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ABSTRACT
We analyze the problem of using Explore-Exploit techniques
to improve precision in multi-result ranking systems such as
web search, query autocompletion and news recommenda-
tion. Adopting an exploration policy directly online, with-
out understanding its impact on the production system, may
have unwanted consequences - the system may sustain large
losses, create user dissatisfaction, or collect exploration data
which does not help improve ranking quality. An offline
framework is thus necessary to let us decide what policy
and how we should apply in a production environment to
ensure positive outcome. Here, we describe such an offline
framework.

Using the framework, we study a popular exploration pol-
icy — Thompson sampling. We show that there are differ-
ent ways of implementing it in multi-result ranking systems,
each having different semantic interpretation and leading
to different results in terms of sustained click-through-rate
(CTR) loss and expected model improvement. In particu-
lar, we demonstrate that Thompson sampling can act as an
online learner optimizing CTR, which in some cases can lead
to an interesting outcome: lift in CTR during exploration.
The observation is important for production systems as it
suggests that one can get both valuable exploration data to
improve ranking performance on the long run, and at the
same time increase CTR while exploration lasts.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
We study “multi-result” ranking systems, i.e., systems

which rank a number of candidate results and present the
top N to the user. Examples of such systems are web search,
query autocompletion (see Figure 1), news recommendation,
etc. This is in contrast to “single-result” ranking systems
which also internally utilize ranking mechanisms but in the
end display only one result to the user.

One challenge with ranking systems in general is their
counterfactual nature [2]: We cannot directly answer ques-
tions of the sort “Given a query, what would have happened
if we had shown a different set of results?” as this is counter
the fact. The fact is that we showed whatever results the
current production model considered best. Learning new
models is thus biased and limited by the deployed rank-
ing model. One sound and popular approach to breaking
the dependence on an already deployed model is to inte-
grate an Explore-Exploit (EE) component into the produc-
tion system [12]. Exploration allows for occasionally ran-
domizing the results presented to the user by overriding
some of the top choices of the deployed model and replac-
ing them with potentially suboptimal results. This leads
to collecting in our data certain random results generated
with small probabilities. When training subsequent rank-
ing models, these results are often assigned higher weights,
inversely proportional to the probabilities with which they
were explored [2, 17]. As theoretically justified and empiri-
cally demonstrated, exploration usually allows better models
to be learned. However, adopting exploration in a produc-
tion system prompts a set of essential questions: which EE
policy is most suitable for the system; what would be the
actual cost of running EE; and most importantly, how to
best use the exploration data to train improved models and
what improvements are to be expected?

Here, we present an offline framework which allows “re-
playing” query logs to answer counterfactual questions. The
framework can be used to answer the above exploration
questions, allowing one to compare different EE policies
prior to their integration in the online system. This is
very important as running an inadequate policy online can
quickly lead to significant money loss, cause broad user dis-
satisfaction, or collect exploration data which is altogether
useless in improving the ranking model.

As a concrete example, we use the offline framework to
evaluate Thompson sampling, a popular EE method which is
simple to implement and is very effective at trading off explo-
ration and exploitation [4,16,18]. We point out that in fact
there are multiple ways of implementing Thompson sam-



Figure 1: Maps query autocomplete system. For the same (query) prefix “santa” the system ranks on top geo-results which it
deems relevant to the user context. Left : San Francisco, Right : Santiago.

pling, each having different semantic interpretation. Some
of the implementations correct for bias (calibration prob-
lems) in the ranking model scores while others correct for
position bias in the results. Naturally, employing different
strategies leads to different costs, i.e. the price to be paid
for exploring suboptimal results, and to different model im-
provements. We also introduce two schemes for weighting
of examples, collected through exploration, during training
new ranking models.

Because EE can promote suboptimal results it is com-
monly presumed that production systems adopting it always
sustain a drop in the click-through-rate (CTR) during the
period of exploration. By analyzing Thompson sampling
policies through our offline evaluation framework, we ob-
serve an interesting phenomenon: using the right implemen-
tation can, in fact, produce a lift in CTR of the production
system. In other words, the gain is twofold - the system
collects valuable training data and has an improved CTR
while exploration continues.

To summarize, this paper makes the following contribu-
tions:

• We describe a novel framework for offline evaluation
and comparison of explore-exploit policies in multi-
result ranking systems.

• We introduce several new Thompson sampling imple-
mentations that are tailored to multi-result ranking
systems, some more suitable in the case of ranking
score bias and others in the case of position bias.

• We introduce two simple weighting schemes for train-
ing examples collected through Thompson sampling.

• Using the framework, we show that adopting the right
policy can achieve exploration and increase the CTR
of the production system during exploration.

The rest of the paper is organized as follows. In Section 2,
we introduce the offline policy evaluation framework using

a maps query autocompletion system as an example. Sec-
tion 3 discusses different ways of implementing Thompson
sampling and weighting examples collected with them. Sec-
tion 4 compares the introduced Thompson sampling policies.
We finish by discussing related works in Section 5.

2. EXPLORE-EXPLOIT FRAMEWORK

2.1 A multi-result ranking system
As a working example we are going to look into the maps

query autocompletion service of a popular map search en-
gine (Figure 1). When users start typing a “query” in the
system they are presented with up to N = 5 relevant geo
entities as suggestions. If users click on one of the results,
we assume that we have met their intent; if they do not,
the natural question to ask is “Could we have shown a dif-
ferent set of results which would get a click?”. As pointed
out in the introduction, the question is counterfactual and
cannot be answered easily as it requires showing a different
set of suggestions on exactly the same context. This section
describes a framework that allows answering such counter-
factual questions. We first go over some prerequisites.

In building ranking systems as above, the usual process
goes roughly through the following three stages: 1) The
query is matched against an index; 2) For all matched enti-
ties a first layer of ranking, L1 ranker, is applied. The goal
of the L1 ranker is to ensure very high recall and prune the
matched candidates to a more manageable set of say a few
hundred results; 3) A second layer, L2 ranker, is then ap-
plied which re-orders the L1 results in a way to ensure high
precision. There could be more layers with some specialized
functionality but overall these three stages cover the three
important aspects: matching, recall and precision.

Building the L1 ranker is beyond the scope of this work.
Here, we focus on methodologies for improving L2 ranking,
namely, precision of the system. We assume that there is
a machine learned model powering the L2 ranker, i.e. the



system adopts a learning-to-rank approach [3].
Let us now focus on the structure of the logs generated

by the system as well as how an EE policy can be applied
in it. Table 1 shows what information can be logged by a
multi-result ranking system for a query.

Position (i) Label (y) Result(r) Rank score (s)

i = 1 0 Suggestion 1 s1 = 0.95
i = 2 0 Suggestion 2 s2 = 0.90
i = 3 1 Suggestion 3 s3 = 0.60
i = 4 0 Suggestion 4 s4 = 0.45
i = 5 0 Suggestion 5 s5 = 0.40

Table 1: Original system: example logs for one query.

Suppose that L1 ranking extracted M ≥ N relevant re-
sults which then L2 re-ranked and produced the top N = 5
suggestions from Table 1. We assume that, for at least a
fraction of the queries, the suggestions from the table and
the user actions are logged by the production system.

The first column in the table shows the ranking position
of the suggested result. The Label column reflects the ob-
served clicks — 1 if the result was clicked and 0 otherwise.
The Result column contains some context about the result
that was suggested, part of which is only displayed to the
user and the rest is used to extract features to train the
ranking model. The last column shows the score which the
L2 ranking model has assigned to the results.

2.2 Explore-Exploit in the online environment
We assume a relatively conservative exploration process

taking place in the online environment. Namely, it is allowed
to replace only suggestions appearing at position i = N .
This is to ensure that we do not generate large user dissat-
isfaction by placing potentially bad results as top sugges-
tions. For exploration in addition to the candidate at posi-
tion i = N we choose among the candidates which L1 returns
and L2 ranks at positions i = N + 1, . . . , i = N + t ≤M , for
some relatively small t. By doing so, we do not explore re-
sults which are very low down the ranking list of L2 as they
are probably not very relevant. Requiring that a candidate
for exploration meets some minimum threshold for its rank-
ing score is also a good idea. Naturally, if for a query there
are less than N = 5 candidates, then no exploration takes
place for it.

To enable EE online we also need to define a policy — a
mechanism which selects with a certain probability a sugges-
tion different from the one that the deployed ranking model
would recommend. Different policies can be implemented.
In Section 3 we study several such policies and how they
can be simulated in an offline environment. We also discuss
how the data collected from them can be weighted suitably
for training better ranking models; details can be found in
Section 3.2.

2.3 Offline simulation environment
Running the above EE process directly in the production

environment can lead to costly consequences: it may start
displaying inadequate results which can cause the system to
sustain significant loss in CTR in a very short time. It is
further unclear whether it will help us collect training exam-
ples that will lead to improving the quality of the ranking
model. We therefore want to simulate the above online pro-

cess a priori in an offline system that closely approximates
it. Here, we present such an offline system.

The main idea of the offline system is to mimic a scaled-
down version of the production system. Specifically, we as-
sume offline that our Autocomplete system displays k < N
results to the user instead of N = 5. Again, to replicate the
online EE process from Section 2.2, different policies evalu-
ated in the offline system will be allowed to show on its last
position (i.e., on position k) any of the results from positions
i = k, ..., N .

To understand the offline process better, let us look into
two concrete instantiations of the simulation environment
which use the logged results from Table 1.

In the first instantiation, we set k = 2. It means that the
offline system displays to the user two suggestions, as seen in
Table 2. Position i = 2 is going to be used for exploration,
and the result to be displayed will be selected among the
candidates at position i = 2, . . . , i = 5.

Pos Label Result Score(s)
Dis- i = 1 0 Sugg. 1 s1 = 0.95

played i = 2 0 Sugg. 2 s2 = 0.90
EE Can-

i = 3 1 Sugg. 3 s3 = 0.60
didates

i = 4 0 Sugg. 4 s4 = 0.45
i = 5 0 Sugg. 5 s5 = 0.40

Table 2: Offline system with k = 2. Logs for one query
derived from the logs from Table 1. Position i = 2 (in blue)
is used for exploration.

In the second instantiation, we set k = 3; that is, the
offline system is assumed to display three suggestions. Po-
sition i = 3 is used for exploration and the candidates for it
are the results from the original logs at positions i = 3, 4, 5.
This setting is depicted in Table 3.

Pos Label Result Score(s)

Dis-
i = 1 0 Sugg. 1 s1 = 0.95

played
i = 2 0 Sugg. 2 s2 = 0.90
i = 3 1 Sugg. 3 s3 = 0.60

EE Can-
i = 4 0 Sugg. 4 s4 = 0.45

didates
i = 5 0 Sugg. 5 s5 = 0.40

Table 3: Offline system with k = 3 suggestions. Logs for one
query derived from the logs from Table 1. Position i = 3 (in
blue) is used for exploration.

Suppose we use k = 2. Using only the production system
we would display in our simulated environment “Suggestion
1”and“Suggestion 2”and we would not observe a click as the
label in the logs for both position i = 1 and i = 2 is zero.
Now suppose we use the described framework to compare
two EE policies, π1 and π2, each selecting a different result
to display at position i = 2. For example, π1 can select to
preserve the result at position i = 2 (“Suggestion 2”) while
π2 can select to display instead the result at position i = 3
(“Suggestion 3”). Now we can ask the counterfactual, with
respect to the simulated system, question“What would have
happened had we applied either of the two policies?”. The
answer is, with π2 we would have observed a click, which we
know from the original system logs (Table 1) and with π1

we would not have. If this is the only exploration which we
perform the information obtained with π2 would be more



valuable and would probably lead to training a better new
ranking model. Note also that applying π2 would actually
lead to a higher CTR than simply using the production sys-
tem. This gives an intuitive idea of why CTR can increase
during exploration as demonstrated in the evaluation in Sec-
tion 4.2.

It should be noted that our simulation environment effec-
tively assumes the same label for an item when it is moved
to position k from another, lower position k′ > k. Due to
position bias, CTR of an item tends to be smaller if the item
is displayed in a lower position. Therefore, our simulation
environment has a one-sided bias, favoring the production
baseline that collects the data. While the bias makes the
offline simulation results less accurate, its one-sided nature
implies the results which we show in Section 4.2 are conser-
vative: if a new policy is shown to have a higher offline CTR
in the simulation environment than the production baseline,
its online CTR can only be higher in expectation.

3. THOMPSON SAMPLING FOR MULTI-
RESULT RANKING

We now demonstrate the offline framework by comparing
several implementations of Thompson sampling, a popular
policy due to its simplicity and effectiveness [4, 16, 18]. In
the process we identify two interesting observations. First,
there are multiple ways to implement Thompson sampling
for multi-result ranking problems. They have different in-
terpretations and lead to different results. Second, if the
“right” implementation for the problem at hand is selected,
then Thompson sampling can refine the ranking model CTR
estimates to yield better ranking results. The method then
essentially works as an online learner, improving the CTR
of the underlying model by identifying segments where the
model is unreliable and overriding its choice with a better
one. This in turn can lead to an important result — adopt-
ing EE can entail a twofold benefit: it can collect valuable
data for improving ranking precision, and at the same time
lift the CTR of the production system during the period of
exploration.

Algorithm 1 outlines our generic implementation of
Thompson sampling. The algorithm closely follows the im-
plementation suggested by [4] with two subtle modifications:
1) defining exploration buckets1 in line 1; and 2) sampling
from the subset of buckets relevant only to the current it-
eration in line 4. We elaborate on these points below, and
will show they are essential and lead to very different re-
sults with different instantiations. In the evaluation section
we also discuss how we set the exploration constant ε (lines
9, 11) to update the parameters of the beta distributions.

3.1 Thompson sampling policies
Here we describe three policies based on Thompson sam-

pling. Each is characterized by: 1) how it defines the buckets
(line 1 in the algorithm); 2) What probability estimate is the
bucket definition semantically representing.

Sampling over positions policy.
This is probably the most straight-forward, but not very

effective implementation of Thompson sampling. It defines
buckets over the ranking positions used for drawing explo-
ration candidates. More specifically we have:

1Aka “arms” in the multi-arm bandits literature.

Algorithm 1 Thompson Sampling for Multi-result Ranking

1: Define buckets: P = {P1, P2, . . . , Pn}
2: Initialize Beta distributions: {B(α1, β1), . . . , B(αn, βn)}
. One per bucket

3: while (ExplorationIsEnabled) do

4: P̂← {Pc1 , . . . , Pcl} ⊆ P . Select the buckets
involved in the current iteration

5: Draw θi ∼ B(αi, βi), ∀i ∈ {c1, . . . , cl}
6: m← argmaxiθi
7: Display rm for exploration . rm is the result

associated with the selected bucket Pm

8: if (rm clicked) then
9: αm ← αm + ε . Increment with constant

10: else
11: βm ← βm + ε . Increment with constant

Bucket definition: There are n = N − k + 1 buck-
ets each corresponding to one of the candidate positions
i = k, ..., i = N . All of them can be selected in each it-
eration so P̂ = P. For instance, if we have instantiation as
per Table 3 we would have three buckets, n = 3, for positions
i = 3, i = 4, and i = 5 — the positions of the candidates for
exploration.
Probability estimate: P (click|i, k). In this implementa-
tion Thompson sampling estimates the probability of click
given that a result from position i is shown on position k.
This implementation allows for correction in the estimate of
CTR per position. The approach allows also for correcting
position bias. Indeed, results which are clicked simply be-
cause of their position may impact the ranking model and
during exploration we may through them away eliminating
their effect on the system. This makes the approach espe-
cially valuable in systems with pronounced position bias.

Sampling over scores policy.
In this implementation we define the buckets over the

scores of the ranking model. Each bucket covers a particular
score range. For simplicity let us assume that the score inter-
val [0, 1] is divided into one hundred equal subintervals one
per each percentage point: [0, 0.01), [0.01, 0.02), . . . , [0.99, 1].
For the suggested division we have:
Bucket definition: There are n = 100 buckets one per
score interval P1 = [0, 0.01), . . . , P100 = [0.99, 1]. In each
iteration only a small subset of these are active. In the
example from Table 3 only the following three buckets are
active Pc1 = P61 = [0.60, 0.61), Pc2 = P46 = [0.45, 0.46),
and Pc3 = P41 = [0.40, 0.41). Suppose after drawing from
their respective Beta distributions we observe that m = 61,
i.e. we should show the first of the three candidates which
turns out to result in a click. In this case, we update the
positive outcome parameter for the corresponding Beta to
α61 = α61 + ε.
Probability estimate: P (click|s, k). In this implementa-
tion Thompson sampling estimates the probability of click
given a ranking score s for a result when shown at position
k. In general, if we run a calibration procedure then the
scores are likely to be close to the true posterior click prob-
abilities for the results [15], but this is only true if we look
at them agnostic of position. With respect to position i = k
they may not be calibrated. We can think of Thompson
sampling as a procedure for calibrating the scores from the
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Figure 2: Model improvement for an Autocomplete system
displaying k = 2 results to the user.

explored buckets to closely match the CTR estimate with
respect to position i = k.

Sampling over scores and positions policy.
This is a combination of the above two implementations.

Again we assume that the score interval is divided into one
hundred equal parts [0, 0.01), [0.01, 0.02), . . . , [0.99, 1]. This,
however, is done for each candidate position i = k, . . . , i =
N . That is, we have:
Bucket definition: (N − k + 1) ∗ 100 buckets. For more
compact notation let us assume that bucket P i

q covers enti-
ties with score in the interval [s, s+ 0.01) when they appear
on position i (here q = b100sc + 1). In the example from
Table 3 we have n = 300 buckets and for the specific itera-
tion the three buckets to perform exploration from are P 3

61,
P 4
46, and P 5

41.
Probability estimate: P (click|s, i, k). In this implemen-
tation Thompson sampling estimates the probability of click
given a ranking score s and original position i for a result
when it is shown at position k instead. This differs from the
previous case as in its estimate it tries to take into account
the position bias, if any, associated with clicks.

These are definitely not all buckets that could be defined.
Depending on the concrete system there may be others that
are more suitable and lead to even better results. The point
we are trying to convey is that how one defines buckets can
vary and it plays a crucial role for the success of the explo-
ration process.

3.2 Example weighting
Once we have an EE procedure in place a natural question

to ask is how to best use the exploration data to train im-
proved models. Here we introduce two schemes for assigning
training weights to examples collected through exploration.

Propensity based weights.
In training new rankers it is a common practice to re-

weight examples selected through exploration inversely pro-
portional to the probability of displaying them to the user.
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Figure 3: Model improvement for an Autocomplete system
displaying k = 3 results to the user.

The probability of selecting an example for exploration is
called propensity score [12]. More specifically, if we denote
the propensity score for example xj with p(xj), then its
training weight is set to wj = 1

p(xj)
.

Computing propensity scores for Thompson sampling in
the general case of more than two Beta distributions involved
in each iteration (l > 2, line 5 in Algorithm 1) does not have
an analytical solution [5]. We thus derive the following em-
pirical estimate: if we draw for exploration xj from bucket
Pi (line 6 of the algorithm) then we set p(xj) to the ratio
between examples that have been explored thus far from Pi

over the sum of all examples explored from buckets in P̂.

Multinomial weights.
We also analyze a different, very simple weighting scheme

based on the scores of the baseline ranking model. Let xi is
the result displayed to the user from bucket Pi and let its
ranking score be si. If xj is the selected example for explo-
ration then we first compute the “multinomial probability”
p(xj) =

sj∑
i∈{c1,...,cl}

si
. The weight is then computed again

as the inverse proportional wj = 1
p(xj)

. If in Table 3 we

have selected for exploration the example at position i = 3
then its probability is 0.6

0.6+0.45+0.40
= 0.6

1.45
and the weight

is 1.45
0.6

= 2.41. We call this weighting scheme multinomial
weighting.

In both weighting schemes we cap the weight assigned to
an example to avoid stressing excessively a single piece of
evidence as suggested in previous work [2, 12,17].

4. POLICY EVALUATION AND COMPAR-
ISON

The proposed offline framework allows us to evaluate dif-
ferent EE policies, such as the Thompson sampling poli-
cies described in the previous section. We mainly focus on
two aspects: 1) Expected ranking model improvement; 2)
Change in CTR during exploration. We start with our ex-
perimental setup.
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1M AC Queries.

4.1 Evaluation setup
Data and Baseline Model: We use maps autocom-

plete (AC) logs spanning over two months collected by the
production model. The first month is used to simulate on-
line exploration, as described in Section 2.3, to compute the
expected CTR loss and subsequently to train new ranking
models. The second month is used to test and report perfor-
mance results for the models trained on data from the first
month.

Our baseline, No Exploration method (Figures 2 and 3),
closely replicates the L2 ranking model used in the produc-
tion system — a variant of boosted regression trees [6]. The
model adopts a point-wise learning-to-rank approach, that
is it is trained on individual suggestions and assigns a clicka-
bility score to each result in scoring time optimizing squared
loss. Point-wise models have been shown to be very compet-
itive on a variety of ranking problems [3]. It is important to
note, though, that the ideas presented here are agnostic to
the exact L2 ranker deployed in production. For instance,
we obtained directionally similar results with more elaborate
pairwise rankers optimizing NDCG [20].

Evaluation process: We measure the performance for
datasets of sizes 10K, 50K, 100K and 1M queries which we
sample uniformly at random from the training month. Keep
in mind, that each query leads to up to five suggestions,
i.e. for the largest set of 1M queries we train on over 2M
individual examples. Each example is represented as a high
dimensional vector of features capturing information about
the result and the user context — static rank of the result,
similarity to the query, distance to the user, etc.

For each of the query sets we run ten times the following
steps, summarizing in the figures the mean and the variance
across the ten runs.

Step 1. We choose a setting for the results to be displayed
by the offline system k = 2 (Figures 2 and 4) and k = 3
(Figures 3 and 5).

Step 2. For the No Exploration baseline we take the top
k suggestions and train the baseline model on them. If the
production model is trained on only the top k results from
its logs it will achieve exactly the same performance as the
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Figure 5: CTR lift during exploration for k = 3 - 100K and
1M AC Queries.

No Exploration model from the plots.
Step 3. On the same set of queries, used to train the

baseline model, we run the discussed Thompson sampling
policies, with n buckets as described in Section 3.1, dividing
the scores interval into 100 equal subintervals as mentioned
in the same section. The policies involve a stochastic step
- each of them decides randomly to place on position i = k
one of the suggestions from positions i = k, k + 1, ..., N , as
described in Section 2.3. The resulting top k suggestions are
what a scaled down version of the production system would
log if it utilizes the respective policy. We use this data to
train the same type of model configured identically as the
baseline model. Therefore, the improvement observed on
the test period can be attributed entirely to the exploration
data collected through the policies.

Step 4. If a query has fewer than, or equal to, k results in
the production logs we add it to the training set as is because
in this case there are no results to explore from. We estimate
that approximately 60% of the queries have more than two
results and approximately 50% have more than three results.
These are the queries which contribute to exploration for the
two settings of k = 2 and k = 3 respectively.

Step 5. Finally, in training the models, we re-weight the
examples collected with the exploration policies using the
weighting schemes discussed in Section 3.2.

4.2 Evaluation of policies
Let us now discuss in some more detail the results from

the different experiments.
Model improvement. Figures 2 and 3 show the model

improvement achieved with different policies for k = 2 and
k = 3 suggestions respectively. CTR is measured as the
fraction of queries that would result in a click over all queries
from the test month in an Autocomplete system that would
display up to k suggestions.

Naturally, having more data to train on improves the per-
formance of all models. The CTR for all models for k = 2
(Figure 2) ranges from 0.87 to 0.92 while for k = 3 it is be-
tween 0.94 and 0.96 (Figure 3). The larger CTR for k = 3
is due to two factors: 1) For k = 3 the system displays more
results which are more likely to contain the clicked sugges-
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tion from the production logs; 2) There is difference in the
number of training examples too. For instance, for k = 2
we still use 1M queries in the largest experiment, but each
query contributes with up to two results, i.e. we have ap-
proximately 1.5M training examples in total. For k = 3
there are approximately 2.5M examples for the same set of
queries.

We can see from the figures that in both cases the poli-
cies which account for bias in the model scores, Thomp-
son over Scores (Scores for simplicity) and Thompson over
Scores&Positions (Scores&Positions for simplicity), achieve
large improvement over the production No Exploration sys-
tem. The advantage of the Scores policy is especially strik-
ing for k = 2 yielding a consistent 1.5% model improve-
ment across all query set sizes. In fact, using Scores or
Scores&Positions with just 50K training queries results in
models which have better test performance for both settings
of k than the production No Exploration model trained on
1M queries!

What is the reason for Scores to perform better than
Scores&Positions, and for both of them to outperform Po-
sitions which barely improves on the production model for
1M queries? We believe the answer is twofold.

First, there is a not too pronounced position bias associ-
ated with the problem. In web search often multiple results
are relevant to a query. Showing them on different positions
frequently yields different CTR. Here the intent is usually
very well specified. Users are mostly interested in one par-
ticular geo-entity, e.g. a specific restaurant, park or a resi-
dential address. There are also only up to five suggestions
per query which are easy to inspect visually.

Second, there is very stable CTR associated with each po-
sition. Higher positions have higher CTR. Thompson sam-
pling policies that utilize position information quickly iden-
tify this and start apportioning most of the exploration to
the optimal position. Therefore, exploration stops too early.

Exploration rate ε. For all experiments we use explo-
ration rate ε = 1 (line 9, 11 in Algorithm 1). Decreasing ε
forces Thompson sampling to continue exploration longer.
As we mentioned above, Positions stops exploration too
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Figure 7: Examples explored from different positions for
k = 3.

early. To force further exploration, for this policy only, we
decrease the rate to ε = 0.01. Still, as we see in Figures 2
and 3 Positions only marginally improves on No Exploration
for 1M examples. It should be noted that one cannot de-
crease ε dramatically because then there is significant drop
in CTR during exploration, which might be too steep of a
price to pay for model improvement.

Weighting scheme. We repeated all experiments from
Figures 2 and 3 with both weighting schemes discussed in
Section 3.2. Though propensity based weighting is consid-
ered a more suitable weighting scheme in the literature [14],
for our multi-result ranking problem we observed a different
outcome. For k = 2 the multinomial weighting produced
over 0.5% improvement compared to propensity weights.
Multinomial weighting was also slightly better, though less
pronounced, in the case of k = 3. All model improvement
results presented here reflect multinomial weighting.

CTR lift in exploration. So far we saw that we can
train models that outperform the production one by using
exploration data from specific policies. We now look into
what price the production system will pay for this model im-
provement. The common understanding is that as EE selects
potentially suboptimal results production systems should al-
ways sustain a drop in CTR during the period of exploration.

Figure 4 and 5 demonstrate one of the major contribu-
tions of this work. They show that the above assumption is
not necessarily true. On the contrary, if the right policy is
selected multi-result ranking systems can even record a lift
in their CTR. Here, CTR lift during exploration is defined
as the CTR of each policy minus the CTR of the produc-
tion No Explore system both computed during the training
month.

The Positions policy indeed impacts the CTR of the pro-
duction system negatively: 1.2% and 0.3% drop in CTR for
k = 2, 100K and 1M queries Figure 4, and 0.6% and 0.2%
drop in CTR for k = 3 Figure 5. The results are for ε = 0.01,
yet even for ε = 1 we observe a drop in CTR.

With the Scores and Scores&Positions policies, however,
we observe stable lift in CTR especially as the query set size
grows to 1M. For k = 2 and dataset size of 1M queries the



policies improve the production CTR with 0.5% and 0.8%
Figure 4. For k = 3 the lift is approximately 4.2% and 4.3%
Figure 5. The reason that for k = 3 the lift is lower is due
to the fact that in this setting there is a smaller pool of
candidates for the system to explore — it runs exploration
among only three positions k = 3, k = 4 and k = 5.

Finally, Figure 6 and Figure 7 show from which positions
the selection was performed during exploration in the case
of k = 2 and k = 3 respectively. As can be seen, Positions is
very conservative and explores mostly the optimal position
i = 2 in Figure 6 and i = 3 in Figure 7, when the number of
examples increases to 1M, even though we have set ε = 0.01.
Another interesting observation is that Scores&Positions is
more conservative, selecting fewer examples from subopti-
mal positions. As we saw above, this leads to a greater
CTR lift during exploration than Scores. However, it also
produces less of an improvement in the ranking model.

5. RELATED WORK
Explore-exploit techniques hold the promise of improving

machine-learned models by collecting high-quality, random-
ized data. A common concern in production teams, however,
is that they may invest resources integrating EE in their sys-
tems, suffer high cost during the EE period, and end up with
data that does not lead to substantially better models. To
address this concern multiple efforts have focused on build-
ing offline systems that try to quantify a priori the effects
that EE will have on the system [2, 10, 12–14, 17]. All of
these works focus on how data collected with a production
model or another policy [10] can be used to estimate a priori
the performance of a new policy. Under the assumption of
stationary data distribution, it can be proved that weighting
data inversely proportional to the propensity scores leads to
unbiased offline estimators, i.e. models for which we can
provide guarantees will behave in a certain way in produc-
tion [2, 17]. Many recent works adopt the evaluation ap-
proach (e.g., [2,14]). While theoretically sound, these offline
frameworks make a few assumptions which may not always
be present. For instance, as we noted earlier, in certain cases
the propensity scores can not be computed in closed form,
e.g. in Thompson sampling [5], so one needs to use approxi-
mations as the one implemented here. Another problem lies
in the fact that it is often impractical to assume station-
ary distribution — for instance we find in our data many
seasonal queries, queries which result from hot geo-political
news etc, all of which impact the CTR of the system signif-
icantly.

Our work can be considered a special case of the generic
Contextual Bandid framework [1, 11, 13, 19]. Unlike these
works where the context is assumed to come in the form of
additional observations [19] or features, e.g. personalized in-
formation [13], the context in our case is in the rich structure
of the problem. For example, most of the works mentioned
in this section focus on the single result case, i.e. there
are k-arms to choose from but ultimately only one result
is displayed to the user. We focus on multi-result ranking
systems instead. As we saw here many real-world problems
follow the multi-result ranking settings, which require spe-
cial handling due to presence of position and ranking score
bias. More recently [8] has discussed the multi-result set-
ting. The authors describe a non-stochastic procedure for
optimizing a loss function which is believed to lead to proper
exploration. While the work is theoretically sound it does

not show whether the approach leads to improvement of the
underlying model. The method also lacks some of the ob-
served convergence properties of Thompson sampling which
starts apportioning examples to buckets which it overtime
finds likely to lead to higher CTR.

The effectiveness of Thompson sampling has been noted
previously by [4,7,16] and others. Subsequently efforts have
focused on understanding better the theoretical properties
of the algorithm (e.g., [9]) leaving aside the important imple-
mentation considerations which we raised, namely, that in
the context of multi-result ranking there are multiple ways to
define the buckets (arms), and that different definitions lead
to different semantic interpretation and different results.

6. CONCLUSION
We presented an offline framework which allows evaluation

of EE policies prior to their deployment in an online envi-
ronment. The framework allowed us to define and compare
several different policies based on Thompson sampling. We
demonstrated an interesting effect with significant practical
implications. Contrary to the common belief, that a pro-
duction system often has to pay a price of (possibly steep)
CTR decrease during exploration, we show that the opposite
can happen. If implemented suitably, a Thompson sampling
policy can, in fact, have twofold benefits: it can collect data
that improves the baseline model performance significantly
and at the same time it can lift the CTR of the production
system during the period of exploration.
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