dangling reference in the caller’'s memory statead@ng also occurs
when anintramodule procedure invocation returns to propagate owngtsansfers
done by the callee.) Note that cutpoint-freedom ensurdshBaonly object that sepa-
rate the callee’s heap from the caller's heap are parambjects. Thus, in particular,
the only references that might be blocked point to paranwdtfercts.

When an intermodule call returns, and the current modulegés, the component
tree is changed too: The callee’s current component may|tiéngp different compo-
nents whose headers are the parameter objects pointedAonbiyansferred parame-
ters. These components may be different from the (inpugrpater components.

Example 5.Fig. 3 () depicts the memory state resulting from applying B operation per-
taining to the procedure call. r el ease(y) on the memory state. ando,, also shown in
Fig. 3. The insertion of the resource pointed-toybgt the call-site into the pool has (implicitly)
fused the twan;--components. By the standard semantjicshould point to the first resource
in the list (as indicated by the dashed arrow). This wouldat®dynamic encapsulatio®OS,
however, utilizes thewnership specificatioto blocky thus preserving dynamic encapsulation.

3.3 Observational Soundness

We say that two values amomparablein DOS if neither one is©. We say that a
DOS memory stater is observationally soundith respect to a standard semantigs
if every pair of access paths that have comparable values liras equal values ia
iff they have equal values ing. DOS simulateghe standar@-level store semantics:

11

Executing the same sequence of statements if& semantics and in the standard
semantics either results inxXOS memory states which is observationally sound with
respect to the resulting standard memory state, ofX% execution getstuckdue

to a constraint breach (detectedBYS). A program isdynamically encapsulatatiit
does not have have an execution trace which gets stuck. {hattéhe initial state of an
execution inDOS is observationally sound with respect to its standard cenpairt).

Our goal is to detect structural invariants that are trueeding to thestandard
semanticsDOS acts like the standard semantics as long as the prograntsiixe
satisfies certain constraint®OS enforces these restrictions by blocking references
that a program should not access. Similarly, our analygisrte an invariant concerning
equality of access paths only when these access paths hapauable values.

An invariant concerning equality of access pathD®S for a dynamically en-
capsulated program is also an invariant in the standardrst@eaThis makes abstract
interpretation algorithms dPOS suitable for verifying data structure invariants, for de-
tecting memory error violations, and for performing coregime garbage collection.

4 Modular Analysis

This section presents a conservative static analysis vithcttifies conservativeodule
invariants These invariants are true any program according to thBOS semantics
and inany dynamically encapsulatguograms according to the standard semantics.

The analysis is derived by two (successive) abstractionthe@DOS semantics:
The trimming semanticprovides the basis of ounodularanalysis by representing
only components of the analyzed module. Hstract trimming semanticalows for
an effective analysis by providing lBoundedabstraction of trimmed memory states
(utilizing existingintraprocedural abstractions).

Module Invariants A module invarianof a modulem is a property that holds for all
the components that belong#towhen they are not being useice(, for sealed compo-
nents). Our analysis finds module invariants by computingreservative description
of the set of all possible sealed components of the modulee ¥tsmally, themodule
invariant of modulen for typeT’, denoted by Inv,, T] C 2¢ is a set of sealed com-
ponents of module: whose header is of typE: a sealed componeats in [Inv,, T]
iff there exists a reachablBOS memory stater in some program such thate C(o).
For example, the module invariant of modutg, for typeRPol1 in our running
example is the set containing all resource pools with a {pblysempty) acyclicfinite
list of resources. The module invariant of modulg, for typeR is the singleton set
containing a single resource witmallified n-field: An acquired resource always has a
null-valuedn-field and a released resource is inaccessible.

Trimming semantics The trimming semantics represents only the parts of the heap
which belong to the current module. In particular, it abstsaaway all information
contained in sealed components and the shape of the conmtpgaen

More formally, thedomain of trimmed stateis X* = £ x C. Thetrimmed state
induced by @>OS memory state € X, denoted byrim (o), is {p, c*(c)). (For exam-
ple, Fig. 3 ¢*) depicts the trimmed memory state induced byZ@S memory state

12

shown in Fig. 3 §.).) We say that two trimmed memory states @@norphic denoted
by o~ o3, if o7 can be obtained from} by a consistent location renaming. A trimmed
memory state* abstractsa DOS memory stater if o*~ trim(o).

A trimmed memory state contains enough information to aeitee the induced ef-
fect [14] under the trimming abstraction of intraprocedstatements and intramodule
Call and Ret operations by applying the statementioy memory state it represents.
Intuitively, the reason for this uniform behavior is thae thAforementioned statements
are indifferent to theontentsof sealed components: They only consider the values of
fields of objects inside the current component (inter-congoo references included).
Analyzing intermodule procedure callthe main challenge lies in the handling of inter-
module procedure calls: Applying the induced effecfiaf! is challenging because the
most importantnformation required to determine the input heap of an mtedule call
is the contents of parameter components. However, thisastigxthe information lost
under tharimming abstractiorof the call memory state. Applying the induced effect of
Ret operations pertaining to intermodule procedure calls &@lehging as it considers
information about the contents of heap parts manipulatetifigrentmodules.

We overcome the challenge pertainingdall operations by utilizing the fact that
DOS always changes components as a whicde,there is no sharing between compo-
nents, thus changes to one component cannot &fpeirt of the internal structure of
another component. In particular, we aricipating the possible entry memory states
of an intermodule procedure calln the DOS semantics, the current component of
an entry memory state to an intermodule procedure call ispeized, essentially, as a
necessarilydisjoint union of parameter components. Note that compae sealed
only when an intermodule procedure call returns. Furtheemthe only way a sealed
component can be mutated is to pass it back as a parameterdgedpre of its own
module. Thus, a partial view of the execution trace, whiamsiders only the executions
of procedures that belong to the analyzed module, and teltbe sealed components
generated when an intermodule procedure invocation reteam (conservatively) an-
ticipate the possible input states for the next intermodwecations. Specificallygnly
a combination oflready generated sealed componarftthe module can be the com-
ponent parameters in an intermodule procedure invocation.

We resolveRet’s need to consider components belonging to different mexluti-
lizing the ownership transfer specification and the limigdfibct of intermodule pro-
cedure invocations on the caller’s current component: Trilg effect an intermodule
procedure call has on the current component of the callbais(f) dangling references
are blocked and (ii) the return value is assigned to a loa@gbke. (By our simplifying
assumptions, the return value must point either to a parrobject or to a component
not previously owned by the caller. The latter case amowordsiew object in the rim of
the caller’s current component). Given a sound ownershagifipation for the invoked
procedures we can apply this effect directly to the calleresnory state. This approach
can be generalized (and made more precise) to handle rigbeifisations concerning,
e.g, nullness of parameters, aliasing of parameters (andrgalues), and digests.

Abstract trimming semantics We provide an effective conservative abstract interpreta-
tion [14] algorithm which determines module invariants leyiding a bounded abstrac-
tion of trimmed memory states. Rather than providing a némprocedural abstraction

13

and analyses, we show howlifi existingintraprocedural shape analyses to obtain a
modular shape abstraction. An abstraction of a trimmed nngstate, being comprised
of an environment of a single procedure and a subheap, issirilar to an abstraction
of a standard two-level store. The additional elementstieatibstraction needs to track
is a bounded number of entry-locations and a distinctioween internal objects and
rim objects. In addition, the abstract domain, expectedippsrt operations pertaining
to basic pointer manipulating statements, should be ergttmlallow for: checking if
a O-valued reference is accessed; the operations requiredifpoint-free local-heap
analysis: carving out subheaps reachable from variablésambining disjoint sub-
heaps; and the ability to answer queries regarding donoimddy variables. The only
additional operation required to implement our analysisfiblocking i.e., setting the
values of all reference pointing to a given variable-pairdbject toc. The abstract do-
mains of [2—4], which already support the operations reglior performing standard
local-heap cutpoint-free analysis, can be extended wéheloperations.

Modular analysis We conduct our modular static analysis by performing arrjpnte
cedural analysis of a module together withntest-general-clienfThe most-general-
client simulates the behavior of an arbitrary dynamicaiigapsulatedvell behavedl
client. Essentially, it is a collection of non-determinggprocedures that execute ar-
bitrary sequences of procedure calls to the analyzed modibke parameters passed
to these calls also result from an arbitrary (possibly reiee) sequence of procedure
calls. The most-general client exploits the fact ttliffierent components are effectively
disjointto separately create the value of every parameter passedriteamodule pro-
cedure call. Thus, any conservative interprocedural aimabf the most-general client
(which uses an extended abstract domain, as discussed, avavatilizes ownership
specification to determine the effect of intermodule pracedtalls made by the ana-
lyzed module) can modularly detect module invariants. mipalar, the analysis can be
performed by extending existing interprocedural framéwdor interprocedural shape
analysis,e.g, [5, 6]. Note that during the analysis process we also findseorative
module implementation invariantBroperties that hold for all possible current compo-
nents at different program points inside the componentémepossible execution. [9]
provides a scheme for constructing the most-generaltadies module. ([9] also pro-
vides a characterization of the module invariants basedfoipaint equation system).

5 Related Work

A distinguishing aspect of our work is that we integrate gghanalysis with encapsula-
tion constraints. Our work presents a nice interplay betveseapsulation and modular
shape analysis: it uses dynamic encapsulation to enableleroghape analysis, and
uses shape analysis to determine that the program is dyabyréacapsulated. In this
section, we review some closely related work to both aspsotair approach. More
discussion on related work can be found in [9].

Modular static analysis[1] describes the fundamental techniques for modularcstati
program analysis. These techniques allow to compose gepamalyses of different
program parts. We use their techniques, in particular, veesimpleuser provided
interfaceso communicate the (limited) effect of mutations done byed@nt modules.

14

Modular heap analysig15] presents a modular analysis which infers class inn&sia
based on an abstraction of program traces. [16] is an extengiich handles subtyping.
The determined invariants concern values of atomic fieldshpécts of the analyzed
class and of subobjects, provided that they are never leakibeé contexte.g, passed
as return values. [17] modularly determines invariantareigg the value of an integer
field and the length of an array field of tsameobject. Our analysis, computes shape
invariants of subheaps comprised of objects that may beedassparameters
Interprocedural shape analysifl8, 19] utilize user-specified pre- and post- conditions
to achieve modular shape analysis which can handle a boumaetier of flat set-
like data structures. It allows objects to be placed in mldtisets. In our approach,
an object can be placed only in a single separately-analyaedrbitrarily-nested set.
Other interprocedural shape analysis algorittergs [5, 6, 11, 20—22], compute pro-
cedure summaries, but are not modular. [22] tracks pragsedf single objects. The
other algorithms abstract whole local heaps. Our abstiactin the other hand, repre-
sent only a part of the local heape(, only the current component). We note that the
aforementioned approaches do not require a user spedificathich we require.
EncapsulationDeep ownership models structure the heap into a tree oflfdcavner
contextysee [23] for a survey). Our module-induced decompositfaraemory state
into a tree of components is similar to the package-indu@titipning of a mem-
ory state into a tree of memory-regions in [24]. Our constsaare similar to external
uniqueness [25], which requires that there henauereference pointing to an object
from outside its (transitively) owned context. Our ownépsépecification is also in
the spirit of [25]’s destructive reads and borrowing. [26ks shape analysis to mod-
ularly verify (specified) uniqueness oflige reference to awbject Our use of sealed
and unsealed components is close to the use of packed andkedpawner contexts
in Boogie [27, 28]. The latter, however, can handle reemyahhe central difference
between the approaches is that our techniques infer mookdeiants whereas Boogie
verifies class invariants provided by the programmer.

Local reasoning[29] and [30] allow to modularly conduct local reasoning Jabout
abstract data structures and abstract data types withitahee, respectively. The rea-
soning requires user-specified resource invariants angifsariants. Our analysis au-
tomatically infers these invariants based on an ownersaipsfer specification (and an
instance of the bounded parametric abstraction). [30],dvew allows for more shar-
ing than in our model. Our use of rim-objects (resp. abstsaeled components) is
analogous to [30]'s use @afbstract predicatésiames (resp. resource invariants).

ConclusionsOur long term research goal is to devise precise and effistatit shape
analysis algorithms which are applicable to realistic paogs. We see this work as an
important step towards a modular shape analysis. Whilewheship model is fairly
restrictive with respect to the coupling between sepam@teponents, it is very permis-
sive about what can happen inside a single component. Thiehmalso sufficient to
express several, natural, usage constraints that arisadtige. (In particular, when ac-
companied with digests.) We believe that our restrictiarstze relaxed to help address
a larger class of programs. We plan to pursue this line ofareban future work.

Acknowledgments.We are grateful for the helpful comments of T. Lev-Ami, R. Man
vich, S. Rajamani, J. Reineke, G. Yorsh, and the anonymdeisees.

15

References

N =

10.
11.

12.

13.
14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.

. Cousot, P., Cousot, R.: Modular static program analysited paper. In: CC. (2002)

Lev-Ami, T., Immerman, N., Sagiv, M.: Abstraction for gleaanalysis with fast and precise

transformers. In: CAV. (2006)

. Manevich, R., Yahay, E., Ramalingam, G., Sagiv, M.: Rraidi abstraction and canonical
abstraction for singly-linked lists. In: VMCAI. (2005)

. Distefano, D., O'Hearn, P.W., Yang, H.: A local shape gsialbased on separation logic.
In: TACAS. (2006)

. Rinetzky, N., Sagiv, M., Yahav, E.: Interprocedural shamalysis for cutpoint-free pro-
grams. In: SAS. (2005)

. Gotsman, A., Berdine, J., Cook., B.: Interproceduralpshanalysis with separated heap
abstractions. In: SAS. (2006)

. Rinetzky, N., Ramalingam, G., Sagiv, M., Yahav, E.: Comdized heap abstractions.
Tech. Rep. 164, Tel Aviv University (2006)

. Strom, R.E., Yemini, S.: Typestate: A programming largguaoncept for enhancing soft-
ware reliability. IEEE Trans. Software Eng2(1) (1986) 157-171

. Rinetzky, N., Poetzsch-Heffter, A., Ramalingam, G.,i%ad., Yahav, E.: Modular shape

analysis for dynamically encapsulated programs. Tech. R&f) Tel Aviv University (2006)

Reynolds, J.: Separation logic: a logic for shared matdata structures. In: LICS. (2002)

Rinetzky, N., Bauer, J., Reps, T., Sagiv, M., Wilhelm, R.semantics for procedure local

heaps and its abstractions. In: POPL. (2005)

Plotkin, G.D.: A Structural Approach to Operational $itics. Technical Report DAIMI

FN-19, University of Aarhus (1981)

Knoop, J., Steffen, B.: The interprocedural coincidetheorem. In: CC. (1992)

Cousot, P., Cousot, R.: Abstract interpretation: A edifattice model for static analysis of

programs by construction of approximation of fixed points.ROPL. (1977)

Logozzo, F.: Class-level modular analysis for objerded languages. In: SAS. (2003)

Logozzo, F.: Automatic inference of class invariants MMCAL. (2004)

Aggarwal, A., Randall, K.: Related field analysis. In:IRL(2001)

Lam, P., Kuncak, V., Rinard, M.: Hob: A tool for verifyirdata structure consistency. In:

CC (tool demo). (2005)

Wies, T., Kuncak, V., Lam, P., Podelski, A., Rinard, MielB constraint analysis. In: VM-

CAl. (2006)

Jeannet, B., Loginov, A., Reps, T., Sagiv, M.: A relasilapproach to interprocedural shape

analysis. In: SAS. (2004)

Chong, S., Rugina, R.: Static analysis of accessednegiorecursive data structures. In:
SAS. (2003)

Hackett, B., Rugina, R.: Region-based shape analysistreicked locations. In: POPL.
(2005)

Noble, J., Biddle, R., Tempero, E., Potanin, A., Claiike, Towards a model of encapsula-
tion. In: IWACO. (2003)

Zhao, T., Noble, J., Vitek, J.: Scoped types for reaktjava. In: RTSS. (2004)

Clarke, D., Wrigstad, T.: External uniqueness is unigmeugh. In: ECOOP. (2003)
Boyland, J.: Alias burying: unique variables withoustlactive reads. Softw. Pract. Exper.
31(6) (2001) 533-553

Barnett, M., DeLine, R., Fahndrich, M., Leino, K.R.¢hulte, W.: Verification of object-
oriented programs with invariants. Journal of Object Tetbgy 3(6) (2004) 27-56

Leino, K.R.M., Mulller, P.: A verification methodologgrfmodel fields. In: ESOP. (2006)
O’Hearn, P., Yang, H., Reynolds, J.: Separation andnmétion hiding. In: POPL. (2004)
Bierman, G., Parkinson, M.: Separation logic and abstnas. In: POPL. (2005)

16

