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Abstract. Maintainingstatistics on multidimensional data distributions
is crucial for predicting the run-time and result size of queries and data
analysis tasks with acceptable accuracy. To this end a plethora of tech-
niques have been proposed for maintaining a compact data “synopsis”
on a single table, ranging from variants of histograms to methods based
on wavelets and other transforms. However, the fundamental question of
how to reconcile the synopses for large information sources with many
tables has been largely unexplored. This paper develops a general frame-
work for reconciling the synopses on many tables, which may come from
different information sources. It shows how to compute the optimal com-
bination of synopses for a given workload and a limited amount of avail-
able memory. The practicality of the approach and the accuracy of the
proposed heuristics are demonstrated by experiments.

1 Introduction

Maintaining compact and accurate statistics on data distributions is of crucial
importance for a number of tasks: (1) traditional query optimization that aims
to find a good execution plan for a given query [417], (2) approximate query an-
swering and initial data exploration [QTIT4J3|8], and (3) prediction of run-times
and result sizes of complex data extraction and data analysis tasks on data min-
ing platforms, where absolute predictions with decent accuracy are mandatory
for prioritization and scheduling of long-running tasks. This broad importance
of statistics management has led to a plethora of approximation techniques, for
which [TT] have coined the general term “data synopses”: advanced forms of his-
tograms [24IT2T6], spline synopses [I8/19], sampling [SJT3T0], and parametric
curve-fitting techniques [27)[7] all the way to highly sophisticated methods based
on kernel estimators [2] or Wavelets and other transforms [22J21)J3]. However,
most of these techniques take the local viewpoint of optimizing the approxima-
tion error for a single data distribution such as one database table with pre-
selected relevant attributes. The equally important problem which combination
of synopses to maintain on the application’s various datasets and how to divide
the available memory between them has received only little attention [LJ6/I9],
putting the burden of selecting and tuning appropriate synopses on the database
administrator. This creates a physical design problem for data synopses, which
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can be very difficult in advanced settings such as predicting run-times of data
analysis tasks or information wealth of Web sources by a mediator. The state of
the art is inadequate for a number of reasons:

— Since the accuracy of all approximation techniques depends on the memory
size allotted to them, synopses for different data distributions compete for the
available memory. In query optimization, for example, a small sized synopsis
that does not improve query plan selection might have impact when given
more memory.

— All proposed techniques are limited in the types of queries they support well.
Most techniques aim at range-query selectivity estimation only and are thus
unsuitable for complex queries with joins or aggregation/grouping unless
additional synopses are maintained that are geared for approximations that
cannot be inferred from the base representations (e.g., join synopses [1[19]).
These additional synopses compete for the same memory space, and tuning
the memory allocation for the various synopses is very difficult.

— Because the choice of an optimal combination of synopses is dependent on the
workload (i.e., the query mix for which run-time and result size predictions
or approximate answers need to be computed), it needs to be continuously
adapted to the evolving workload properties.

1.1 Related Work

The reconciliation of different synopses as well as dedicated synopses for join
queries (a uniform random sample over a foreign key join) was initially consid-
ered in [I]. Our work adapts these ideas and generalizes them, as their realization
in the previous paper is limited to samples as base synopses and a data ware-
house environment with a central fact table connected (via foreign keys) with
the respective dimension tables. An extension of this approach to incorporate
workload information (in the form of access locality) can be found in [8], but it
is also limited to the above scenario.

The reconciliation problem for spline synopses was first discussed in [19],
where a dynamic programming approach is proposed to minimize the error for
a given set of synopses. However, this work offers no solution regarding which
set of synopses to construct and does not take into account the characteris-
tics of the workload. A similar approach for histograms was proposed in [T5],
extending [T9] by offering heuristics that reduce the overhead of the dynamic
programming problem. [6] considers a limited version of the problem: a set of
synopses for query optimization are selected, based on whether or not they make
a difference in plan selection. However, the approach is limited in a number of
ways. Most importantly, synopsis selection is a series of yes-or-no decisions, with
no consideration of the effect that variations of the size of a synopsis may have.
This also has the consequence that the overall memory allotted to the selected
synopses is utilized in a sub-optimal way. Furthermore, there is no consideration
of special, dedicated (join-) synopses which do not constitute a (sub-)set of the
attributes of a single relation.
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1.2 Contribution and Outline

This paper develops a novel framework for the physical design problem for data
synopses. Our framework covers the entire class of SPJ (i.e., select-project-join)
queries. Note that projections are important also for predicting result sizes and
run-times of grouping/aggregation, but have been almost completely ignored in
prior work on data synopses. In contrast to the work in [6], our approach goes
beyond the binary decisions on building vs. not building a certain synopsis, but
also addresses the fundamentally important issue of how much memory each
synopsis should be given. This is especially important when the role of statistics
management goes beyond choosing good query execution plans, and synopses
also serve to predict absolute run-times and result sizes, which in turn is highly
relevant in data mining or Web source mediation environments. We characterize
the exact solution for the optimal choice of synopses for a given workload. Taking
into account the workload is a major step beyond our own prior work [19].

The remainder of this paper is organized as follows. In Section [2] we define
the underlying optimization problem, briefly review the relevant parts from ear-
lier work on spline synopses [19], and introduce our error model. Section Bl then
describes how to determine the optimal set of synopses exactly, using two as-
sumptions which (in earlier experiments) have been found to hold for nearly all
datasets and which lead to a compact formulation of the necessary computa-
tions. In Section [4 we show how to combine the various building blocks of our
framework into a unified algorithm. Section [l contains an empirical validation of
our approach in form of several experiments conducted with the TPC-H decision
support benchmark. Finally, in Section [l we summarize our work and give an
outlook on future research.

2 Framework

We address the following optimization problem: given a number of datasets
R :={Ry,...,R,} and a workload consisting of SPJ (select-project-join) queries
Q :={Q1,...,Qk}, what is the best combination S of synopses such that the
estimation error over all queries is minimized.

We assume that each query @; is mapped to exactly one synopsis S; € S
which captures all attributes that are relevant for @Q;, i.e., attributes on which
filter conditions are defined as well as attributes that appear in the query output.
This is no limitation, as we can always decompose a more complex query into
subqueries such that the above condition holds for each subquery. In fact, an SPJ
query would often be the result of decomposing a complex SQL query (e.g., to
produce an intermediate result for a group-by and aggregation decision-support
query). The subqueries that matter in our context are those for which we wish
to estimate the result or result size. In commercial query engines and in virtually
all of the prior work on data synopses, these subqueries were limited to simple
range selections. Our approach improves the state of the art in that we consider
entire SPJ queries as the building blocks for data synopses.
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So for a select-project query on a single dataset R we consider synopses that
capture all of the selection’s filter attributes and all attributes in the projection
list (unless some of these attributes are considered irrelevant for the purpose
of result approximation). For join queries that access attributes from multiple
datasets Ry, ..., R; it is conceivable to construct a result approximation or result
size estimation from multiple synopses. On the other hand, it is known that
this approach may lead to unbounded approximation errors [5]. Therefore, we
have adopted the approach of [T] to use special join synopses for this purpose. A
join synopsis can be viewed as a regular synopsis that is derived from a virtual
dataset that materializes the full result of the join. Such a materialized join view
does not really have to be stored, but merely serves to construct the statistical
data in the corresponding join synopsis.

2.1 Notation

We consider a set of relations R = {Ry,...,R,} and a set of queries Q :=
{Q1,..., Qk}. Each relation R; € R has at; attributes Att(R;) = {R;.44,...,
R;.Au, }. Queries can be “approximately answered” by a set of synopses S :=
{S1,...,5;} corresponding to the data distributions Ti,...,7T;; each S; is the
approximation of a relation R, over the attributes At¢(S;) C Att(R,). Because
in our context there is never more than one synopsis for a given set of attributes
we also write S, with = being the set of attributes captured by the synopsis, i.e.,
S{R,.A5,R,.4,} denotes the synopsis of Ry over the two attributes Ay and As.
Analogously, we use the notation Tig, 4, r,.4,) to describe the corresponding
joint data distribution in the full data set. The size of a synopsis S, (in terms
of the number of values necessary to store S,) is denoted by Size(S;).

A simple (range) selection or projection query can be answered using the
data distribution of the queried relation over the attributes involved in the range
selection. A join query can be processed by examining the joint data distribution
of the joining relations. Thus it is possible to assign to each query @; on relation
R, the minimum set Min(Q;) of attributes C Att(R,), whose corresponding
data distributions must be examined to answer the query. For example consider
the query ¢;

SELECT R;.A; WHERE R;.As > 100.

This query can be answered by examining the joint data distribution of relation
R; over the attributes Ry.A4; and R;.As, thus Min(q1) = {R1.A1, R1.As}.

When only the size of a result is of interest (for example in the context
of query optimization), it is sufficient to query the attributes that determine
the number of tuples in the result; assuming that no duplicate elimination is
performed, in this case the minimum set becomes Min(q;) = {R1.A2}. Conse-
quently, the set Min(Q;) contains the information which synopses need to be
built in order to answer query ¢; while observing all correlations between the
relevant attributes.

Concerning data distributions, we adopt the notation used in [24]. The do-
main Dg, 4, of a single attribute R;.A; is the set of all possible values of R;.Aj;,
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and the value set Vg, a, € Dg,.4,,VR,.A; = {v1,...,0n}, is the set of values
for A; actually present in the underlying relation R;. The density of attribute
X in a value range from a to b, a,b € Dg,. A;, is the number of unique values
v € VR,.a; with a < v < b. The frequency f; of v; is the number of tuples in R
with value v; in attribute R;.A;. The data distribution of R;.A; is the set of pairs
T ={(v1, f1), (va, f2), ..., (Un, frn)}. Similarly, a joint data distribution over d at-
tributes R;.A;,,..., R;.A;, is a set of pairs T = {(v1, f1), (v2, f2)s .-, (Un, fn)},
with vy € Vg, 4; X -+ X VRi~Ajd and f; being the number of tuples of value v;.

2.2 Join Synopses

As pointed out in [B] (in the context of sampling), it is usually not feasible to
estimate arbitrary join queries from approximations of the joining base relations
with acceptable accuracy. For sampling, this phenomenon is discussed exten-
sively in [5], but it does also hold for all other data reduction techniques that
estimate join queries from approximations of the base relations.

For histograms, this is due to the fact that even small errors incurred when
approximating the density of attribute values lead to drastic changes in the
number and position of attribute values that find a join partner. This problem
becomes worse in multi-dimensional histograms through the use of the assump-
tion that, if value; unique attribute values are present in the i-th dimension
within a bucket, then all [[£%"“"**"* yalue; combinations of these values are
present [23]. Regarding join estimation via wavelets, consider the following ex-
ample:

Ti = {(v1,2), (v2,0), (v3,7), (v4,2)} T2 = {(v1,10), (v2,10000),...}

Even if the approximation keeps all coefficients necessary to represent 7> and
drops only a single coefficient of the representation of 77, the approximation of
the join between the two distributions exhibits a large error, for the approxima-
tion 71 = {(v1,1), (v2, 1), (v3, 7), (v4,2)} now joins the 1000 T3 tuples with value
vg. The reason for this phenomenon is the fact that the thresholding scheme
employed in [3] minimizes the overall mean squared error ZLI( fi — fi)? for
each relation, which minimizes the error regarding range selection queries, but
disregards accurate join estimation.

As a solution, special synopses dedicated to estimating the data distribution
resulting from a foreign key join were proposed in [I]. In [T9] the issue was
examined in the context of spline synopses and general equijoin queries; we
proposed an algorithm that examines for each join the result of joining the base
relations and adds special join synopses for join results. The trade-off to consider
is that additional join synopses leave less memory for the synopses of the base
relations.

Experiments showed that for virtually all examined datasets the addition of
(even very small) join synopses improved the estimation quality greatly. Thus
we adopt the following approach for join synopses: for all queries in Q involving
joins, we add a “virtual relation” R’ to R representing the joint data distribution
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of the top node in the corresponding join tree (i.e. the complete n-way join if
the join tree has n leaves). A query involving a join could thus be modeled by
introducing join synopsis over the relevant attributes from the joining relations;
consider query go:

SELECT R;.A; FROM Ry, RQ,R?, WHERE R;.As = Ro.A3 AND Re. Ay = R3.As

Here we introduce R’ := R1 S Ry > R3 Then Min(qs) = {R'.A;}.

2.3 Spline Synopses

As the underlying statistics representation, we use spline synopses, which are
described in detail in [I8|T9]. Our results also apply (with some adaptation)
to other data reduction techniques (e.g. histograms). Spline synopses have par-
ticular properties that are advantageous in our physical design context. The
approximation of a distribution T is again a data distribution 7~ with IT| = |7A'|,
i.e., for every attribute value pair (v;, f;) there is an approximate representa-
tion (9, fz) This makes it possible to use spline synopses for query estimation
for virtually any query type, including more advanced operators such as top-k
proximity search or spatial joins.

Spline synopses use two different approximation techniques for approximat-
ing attribute value density and attribute value frequencies. This means that
the memory available for a single synopsis S over a distribution 7 is divided
between the approximations based on each technique - the first one approximat-
ing the attribute frequencies, minimizing Zm (f; — f:)?; the second technique
approximates the value density, in case of a one-dimensional distribution min-
imizing ZLT‘l(% — ©;)%. For d-dimensional distributions, a space-filling curve
o : [0, 1] — [0,1] (more specifically, the Sierpinski curve) is employed to map
each attribute-value v; € R? to a value v} € [0,1]. We then approximate the lat-

[T (

ter values as 0! minimizing ) ;" —9!)2. In order to use the resulting

i,9=1...n> 7,

approximation for query estimation, the #! are mapped back via ¢! at query
processing time. The key feature here is that the Sierpinski mapping preserves
proximity, as it can be shown that

Voi, 0 € [0,1] : [lo7H (vf) — ¢~ (0])I| < 2vd +6 [vf — 0} 7 [26]

with || - || denoting the Ly norm (Fuclidian Distance) between the data-points;
i.e. by minimizing |v! — 9! we also reduce ||¢~1(v}) — ¢~ 1(2})].
In this sense, the synopsis-construction process can be characterized as min-
imizing
7] R
S (i = f)? 4 (o — )2 (1)
i=0
for an appropriately chosen r. Which values to choose for r is discussed in [19].
For both density and frequency, the resulting approximation is stored in
buckets, with each bucket storing 3 values each: leftmost value, the start-point
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and gradient of the frequency approximation (for frequency approximation), or
leftmost value, number of distinct values and size of the interval between adjacent
approximate values (for density approximation).

The above approach to capturing both value frequency and value density
allows us to use a well defined error metric for the tuples contained in the result
an arbitrary query (see the next section), whereas this is not easily possible
for other techniques. For multi-dimensional distributions, histograms use the
assumption, that all combinations of values in a bucket are realized [23], which
generally leads to over-estimation of the number of distinct attribute values and
under-estimation of their frequencies (see [19]). In wavelet-based approximation,
the attribute-value distribution (i.e, density) is approximated only indirectly
through the position of the values that have a frequency other than zero. Because
the thresholding scheme used in [3] aims to minimize the overall mean square
error Zm (fi ) only, wavelet-based approximation generally does not result
in a partlcularly accurate representation of the attribute-value density and thus
cannot cope well with projection queries or grouping.

2.4 The Error Model

Our goal is to minimize the estimation error over all queries @); € Q. First
consider a scenario in which all queries only depend on a single synopsis Sy
over the data distribution T = {(v1, f1), (v2, f2),. .., (Vn, fn)}. We define the
error for a given query Q; € Q by characterizing how well the query result
Result(Q;) C T is approximated. Then we define the error over all queries in Q
with respect to a data distribution 7 as

Error(Q,Sy) = Z ( Z (fi — fz)2 +r - (|lvi - '01”)2) (2)

Q;€Q ic{klvx€Result(Q;)}

Thus, if we define w; := |{Q’ | v; € Result(Q'), Q" € Q}|, the sum of the errors
for each query posed to synopsis Sy can be written as:

[T
Error(Q, So) : sz 2w (Jlog — i) (3)

Except for the weights w;, this is the error function (equation [) minimized
by spline synopses. Since the weights w; can be easily incorporated into the
spline construction process, minimizing the query error in the case of a single
distribution has become a problem of constructing the optimal spline synopsis,
which has been solved in [19].

This is a slight simplification as it ignores approximation errors with regard
to the boundary conditions of a query: when using a synopsis for answering a
query some attribute values 0; may be included in the approximate answer even
though the corresponding v; would not be in the query result. Likewise, some
attribute values may be erroneously excluded.
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In a scenario with multiple synopses S := {S1,..., S}, each query Q; is an-
swered (depending on Min(Q;)) by a synopsis in S. We use a mapping function
map : |J2MAHIDIRER}Y 1171} to assign each queried attribute combina-
tion to exactly one synopsis. We will describe how to obtain this mapping in
Section 3.2] Note that this model assumes that queries over the same attribute
combination are always mapped to the same synopsis (otherwise it would be nec-
essary to store additional information on the mapping of specific queries, which
would in turn compete for the memory available for synopses). Thus, the error
over a set of synopses S := {S1,..., 5} is defined as:

l

Error(Q,S) = Z(Error({Qj € Q| map(Min(Q;)) =i}, S;).

i=1

Since the error of each synopsis S; is dependent on the memory size Size(.S;)
of the synopsis, this is more accurately stated as:

Error(Q,S)

l
Z (Error({Q; € Q| map(Min(Q;)) =1}, S:)) (4)

B (Size(S1),.. Szze (S1))eNt

under the constraint that 22:1 Size(S;) is equal to the memory size M available
for all synopses together. Thus the problem of optimizing the estimation error
for the entirety of queries in the workload can be seen as a problem of selecting
the optimal set of synopses and choosing their sizes.

3 Synopsis Selection and Memory Allocation

To illustrate the issues involved in our method consider a workload Q = QU Q»,
Q; containing no; queries Q' (i.e., queries of type Q" whose fraction in the entire
workload is proportional to noy) Wlth Min(Q") = {{R1.41}} and Qs containing
noy queries Q" with Min(Q") = {{R1.A2}}. Then these can be answered by
either (a) two synopses Sig,.a,} and S(g,. ,} over each single attribute, or (b)
one synopsis S{r,.a,,r,.A,} over the joint data distribution of R;.A; and R;.A».
Therefore, to compute the optimal error for the overall available memory M we
have to evaluate

Error for combination (b)

Error(Q) := min{ Error(Q, S{R1-A1,R1.A2})

min (Error(Ql, S{Rry.A,}) + Error(Qa, Stg,. Az})) }

Size(S{py.a,})EN
Size(S{R,.a5})EN

Error for combination (a)

(with Size(S{RllAthlAz}) = M and Size(S{Rl_Al}) + Size(S{RllAz}) = M)
and keep track of the resulting synopses and memory partitioning. So we can
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characterize the problem of computing the optimal set of synopses (and the
corresponding memory allocation) as a two-step process:

(1) Computing Error(Q’,S,) for all candidate synopses S, and all possible
combinations of queries @ C Q that may be mapped to S, and the maximum
amount of Memory M to be used for S,. This requires O(M - |T,|?) steps (for
optimal partitioning, see [19]) for each pair of S, and Q' and also generates the
values of Error(Q’,S,) for all values of Size(S,) < M.

(2) Selecting the optimal set of synopses from a set of candidates computing
an optimal memory partitioning such that the weighted sum over all synopsis
errors (weighted by the number of times each synopsis is queried) becomes min-
imal for the synopses included in the optimal solution. Since the weights change
according to the combinations of synopses in the solution, this is a different and
more difficult problem than finding the optimal combination of synopses for dif-
ferent relations (which was solved by dynamic programming in [19]). As we will
see in Section B2, the problem of synopsis selection and memory partitioning
are closely related and thus solved together.

In the following (Sections Bl and B:2), we will show how to solve the above
problem for a single dataset R € R. The sub-solutions for all datasets in R can
then be combined to solve the overall problem (Section B3).

3.1 Pruning the Search Space

Note that in the above example we never considered the combinations &' =
{S{Rri. 41} S{R:. A1 Ry A0y} o8 8" = {S(R, .42}, S{R:1.A1,R1.As} )+ This is due to
a simple property of spline synopses, which also normally holds for both his-
tograms and Wavelet-based approximations:

Observation 1, “Pruning Property”: When answering queries over the set
of attributes a, a synopsis S, over the set of attributes x with a C x will yield
more accurate answers than a synopsis Sy if # C y and both synopses are of
identical size.

While artificial data distributions can be constructed that do not obey the
above observation, we have found the pruning property to hold in all experiments
on real-life datasets. The intuition behind it is the fact that by including more
attributes in a synopsis, the number of unique attribute-value combinations v;
in the corresponding data distribution increases as well (in this respect, the
synopsis selection problem is similar to the one of index selection), making it
harder to capture all attribute values/frequencies with acceptable accuracy.

In the above case, it means that S{r, 4,} answers queries posed to R;.A;
better than Stg, .4, r,.4,} (using the same memory). Similarly S¢g, 4.} is an im-
provement over S{r, 4, Rr,.A,} for queries posed to R;.As. Thus the combination
S = {S{Rr,. 411+ S{R,.4,} } generally outperforms &’ or S”.

Using the above observation, it becomes possible to characterize the set of
candidate synopses in a compact manner. Consider a single relation R. Then the
sets of attributes of R queried is Syn(R, Q) := {Min(Q;) | Q; € Q}. Now the
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set of all candidate synopses for R can be defined as:
Cand(R, Q) :={S, |z = Uz, z C Syn(R, Q)}

The intuition behind the definition of Cand(R, Q) is the following: if a Syn-
opsis Sy is in Cand(R, Q), it must be considered, for it is the most efficient
way to answer a subset of queries of R using only one synopsis (all other syn-
opses capable of answering the same subset would be less efficient, due to the
pruning property). Conversely, if S, ¢ Cand(R, Q) then y must be of the form
y = cand U nocand with cand € {{Jz,z C Syn(R, Q)}, nocand C Att(R),Vz €
nocand : (candU ) € {{Jz,z C Syn(R, Q)}. But then S.q,q answers the same
set of queries as S, and does so more efficiently, since cand C y. We further
utilize a second observation for further pruning of the search space.

Observation 2, “Merge Property”: For a set of queries Q each querying the
same combination of attributes A, the error for answering the queries using one
synopsis S over A with M memory is smaller than the error using two synopses
51,52 over A, which together use memory M.

The intuition for this property is the following: By joining the synopses S;
and Sy, the estimation for the (potentially) overlapping regions in S; and S
is improved, as additional memory is invested in its estimation. It is a trivial
consequence that the merge property also holds for combinations of more than
two synopses over A. In contrast to the pruning property, it is possible to prove
that the merge property always holds (see [20] for the proof).

3.2 Selecting the Synopses for a Single Relation R

In the following we will describe, for a given set Q of queries over a single relation
R, how to compute the optimal combination S of synopses, their sizes, and the
corresponding mapping of queries, such that all queries can be answered and the
overall error becomes minimal.

As shown before, the optimal combination of synopses S,p: can consist of
synopses over single attribute combinations from Syn(R, Q) that are optimal for
a particular query in @, as well as synopses for the joint attribute combinations
of multiple members of Syn(R, Q), which are not optimal for any single query
but more efficient than other combinations of synopses (using the same amount
of memory) capable of answering the same queries. Now we want to capture this
notion algorithmically, giving a method to construct a set of synopses for a given
workload/data combination. We first introduce the necessary notation:

Opt_Syn 4 ar := the combination of synopses for answering all queries over the
attribute combinations in A C Syn(R, Q) using memory M as constructed
below.

Opt_Erra = the overall error resulting from Opt_Syn 4 .

Now consider the problem of computing the optimal combination of synopses
Opt_Syn 4, for given A and M. Opt_Syn 4, a has one of the following forms:
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(a) Opt_Synam = {Sya} with Size(Sy4) = M (one synopsis for all queries
over the attribute combinations in A).

(b) Opt_Synam = Opt_Syns m U Opt_Syna_ ' mM—m’ (a combination of
the optimal synopses for answering two disjoint subsets of A with A’ # ().
Because of the merge property, we consider only decompositions for which
OptfsynA’,’m’ N Opt—SynA—A',M—m' =0.

Which combination is optimal depends on the error resulting from each alterna-
tive:

In case (a) Opt_Erran = Error( {Q' | Min(Q') = UA} ASual)

The set of queries answered by S 4

with Size(Sy4) = M.

In case (b) Opt_Erran = min Opt_Err g1 mr + Opt_ETr A— A2 M-
m’e{l,...,M—1}

Therefore, we can compute the optimal set of synopses for A by computing the
minimal error for cases (a) and (b) and choosing the memory partitioning that
minimizes the corresponding error. Note that by computing the optimal combi-
nation of synopses in the above manner, we implicitly also compute a mapping
that dictates which attribute combinations from Syn(R, Q) are mapped to which
synopses: because of the above decomposition, § := Opt_Err\) syn(r,0),m 18 of
the form S = {Sy.4,,.--,Sy.4,} with each a € Syn(R, Q) being a member
of exactly one Ay, ..., A;. While more complex models are possible in which
queries over the same attribute combination are mapped to different members
of 8, this would mean that additional information, from which the correct map-
ping for each single query could be derived at run-time, would have to be stored
(creating contention for memory with the actual data synopses).

Using the above definitions, the final set of synopses kept for R using memory
M is Opt_Syn|j syn(r,0),m, the corresponding error being Opt_Er7r ) syn(r,0),M-
However, it is still necessary to prove that the optimal solution can indeed be
obtained based on the decompositions described above:

Theorem: Opt_Syn 4, constructed in the above manner is the optimal combi-
nation of synopses for answering all queries in Q over the attribute combinations
in A, when the pruning and merge properties hold.

Proof: We show that & := Opt_Syn 4, using the above construction implies
that S is the optimal combination of synopses answering all queries over the at-
tribute combinations in A using memory M. This is proven by induction over |.A|:

|A| = 1: Then Opt_Synan = {Sa} (no partitioning involving multiple syn-
opses possible because of the merge property), and because of the pruning
property S 4 is the best way to answer queries over A.

|A] = |A| + 1: Now we assume that all Opt_Syna a for |A| < h are indeed
optimal and try to show the optimality for Opt_Syn4 a with |A| = h+1.
This is shown by contradiction:
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Assumption: There exists a solution Sppr = {S,, ..., Sz, } (with Size(S;,)
=m,,i = 1,...,t) such that the resulting overall error Err,,; over all queries
is indeed smaller than Opt_Err 4y with Sope # Opt_Syn .

(Case 1) [Sopt| = 1: Then S,pr = {Sa}, with Size(Sa) = M. Since
Sopt has a smaller Error than Opt_Erra ar, Sopt 7 {Sa} (as Sa is a pos-
sible synopsis combination for Opt_Syn4 s and thus Error(Q,{Sa}) >
Opt_Erram > Errgp). However, since Sop must be able to answer all
queries over A, A C A’ holds. Then it follows from the pruning property
that Opt_Syn . ar results in better accuracy than S,,:, contradicting the
previous assumption.

(Case 2) |Sopt| > 1: Because of the merge property, we assume that all
queries to the same attribute combination a € A are mapped to the same
synopsis. Should this not be the case, we can replace S,,¢ by Sy, for which
all synopses over the same attribute have been merged, resulting in a smaller
error. If we can now contradict the assumption for S, ;, we thereby contradict
it for Sypt, too.

Now Syt can be written as Sppr = S1US2, 81 # 0,81 # S,82 := S-S with
S = {S$%7...,SI:}7},SQ = {SI%,...,ng},p < h,q < h. Because all queries
over the same attribute combination are mapped to the same synopsis , both
S; and S each answer queries over the attribute combinations in disjoint
subsets A1, As of A with A; U Ay = A. Then it follows from the induction
hypothesis that Opt_Syn 4, y-» Size(S,1) results in a smaller error than S;

=0
for queries over attribute combinations in Ay, and Opt_Syna, 529 size(s,,)
results in a smaller error than Sy for queries over attribute combinations in
Aj. It follows that the error for Opt 4 as is less than the one caused by Sopt,

contradicting the assumption. O

3.3 Selecting the Synopses for All Relations
The error over all relations for total memory size M can now be written as

IR|

Error(Q,S) = min Opt_Err n(R; . 5
(Q,5) (MIMM‘R‘)EN‘R'; PLETTy syn(R,,Q),M, ()

under the constraint that Z‘Zzll M; = M. Note that this is equivalent to the
initial definition in equation[. Expression [l can be solved by dynamic program-
ming using O(M?-|R|) operations. By keeping track of the memory partitioning
(My, ..., Mg|), we can then determine the optimal set of synopses

= U Opt,SynU Syn(R;,Q),M;-
i=1,..|R|
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4 Putting the Pieces Together

Solving the physical design problem for data synopses can be characterized as a
4-step process:

1) Collection of workload information: We first need to acquire the neces-
sary information about the access behavior of the workload, which can be done
automatically by the data manager that processes the queries.

2) Enumeration of all possible synopsis combinations: As described in
Section [3-3] the synopses selection problem can be solved for each relation in-
dependently; from the resulting sub-solutions the overall combination can then
be obtained by solving equation . To obtain the sub-solution for each relation
R; € R, we first compute all possible synopsis combinations for Opt_Syn 4
for R;. This is done by traversing the lattice of the attribute combinations in
Cand(R;, Q) in the order of the sizes |T;| of the data distributions at each node.
For each node we compute all synopsis combinations possible from its attribute
combinations A; and all subsets of A; corresponding to nodes in the lattice (as
well as potential mappings from queries to synopses).

3) Minimization of the error values: As described in Section[3.2] each of the
combinations of synopses and mappings corresponds to an Opt_Err expression,
which is defined in the form of a minimization problem. In order to determine
the best synopsis combination, we have to compute the corresponding values
for Opt_Err. This is done by constructing the corresponding synopses and eval-
uating the error for the resulting data distributions. The minimum Opt_Err
expression corresponds to the optimal synopsis combination.

By combining the enumeration and minimization steps, it is furthermore
possible to avoid solving identical minimization-problems more than once. Each
time a new (sub-) combination of synopses/mapping is created the corresponding
minimization problem is solved immediately. Because each new combination is
either created by joining two previously know combinations together, plus at
most one additional synopsis, the corresponding minimization problem can be
solved using the solutions for the two joining synopses in at most O(M) steps.
4) Construction of the final synopses: The overall optimal solution can now
be obtained from the sub-solutions for each relation by minimizing equation Gl

The computational overhead of our techniques is caused by (a) the compu-
tation of the candidate synopses, (b) the solving of the resulting minimization
problems, and (c) the enumeration of all possible minimization problems. A de-
tailed discussion of the running times for (a) and (b) can be found in [19]. In
order to assess the cost of (¢), enumerating all minimization problems, we had
our algorithm construct all possible synopses for a given set of attributes A for
which all possible subsets were queried (i.e. 2l different types of queries and
thus the same worst-case number of potential synopses). The running times for
this worst-case stress test are shown in Table [Il Obviously, even though the
space of all combinations grows exponentially with the size of A, the enumera-
tion is still reasonably efficient for up to 20 attributes, which covers the range
of query-relevant attributes in most tables (including join views) in relational
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Table 1. Running times for the enumeration on a SUN UltraSPARC 4000 (168 Mhz)

’ # Attributes | Running time (sec.) ‘ # Attributes ‘ Running time (sec.) ‘

4 0,009 sec. 12 1,23 sec.
8 0, 049 sec. 16 93, 93 sec.

databases. We have also developed a number of heuristic algorithms, that allevi-
ate the potential bottlenecks arising from our approach. A detailed description
of these can be found in the extended version of this paper [20].

5 Experiments

To validate our approach and to demonstrate both its accuracy and low over-
head, we have implemented our techniques and applied them to a scenario based
on the TPC-H decision support benchmark. We compared the synopses selection
techniques introduced in this paper against several simpler heuristics. Because
we are not aware of other approaches to the given problem, these heuristics
are not intended to represent opponents. Rather, some represent assumptions
commonly used in connection with synopses selection in commercial database
systems. Others are used to examine how much approximation accuracy is af-
fected by simpler approaches to either synopses selection or memory allocation.

5.1 Base Experiment

We used a subset of the queries of TPC-H, chosen to be large enough to make the
synopses-selection problem non-trivial yet small enough to facilitate understand-
ing of the resulting physical design. The queries selected were Q1, Qg, @13, @1
and )17, referring to the LINEITEM, PART, ORDERS, and CUSTOMER table
Table Rlshows the query-relevant attribute sets, the minimum sets Min(Q;), for
the above five queries. We chose these minimum sets according to a result-size
approximation scenario, i.e., we only selected those attributes that are neces-
sary to estimate the number of tuples in the query results (for queries which
have an aggregation as the last operator, we estimate the result-size before the
aggregation). This results in five multidimensional data distributions. Three of
these are projections of the LINEITEM table, referred to as L onto subsets of its
attributes (which all overlap so that there are a number of different, potentially
suitable combinations of synopses). The other two data distributions to be ap-
proximated are join synopses J; = LINEITEM <t ORDERS and Jo =LINEITEM
> PART. For our experiments, we used a scaled-down version of the TPC-H
data with scale factor SF= ﬁ ) and SF * 500 KBytes memory available for all
synopses together).

! The non-numerical values present in a TPC-H database are coded as numbers. For
example, P.BRAND consists of a constant text string and two integers in the range
[1,5]. We only store the 25 possible number combinations.
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Table 2. The Mininmum Sets for the used queries

’ Query ‘ Min-Set

Q1 L.SHIPDATE

Qs L.SHIPDATE, L.DISCOUNT, L.QUANTITY

Q13 J1.EXTENDED_PRICE, J1.CLERK, J;.D1SCOUNT, J;.RETURN_FLAG

Q15 L.EXTENDED_PRICE, L.SHIPDATE, L.DISCOUNT
Q17 J2.CONTAINER, J2.DISCOUNT, J2.QUANTITY, J2.BRAND

We compared the physical design technique presented in this paper against six
heuristic competitors that were generated from the following two option sets for
synopses selection and memory allocation.

Synopses selection:

Single. A single-dimensional synopsis was allocated for each attribute that ap-
pears at least once in the minimum sets of the five queries. While this heuris-
tics cannot be expected to perform comparably to the more sophisticated
allocation schema, we included it since most commercial database systems
still use one-dimensional synopses/histograms only. So this heuristics gives
an idea of the loss in accuracy when ignoring multi-attribute correlation.

Table. One multidimensional synopsis is allocated for each table, and this syn-
opsis covers all attributes of the table that appear in the minimum sets. This
heuristic results in a large single synopsis reflecting all correlations between
attributes. However, because of the merge-property, the its accuracy may be
significantly less than synopses using subsets of attributes.

and Memory allocation:

Uniform. Each synopsis is given the same size. Again, this assumption can be
found in commercial database systems.

Tuples. The size of a synopsis is proportional to the size of the table that it
refers to, measured in the number of tuples that reside in the table (where a
join result is viewed as a table, too) multiplied with the number of attributes
covered by the synopsis.

Values. The size of a synopsis is proportional to the size of the unique value
combinations among the attributes over which the synopsis is built.

The synopsis-selection technique of this paper is referred to as Opt_Syn, the
corresponding memory reconciliation as Opt_Size. To illustrate the importance
of memory reconciliation for our overall approach, we also combined our synopsis-
selection with the Uniform, Tuples and Values-based memory allocation; i.e., the
optimal set of synopses was first generated and the sizes of these synopses were
then computed using the above heuristics. For each set of synopses we executed
1000 instances of each query (using different, uniformly distributed, inputs for
the query parameters, as specified in the benchmark) and used the available
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synopses to estimate the result sizes. We measured the average relative error of
the result sizes:

. 1 |(exact_size(i)—estimated_size(i))|
Relative Error := oot 51 ()

i=1,....,n

with n being the number of instances of all queries together. All queries occur
with the same frequency in all experiments. The results of the first experiment
are shown in the first three columns of Table [3l

Table 3. Error for the original TPC-H, skewed, and locally accessed data

Selection | Memory | Original data | Skewed data ‘ Query locality

SINGLE UNIFORM 1.98 7.98 10.19
TUPLES 1.98 7.42 9.72
VALUES 1.92 7.62 9.34
TABLE UNIFORM 1.46 3.14 4.96
TUPLES 1.47 3.17 5.11
VALUES 1.43 3.47 5.01
Opt_Syn UNIFORM 1.05 1.14 1.04
Opt_Syn | VALUES 1.04 1.01 1.27
Opt_Syn TUPLES 1.03 1.08 1.17
Opt_Syn Opt_Size 1.04 0.83 0.85

In this set of experiments, our technique employed for synopses selection had
significant impact on the resulting approximation accuracy, whereas the way
memory is allocated only results in negligible changes to the overall error.

5.2 Skewed and Correlated Data

As described earlier, for purposes of approximation it is crucial to preserve the
correlation contained in the data. Unfortunately, the original TPC-H data is
generated using uniformly random distributions for each attribute, resulting in
almost completely uncorrelated dat, which is not a good benchmark for data
approximation techniques. Therefore, we ran a second set of experiments using
the same schema, but with skewed and correlated data. This more realistic kind
of data was generated the following way:

Skew in attribute-value frequencies. We generated the attribute-value fre-
quencies so that the frequency of the attribute values was Zipf-like distributed;

2 The exceptions being O.TOTALPRICE (correlated with L.TAX, L.DIScouT,
L.EXTENDEDPRICE), L.SHIPDATE (correlated with O.ORDERDATE), L. COMMITDATE
(correlated with O.ORDERDATE) and L.RECEIPTDATE (correlated with L.SHIPDATE).
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i.e., the frequency of the i-th most frequent value is proportional to (1/4)? where
0 is a control parameter for the degree of skew. In this experiment we used 6 = 1.

Correlation between attributes. Here we permuted the generated data in
order to obtain the desired correlation. After creating the data according to
the TPC-H specification, we then performed (randomly chosen) permutations
on the values of selected attributes in order to create specific correlations be-
tween pairs of attributes. The correlation itself is specified in terms of the linear
correlation coefficient rs [25]. For each of the following pairs of attributes we cre-
ated data with a linear correlation coefficient r, € [0.725,0.775]: (L.SHIPDATE,
L.QUANTITY),(J2.BRAND, J5.CONTAINER), (P.PARTKEY, P.BRAND).

The results for this experiment are shown in the fourth column of Table Bl Again,
the choice of the synopses-selection technique was most important with regards
to the resulting approximation error: our Opt_Syn technique developed in this
paper reduced the error by a factor of 7 and 3 compared to the Single and Table
heuristics, respectively. In addition, with Opt_Syn for synopses selection, the use
of our memory reconciliation technique Opt_Size resulted in noticeable further
improvement. So for this more realistic dataset, the combination of Opt_Syn and
Opt_Size outperformed all competitors by a significant margin.

5.3 Query Locality

We repeated the above experiments using a workload that exhibited significant
locality, again using the data exhibiting significant skew and correlation. For this
experiment, we generated the input parameters for the TPC-H queries using a
Zipf-like distribution (6 = 0.25), first executing 1000 queries of each type to
obtain the weights w; (see equation B]) we then used to construct the synopses.
Subsequently, we ran another 1000 queries (with different parameters generated
by the same probability distribution) for which we measured the error. The re-
sults for this experiment are shown in the fifth column of Table Bl The trends
from the previous experiment can be observed here as well: the synopses-selection
technique clearly outperforms the simpler approaches, with the estimation ac-
curacy further improving when memory reconciliation is used.

6 Conclusions

In this paper we motivated and defined the physical design problem for data syn-
opses. We proposed an algorithmic approach to its solution, discussed heuristics
to alleviate computational bottlenecks, and provided an experimental evalua-
tion. The experiments showed that the developed method achieves substantial
gains over simpler heuristics in terms of the accuracy within the given memory
constraint. They also showed that both aspects of our approach, synopses se-
lection and tuning of the memory allocation, are important. Although we have
carried out the derivation and implementation of our approach in the context of
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spline synopsis, our approach is orthogonal to the specific form of synopses and
applies equally well to histograms as well as other techniques (with some minor
modifications).
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