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Abstract

Web 2.0 applications are increasing in popularity and
are being widely adopted. However, they are prone to er-
rors due to their non-deterministic behavior and the lack of
error-detection mechanisms on the client side. This paper
presents DoDOM, an automated system for detecting errors
in a Web 2.0 application using dynamic analysis. DoDOM
repeatedly executes the application under a given sequence
of user actions and observes its behavior. Based on the ob-
servations, DoDOM extracts a set of invariants on the web
application’s DOM structure. We show that invariants exist
for real applications and can be learned within a reason-
able number of executions. We further demonstrate the use
of the invariants in detecting errors in web applications due
to failures of events and the unavailability of domains.

1 Introduction

The web has evolved from a static medium that is viewed
by a passive client to one in which the client is actively in-
volved in the creation and dissemination of content. The
evolution is enabled by the use of technologies such as
JavaScript and Flash, which allow the execution of client-
side scripts in the web browser to provide a rich, interactive
experience for the user. Applications deploying these tech-
nologies are called Rich Internet Applications or Web 2.0
applications [2, 28]. They are being rapidly adopted by pop-
ular web sites [33] such as Gmail, Bing and Facebook.

Unfortunately, Web 2.0 applications suffer from a num-
ber of potential reliability issues. First, as in any distributed
application, the division of the application’s logic between
the server and client makes it difficult to understand their
behavior. Further, web applications are non-deterministic
and asynchronous, which makes them difficult to debug.

Second, typical Web 2.0 applications aggregate infor-
mation from multiple domains, some of which may be un-
trusted or unreliable. The domains interact by calling each
other’s code or by modifying a shared representation of the
page called the Document Object Model(DOM). Therefore,
an error in any one domain can propagate to other domains.

Finally, web applications suffer from a lack of visibility
into the behavior of the application at the client. Although
tools such as AjaxScope [22] provide visibility into the ex-
ecution of client side code, they do not provide visibility
into the behavior of the DOM. However, users ultimately
see and interact with the web application through its DOM.
Further, the client-side code of an application interacts with
the DOM and hence the DOM plays a key part in the end-
to-end correctness of an application.

This paper introduces an approach to detect errors in
Web 2.0 applications using their DOM structures. The ap-
proach analyzes multiple executions of a Web 2.0 applica-
tion (also called the training set) corresponding to a given
sequence of user actions and extracts dynamic invariants
based on their DOM structures.

Prior work has shown that dynamic invariants can be
used in general-purpose programs for software understand-
ing, testing and error detection [7, 14, 18]. We show that
dynamic invariants (1) exist in web applications, (2) can be
learned automatically and (3) are useful in detecting errors.
To the best of our knowledge, our work is the first to derive
dynamic invariants based on the DOM and apply them for
error detection in Web 2.0 applications.

The main drawback of using dynamic invariants for error
detection is the potential for false positives, i.e., it is possi-
ble that executions of the application that do not conform to
the invariants are deviant executions rather than erroneous
ones. However, as we show, false positives can be mini-
mized by using a representative set of executions for train-
ing. The main contributions of the paper are as follows:

1. We show that DOM structures can be used for check-
ing the correctness of a web application.

2. We show that Web 2.0 applications exhibit invariants
over their DOM structures and that the invariants can be
learned dynamically.

3. We build a tool DoDOM, to repeatedly iterate over the
sequence of events in an application to obtain its invariants
(and hence the name).

4. We demonstrate the invariant extraction capabilities
of DoDOM for three real Web 2.0 applications (Slashdot,
CNN, and Java Petstore). We show that the invariants can
be learned within ten executions of each application.

5. We further show (for Slashdot) that the derived invari-
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ants provide close to 100% coverage for failures of event
handlers and domains that impact the DOM.

2 Overview

In this section, we outline the potential reliability issues
with Web 2.0 applications and present our proposed solu-
tion of dynamically extracting invariants. In this paper, we
apply the invariants for error detection. However, the in-
variants we extract can be applied in a wide variety of cir-
cumstances which we outline in Section 6.

2.1 Background

Typical Web 2.0 applications consist of both server-side
and client-side code. The server-side code is written in
traditional web-development languages such as PHP, Perl,
Java and C. The client-side code is written using dynamic
web languages such as JavaScript (JS) which are executed
within the client’s browser. Unlike in the Web 1.0 model
where the application executes primarily at the server with
the browser acting as a front-end for rendering and dis-
playing the server’s responses, in a Web 2.0 application the
client is actively involved in the application’s logic. This
reduces the amount of data that must be exchanged with
the server and makes the application more interactive to the
user. Henceforth, when we say web applications, we mean
Web 2.0 applications unless we specify otherwise.

Typical web applications are event driven, i.e., they re-
spond to user events (e.g., mouse clicks), timeouts and re-
ceipt of messages from the server. The developer writes
handlers for each of these events using JavaScript. The
event-handlers in turn can (1) invoke other functions or
write to global variables stored on the heap, (2) read/modify
the web page’s contents through its DOM, or (3) send
asynchronous messages to the server through a technology
known as AJAX (Asynchronous JavaScript and XML) and
specify the code to be executed upon receiving a response.
The above actions are executed by client-side code (scripts).

A web page is represented internally by the browser as
its Document Object Model (DOM) [23]. The DOM con-
sists of the page’s elements organized in a hierarchical for-
mat. Each DOM node represents an element of the page.
Figure 1 shows an example of a DOM for a web page. In
the figure, the web page consists of multiple HTML div el-
ements, which are represented in the top-level nodes of the
tree. The div elements are logical partitions of the page,
each of which consists of nodes representing text and link
elements. Further, the web page has a head node with three
scripts as its child nodes.

JavaScript code executing in the browser can read and
write to the DOM through special APIs. Any changes made
to the DOM are reflected in the web page rendered by the

Figure 1. Example of a DOM tree for a web
application

browser. User actions are converted into events by the
browser and sent to the nodes of the DOM on which they
are triggerred.

Browsers allow the separation of scripts into inline
frames and provide isolation between scripts that do not be-
long to the same frame/domain (also called the same-origin-
policy [36]). However, this separation severely curtails the
ability of scripts to interact with each other and hence many
web applications include scripts into a page using the script
tag. This allows scripts to interact with each other through
the DOM or by directly calling each other’s functions. Un-
fortunately, this practice also means that failures of one do-
main can affect other domains.

Finally, failures of web applications are handled differ-
ently from failures of traditional applications. When a tra-
ditional application throws an exception or behaves unex-
pectedly, it is terminated by the operating system (in most
cases). Browsers however allow web applications to con-
tinue executing even if an event handler fails or if a do-
main is unavailable (this behavior is necessary for backward
compatibility reasons and is also mandated by the standard).
This can lead to semantic violations of the application’s be-
havior that are difficult to detect.

2.2 Fault Model

This section discusses the faults of web applications con-
sidered in this study and their potential causes. This is not
an exhaustive list of faults in web applications, but only a
first cut at characterizing potential errors in these applica-
tions (we are not aware of any previous work in this space).

Event drops: These correspond to events being dropped
in the client-side code of the application. We consider three
kinds of event drops and their causes.

(A) User-event drops: Caused by exceptions in event
handlers, or the browser terminating the handler because
it runs for too long (both Internet Explorer and Firefox do
this). It is also possible that a DOM node fails to propa-
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gate an event to its parent nodes as required to do so by the
DOM [23] specification.

(B) Server message drops: Caused by many factors, in-
cluding (1) network losing the message, (2) server dropping
the request due to overload, (3) a message handler throwing
an exception or not being invoked in the first place.

(C) Timeout drops: This can happen due to (1) the time-
out handler throwing an exception, (2) timeout handler not
being set correctly by the timer initialization routing, or (3)
a browser bug that prevents timeouts from being triggered.

Domain failures: These correspond to cases where a do-
main included by the application is unavailable. This can
happen due to a network failure or the servers of the do-
mains being taken offline. It can also occur due to client-
side plugins such as NoScript [24] or administrative proxies
which may block scripts from certain domains.

2.3 Scenario

Web applications can be subject to different kinds of
faults as shown in Section 2.2. Consider an application de-
veloper who wants to test the resilience of the application to
faults. She would execute the application on the client, in-
ject a fault and check if the application behaves as expected
after the injection. However, this approach is time consum-
ing and requires the user to repeat the same interactions
with the application for each injected fault. Further, the user
needs to rely on visual perception to determine whether an
injected fault affects the application (while it can be argued
that faults that are not perceived by the user do not matter,
it may be that a different user perceives the fault). Finally
and most importantly, web applications exhibit variations
in their behavior from one execution to another as we show
later in this paper. Such variations occur as a result of (1)
systematic changes introduced by the server (e.g., in show-
ing different advertisements on the page), (2) asynchronous
behaviour at the client (e.g., in delivering user actions as
events), and (3) non-determinism in network packet deliv-
ery (e.g., messages received out of order). In the face of
such variations, it becomes challenging to identify whether
a perceived difference is the result of a fault or if it is due to
the natural behavior of the application. Further, the varia-
tions can occur in the middle of a user-interaction sequence
and not necessarily at application load time, which makes
it challenging to reason about the effects of faults during
testing.

The problem we address in this paper is a concrete way
to test the resilience of a web application to faults. We as-
sume that the web developer has one or more user interac-
tion sequences under which she wants to exercise the ap-
plication. Our solution involves extracting a invariant char-
acteristic of the web application’s DOM from multiple ex-
ecutions of the application. We characterize the expected

Figure 2. Proposed solution in the context of
the example DOM

behavior of the application and consider significant devia-
tions from this behavior as an error.

2.4 Dynamic Invariant Extraction

This section illustrates our proposed solution for the
problem illustrated in Section 2.3. The crux of the solu-
tion is in characterizing the invariant portions of the DOM
for the web application under a given sequence of user inter-
actions. Specifically, we characterize the common portion
of the application’s DOM across multiple executions (each
of which corresponds to the user-interaction sequence), and
the changes made to the DOM by the application in re-
sponse to various events (i.e., user actions, timeouts and
network messages). After each event executes, we check
the conformance of the resulting DOM to the invariants. A
deviation between the trees indicates an error.

Figure 2 shows the invariant portion of the DOM for the
example considered in Figure 1. In the figure, the blue(dark)
nodes represent the invariant portions of the tree (also called
the web page’s backbone) while the green(light) nodes rep-
resent the non-invariant portions. We consider two example
faults to illustrate the error-detection process.

First, consider the case where the user clicks on a specific
DOM node which in turn triggers an event handler on the
node. The event handler is supposed to update the left most
’A’ element in the invariant DOM but fails to do so due to
an error (e.g., the handler throws an exception). This error
will be detected as the resulting DOM would deviate from
the invariant DOM1 for the event (mouse-click event).

Second, assume that the web application imports a faulty
script (from a different domain) using the ’script’ tag. The
script has access to the entire web page’s DOM. However, it
is not expected to modify any portion of the invariant DOM.
Assume that the faulty script modifies the center div ele-
ment in the tree. This element is not a part of the invariant

1The invariant DOM will have the modification while the resulting
DOM will not because of the error.
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Executions Event 1 Event 2 ... Event n
Execution 1 T11 T21 ... Tn1

Execution 2 T12 T22 ... Tn2

... ... ... ... ...
Execution M T1M

T2M
... TnM

Invariants T1I
T1I

... TnI

Table 1. Invariant DOMs

DOM and hence the modification is not considered an error.
On the other hand, assume that the script attempts to mod-
ify the div element in the far left branch of the tree. This
element is part of the invariant DOM and hence the modifi-
cation will be detected as an error.

In the above example, the invariant DOM in Figure 2
represents a snapshot of the DOM during the course of its
evolution in response to various events. In reality, the tech-
nique will capture the entire sequence of invariant DOMs
and use the invariant sequence to check for deviations. We
now give a more precise definition of the invariant DOM.

An invariant DOM is a sub-tree of the web application’s
DOM that is shared by multiple executions. We derive an
invariant DOM for each event in the application correspond-
ing to a given event seqeunce. Table 1 shows the DOM trees
obtained during multiple executions of the web application
for each event in the sequence. The rows of the table indi-
cate different executions of the web application, while the
columns indicate the events in the sequence. The DOMs are
indicated by Tij

, where i is the event after which it is ob-
tained and j is the corresponding execution. The invariant
DOMs TiI

are derived from the DOM trees of individual
executions Tij corresponding to the event i.

2.5 Challenges

There are three major challenges in extracting the invari-
ant DOMs for error detection. First, web applications ex-
hibit small changes from one execution to another due to
variations at the server and at the client (as explained in
Section 2.3). The invariant DOM must not include such
changes as otherwise it will incur false positives.

Second, the invariants extracted should retain as much
of the original DOM as possible. This is to ensure high de-
tection coverage of the invariants for reliability and security
violations. We show that our approach achieves both high
detection coverage and low false-positive rates (Section 5).

Finally, the invariant-extraction system should be com-
patible with different browsers and platforms, i.e., it should
not require adding new functionalty to existing browsers.
Further, it should not require any modifications to the
server-side code of web applications2.

2The last constraint may not be as important if the server-side code is

Figure 3. Steps in learning DOM invariants

3 Approach

The overall approach for extracting and learning in-
variants over the DOMs of web applications is as follows
(shown in Figure 3). First, we record a sequence of user
interactions and events on a page (the sequence of events is
called a trace). We then replay this trace over multiple exe-
cutions and capture the sequence of DOMs generated after
each event in the trace. We then extract invariants over the
set of all DOM sequences using an offline learning process.
The recording, replay and capture process is performed us-
ing a tool we built called DoDOM. In this section, we de-
scribe the architecture of DoDOM and its operation. We
also discuss the design choices and the trade-offs made in
DoDOM.

3.1 DoDOM Architecture

Figure 4 shows the architecture of the DoDOM system.
In the figure, the gray rectanges represent existing code
bases and tools and the green rectangles are the components
we added for implementing DoDOM. They are as follows.

The proxy is written as a plugin in the Fiddler web ap-
plication testing framework [9] using the .Net environment.
Its main purpose is to inject the JS logger code into the web
page(s) of the application, collect the events and responses
sent by the JS logger and write them to the file system. Fur-
ther, the proxy intercepts messages sent between the client
and the server and records them. The JS logger commu-
nicates with the proxy by appending a special suffix to its
messages and sending it through AJAX. The proxy iden-
tifies these special messages and takes appropriate action
without forwarding them to the server. Hence, the server-
side code does not need to be modified to deploy DoDOM.

under our control, but this is often not the case
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Figure 4. Architecture of DoDOM system

The JS logger is a piece of JS code that is executed on
the client’s browser. A separate instantiation of the JS Log-
ger is inserted for each inline frame in the page. The JS
logger can read/write to the web page’s DOM, install event
handlers that trap the page’s handlers and log changes to
the DOM. It can also intercept messages sent by the client
through the XMLHttp interface and the corresponding re-
sponse (i.e., AJAX messages). Finally, it can intercept all
communications between the webpage’s JS code and the
window object, e.g., timeout events. The JS logger performs
the core operation of DoDOM and runs within the browser.
Since it is written using JS, it is highly portable.

The goal of the invariant extractor is to perform offline
analysis of multiple executions recorded by the proxy and
to extract the invariant DOMs. It runs outside the browser.

3.2 Operation

The proxy injects the JS logger script into every page
loaded by the browser (a page is defined as any entity that
consists of a head tag). The proxy also assigns to each JS
logger script a unique tag which is used to identify the script
in interactions with the proxy. The JS logger script is instan-
tiated at the client after the page completes loading (after
the onLoad event), upon which it performs the following
actions (in sequence): (1) Traverses the DOM of the web
page, creates a compact representation of the DOM, and
sends it to the proxy. (2) Installs a new replacement handler
for all DOM elements that have event handlers installed and
stores the old handler as part of the element. (3) Replaces
the setTimeout and setInterval API calls in the window ob-
ject with custom versions (after storing the old handler) to
intercept timeouts. (4) Replaces the XMLHttpRequest ob-
ject with a custom version that intercepts all messages sent
to the server using the AJAX interface and their correspond-
ing responses. (5) Installs change handlers on each element
of the DOM tree to track any additions, modifications and
removals of the sub-tree rooted at the element.

The JS logger operates in two modes: record and replay.

We first describe the operation of the system in the record
mode and summarize the main differences during replay.

During record mode, the user interacts normally with the
page by moving the mouse, clicking on objects etc. The
browser translates the user’s actions into user-events and
invokes the replacement event handlers installed by the JS
logger on the corresponding DOM nodes. The handlers cre-
ate a snapshot of each event and send it to the proxy, which
in turn adds the events to a global queue for the page. The JS
logger periodically polls the proxy for outstanding events,
upon which the enqueued events are sent to the client (one
at a time). The JS logger then invokes original handers cor-
responding to the event stored in the element. The proxy
also writes the events to an event log before sending it to
the client.

During replay, the above sequence of steps is repeated,
but with three differences. First, instead of waiting for
events from the JS logger, the proxy reads in the list of
events from the event log and populates the global queue.
When the JS logger polls for events, the proxy retrieves
the events from the queue one at a time and sends them
to the client with the corresponding time-delay. Second, the
web page may have undergone small changes between the
recording session and the replay session, and the DOM node
that triggered the event during the recording session may be
in a different position during replay. DoDOM uses the con-
tents of a node and its pre-order traversal index to match the
node during replay. In the case of a mismatch, it searches
the DOM for the node with the closest match and replays
the event at the node 3. Third, only those timeouts that ex-
pired during recording are allowed to expire during replay
and only if the timeout handlers match. This ensures that
the effects of a timeout expiring during replay are faithful
to the effects observed during recording.

The proxy records the changes made to the web page’s
DOM tree after every event (i.e., user action, timeout or re-
ceived messages). The invariant extractor post processes
these traces to obtain a sequence of invariant DOM trees for
each event. This sequence represents the invariant DOM
shared by each of the executions (modulo small differences
due to variations among replays). Each tree in the invariant
sequence is learned independent of the other trees based on
the corresponding trees in the individual executions.

The algorithm for learning the invariant DOM trees
from a set of execution traces is given below (the pseudo-
code for the complete algorithm can be found in 3.2).

We set the initial invariant tree to the tree obtained from
the first execution trace. For each execution trace, we com-
pare its tree with the corresponding invariant tree recur-
sively starting from the root nodes and traversing the tree
in post order. A node is removed from the invariant tree due

3The closest match is the node(s) in which the highest number of fields
and values match with the original.
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to any of the following three conditions. (1) the contents of
a node of the invariant tree does not match the correspond-
ing nodes in the execution tree, (2) a node in the invari-
ant tree has more children than its corresponding node in
the execution tree, (3) the invariant tree has nodes that are
not present in the execution tree. The comparison among
nodes’ contents is based on the fraction of its field-value
pairs that match each other. If this fraction is higher than
a value known as the match threshold, then the nodes are
considered to match.

The match threshold thus determines how much of the
invariant tree is pruned away due to differences among the
DOMs of individual executions. A high match threshold
means that only nodes that match closely across executions
will be retained in the invariant tree. On the other hand,
a low match threshold indicates that that the invariant tree
may contain nodes that exhibit high variation in their con-
tents among executions.

3.3 Discussion

For portability and ease of deployment, DoDOM is im-
plemented predominantly in JS with a small part imple-
mented as a client-side proxy. However, the use of JS incurs
certain limitations as follows.

• The ordering of events in the JavaScript Virtual Ma-
chine (VM) cannot be observed or controlled by
DoDOM. These may impact the behavior of some ap-
plications. However, a robustly designed page must
not depend on the ordering of events by a specific VM,
and hence this is not a significant limitation.

• DoDOM traps events by hooking into the event-
handlers of DOM nodes and replacing the existing
functions with a wrapper function. This requires that
the web page be written using the DOM 1.0 event-
model. The DOM 2.0 event model does not provide
any way to remove a handler from the chain of event-
listeners on a DOM-node, or to ensure that the event-
handlers are invoked in a specific order. However,
most of the web pages we observed were written using
the DOM 1.0 model for comaptibility reasons. Further,
the DOM 3.0 specification remedies thi situation, but
is not yet implemented by most browsers.

• DoDOM assumes that the communications between
the JS logger script and the client-side proxy is First-
In-First-Out (FIFO), i.e. messages sent by the proxy
are delivered in-order to the JS logger code. If this
assumption is violated, it may not be possible to iso-
late the effects of an event. However, we found that
this assumption was satisfied on our platform, namely
Firefox on Windows.

int MatchScore(HashCode H1, HashCode H2)
{

int score = 0, total = 0;
for (Field F, Value V) in H1 do:
if H2.hasField(F) and (H2.getValue(F)==V)

score = score + 1;
total = total + 1;

return (score / total);
}

Set CheckMatch(TreeNode N1, TreeNode N2)
{

Set diffSet = empty;
HashCode H1 = getHash(N1);
HashCode H2 = getHash(N2);
if (MatchScore(H1, H2) < matchThreshold)

diffSet.add( N1, N2, "content" )
Children C1 = getChildren(N1);
Children C2 = getChildren(N2);
numChildren = min( C1.length(), C2.length() )
for (i = 0; i<numChildren; ++i) {

deltaSet = CheckMatch( C1, C2 );
diffSet = diffSet Union deltaSet;

}
if (C1.length > numChildren) {

for (i=numChildren; i < C1.length; ++i)
diffSet.add( N1, N2, "remove" )

} else if (C2.length > numChildren) {
for (i=numChildren; i < C2.length; ++i)

diffSet.add( N1, N2, "append" )
}
return diffSet;

}

Tree pruneInvariants(Tree InvTree,
Tree TraceTree)

{
Set diffSet = CheckMatch(InvTree.root,

TraceTree.root);
for (element in diffSet) do {

(node1, node2, diffType) = element
if (diffType == ’remove’)

removeFromTree(InvTree, node1);
else if (diffType == ’content’)

removeFromHash(InvTree, node1);
}
return InvTree;

}

Figure 5. Pseudo-code for extracting invari-
ants from DOMs
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• DoDOM cannot capture the state of the JS heap as
it is implemented entirely in JS. While it is possi-
ble to route all object allocations on the JS heap
through DoDOM, such a mechanism would incur high
overheads. Hence, we do not consider the JS heap
in DoDOM. This is not a significant limitation as
changes to the JS heap that impact the page will be
reflected in the DOM, server messages or timeouts and
would hence be captured by DoDOM. As for the other
changes, they do not matter from the point of view of
the page and are hence not captured.

• If for any reason, the JavaScript VM crashes or hangs,
then so does DoDOM. This is not a significant limita-
tion as most JS VM’s are reasonably robust[20]. We
do however provide a heartbeat service to detect hangs
of the JS logger and reload the page if it hangs.

4 Experimental Setup

This section describes the experiments performed and
the benchmarks used in our evaluation. The experiments
were performed using Firefox on a Core-2-Duo Intel pro-
cessor machine (running at 3 GigaHertz each) with 4 Giga-
Bytes RAM and running Windows (Vista).

We summarize the main research questions answered by
the experiments.

1. How many executions do we need to learn the invari-
ant DOMs for a web application?

2. How effective are the invariants in detecting errors
due to dropped events?

3. How effective are the invariants in detecting failures
of domains in the web application?

4. How much variation do the invariants exhibit from
one day to another ?

4.1 Invariant Extraction

The goal of this experiment is to answer research ques-
tion 1. From the set of all executions (replay sequences), we
randomly choose a training set, which is a subset of execu-
tions used to learn the invariants. In these experiments, we
vary the training set size in order to understand how quickly
the invariants converge to a stable value. We also vary the
match threshold described in Section 3.2 to understand how
much content similarity is present among the executions.

We measure the following characteristics of the DOM
tree in order to measure its convergence. (1) total number
of nodes, (2) average number of children per node, i.e., its
fanout, (3) maximum number of levels from each node, i.e.,
the height of the sub-tree, and (4) average number of total
descendants per node (not only its immediate children).

Fault Type Injection Method
User-Event Drop Do not replay the event at the client
Message Drop Do not forward the message to the server
Timeout Drop Do not replay the timeout at the client

Table 2. Faults injected and their characteri-
zation

We also compare the invariant DOM sequence with the
DOM sequences from all executions (even if they are not in
the training set). If any of the DOMs in its sequence exhibits
a mismatch with the corresponding DOM in the invariant
sequence, we consider the execution a false positive.

4.2 Event Drops

The goal of this experiment is to answer research ques-
tion 2. We measure the error-detection coverage of the in-
variant sequences for event drops corresponding to those in
Section 2.2. We observe their effects on the web page’s
DOM. Table 2 shows the types of faults introduced and the
injection method. The fault injector is implemented as an
enhancement of the replay mechanism in the DoDOM sys-
tem and can be configured through an external file. Each
run injects at most one fault to ensure that its effects can be
uniquely determined. After a fault is injected, the sequence
of DOMs corresponding to the execution is compared with
the sequence of invariant DOMs. We classify the execution
as a successful detection if any of the DOM trees in its se-
quence exhibits a mismatch with the corresponding DOM
in the invariant sequence.

4.3 Domain Failures

The goal of this experiment is to answer research ques-
tion 3. It emulates the effect of domain failures as described
in Section 2.2 using the NoScript plugin in Firefox [24].
First, the invariant DOM sequence is obtained from multi-
ple executions as shown in section 4.1. Then, each domain
in the web page is blocked one at a time and the correspond-
ing DOM sequences are obtained. The DOM sequence for
a blocked domain is then compared to the invariant DOM
sequence. A mismatch indicates that the domain’s failure is
detected by the invariants.

4.4 Diurnal Variations

The goal of this experiment is to answer research ques-
tion 4.

Because web pages may exhibit day-to-day changes, we
gather executions of the application over multiple days to
study the effect of diurnal variations in the effects of the
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blocked domains on the web page. The invariants obtained
on each day are compared with the executions obtained
by blocking a domain (on a particular day) to determine
whether the blocked domain impacts the backbone of the
web page on a given day. This allows us to understand
whether the effects of a domain are local to a given day
or whether they span multiple days.

4.5 Benchmarks

Table 3 summarizes the characteristics of the three web
applications. It shows the number of domains in the appli-
cation, the total number of lines of JS code (obtained with
Firefox’s Phoenix plugin [29]) and the number of events in
the recorded trace for the application. We use the Slash-
dot web site (http://slashdot.org) as the primary source of
measurements in this paper.

Slashdot aggregates technology-related news from dif-
ferent websites and allows users to comment on a news
story. Slashdot also allows users to navigate among dif-
ferent comments and view/expand comments on demand.
We interact with a Slashdot news story normally and replay
the interactions using DoDOM. The results reported are for
a specific news story on Slashdot4 with close to 300 com-
ments. We perform a total of 58 replays for the story (over
the course of 1 hour). We also repeated the experiments
with a different story with about 50 events, but the results
were similar and are hence not reported.

We also evaluate the invariant extraction capabilities of
DoDOM on two other web applications, namely CNN and
Java Petstore. Java Petstore is a freely available Web 2.0
application that mimics an e-commerce website for buying
pets [10]5. It allows the user to browse through pet listings
and choose a pet corresponding to the user’s preferences.
We interact with the website by moving over and clicking
on different elements of the page. CNN is a widely read
news website that delivers customized content to its readers
using JavaScript. We study the main page of CNN, which
is highly dynamic. Our interaction with CNN also consists
of moving the mouse over various elements of the page and
clicking on news stories of interest.

Table 3 shows that Java Petstore is the least complex ap-
plication in terms of the number of lines of JS code while
CNN is the most complex. We choose to focus on Slashdot
for our experiments as it presents a middle ground among
the three applications.

4The story is ”http://hardware.slashdot.org/story/09/07/30/2147246/ARM-
Hopes-To-Lure-Microsoft-Away-From-Intel”

5Java PetStore is written using the Dojo programming framework,
which registers event handlers for almost all events in the page, and hence
the large number of events in this application

Website Lines of JS No. domains No. events
Java Petstore 499 1 211

Slashdot 9647 5 13
CNN 15603 9 9

Table 3. Characteristics of the web applica-
tions

5 Results

This section presents the results of the experiments de-
scribed in Section 4. We focus on the Slashdot application
for the bulk of the experiments and summarize the results
for the CNN and Java PetStore applications at the end. We
also measure the performance overhead of DoDOM.

We summarize the main results first.
Convergence of invariants (Section 5.1): We show that

the invariant DOM converges with a training set size of 6
executions, which corresponds to 10% of the total execu-
tions.

Coverage for event drops (Section 5.2): The invariants
detect 100% of the drops of events whose handlers affect
the DOM.

Fault impact (Section 5.3): We find that most faults
have little or no impact on future events. However, faults
that do affect future events are more likely to impact events
closer to their origin in the execution trace.

Coverage for domain failures (Section 5.5): We also
find that failures of 4 of the 5 domains included by Slashdot
have no effect on the DOM. Hence, they are not detected by
the invariants. However, the invariants detect 100% of the
failures of the one domain that affects the DOM.

Impact of day-to-day variations (Section 5.6): Fi-
nally, we find considerable variations among the invari-
ants obtained on a day-to-day basis for Slashdot. However,
DoDOM is able to learn a consistent set of invariants for the
application across multiple days with no false positives on
any day.

Other applications(Section 5.7): Finally, we find that
the other two applications, namely Java PetStore and CNN,
also exhibit invariants that can be learned within six execu-
tions (similar to Slashdot).

5.1 Invariant Extraction

In this experiment, we vary the training set size from
1 to 10 over 58 executions and obtain the invariant DOM
sequence. The characteristics of the invariant DOM cor-
responding to the metrics listed in Section 4 are shown in
Figure 6 (a) through (d).

In the figures, the X-axis represents the event number
and the Y-axis represents a metric corresponding to the
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Training Set match threshold
Size 0.95 0.50 0.05

2 53 53 53
4 29 29 29
6 1 1 0
8 1 1 0

10 1 1 0

Table 4. False positives versus training set
size

event. The lines represent the invariants obtained with a
training set of a specific size. The figures show that the
number of nodes monotonically increases with the event
number, while the maximum number of levels monotoni-
cally decrease. The other two metrics, namely the number
of children and the number of descendants show no con-
sistent trend. This shows that the events are progressively
adding nodes to the tree although the number of descendants
does not change much because the number of leaf nodes in
the tree correspondingly increase.

Figure 6 (a) shows that as the training set size increases,
the number of nodes in the DOM decreases because more
and more nodes are eliminated from the invariant DOMs.
However, it stops decreasing once the training set reaches
a size of 6 (roughly 10% of the executions). Nonetheless,
the number of nodes converges to a value that is within 1%
of its original value (i.e., the number of DOM nodes for
any given execution). Similarly, the the average number of
descendants steadily increase with increasing the training
set size, but also stabilizes at a training set size of 6. This
shows that the invariant DOMs can be learned with a rela-
tively modest training set of 6 executions.

To further confirm the convergence of the invariants, we
measure the false-positive rate for the executions. Table 4
shows the false-positive rate as a function of the size of the
training set for different values of the match threshold (in-
troduced in Section 3.2). In the figure, the X-axis represents
the training set size and the Y-axis represents the number
of false positives. As can be seen in the figure, the false-
positive rate initially starts out high when the training set
is very small (2 executions), but quickly decreases with in-
crease in the training set size. For a training set size of 6 or
more, the false-positive rate is nearly zero (see below). This
confirms the earlier observation that a training set size of 6
is the point at which the invariant DOMs stabilize.

Interestingly, the false positives do not drop to 0 when
the match thresholds are 0.95 and 0.50, but remain stable
at 1 up to a total of 10 executions (maximum in this exper-
iment). This suggests that one of executions exhibits sig-
nificant differences from the invariant DOM. Nonetheless,
the false positives drop to 0 when the match threshold is
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Figure 7. Error-detection coverage of the
DOM invariants

decreased to 0.05, suggesting that the deviation is due to
content differences among the DOMs rather than structural
differences. We are investigating this case further.

5.2 Coverage for Event Drops

We measure the error-detection coverage of the invari-
ants for event drops through fault-injection experiments
shown in Table 2. For each of the 13 faults (each cor-
responding to an event in the trace), we perform 5 fault-
injection runs and compare the resulting DOM sequence
with the invariant DOM sequence. A mismatch among the
sequences indicates that the fault was successfully detected.
Figure 7 shows the error-detection coverage as a function
of the fault (event-number) that was injected. Based on the
previous results for false positives (Section 5.1), we focus
on the invariants derived with training sets of 6 or more.

Figure 7 shows that for invariants with training sets of
6 or more, the detection rate is either 0% (0 detections) or
100% (5 detections) depending on the injected fault. The
reason for the differences is as follows. Either an event-
handler affects the DOM or it does not. The events that have
0 detection rates, namely 1, 3, 7, 9, 11 and 12, are timeout
events and these events only update the global JavaScript
heap and not the DOM6. The other events are mouse-clicks
and message-handling events and the corresponding han-
dlers add or remove nodes from the DOM. Thus, the invari-
ants detect all event drops that affect the DOM.

The match threshold was set to 0.95 for these experi-
ments. However, the above results are not affected by vary-
ing the match threshold from 0.95 to 0.05 (not shown in fig-
ure). This suggests that the coverage is due to structural dif-
ferences among the DOMs rather than content differences.

Further, a match threshold of 0.05 has identical coverage
to a match threshold of 0.95, although it has a lower false-
positive rate (Section 5.1). Therefore, a match threshold of

6We confirmed this observation by reading their JavaScript code.
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Figure 6. Invariant Characteristics of the DOM: (a) Total number of nodes, (b) Average number of chil-
dren per node, (c) Maximum number of levels in each node and (d) Average number of descendants
per node

0.05 represents an optimal tradeoff between detection cov-
erage and false-positive rate.

5.3 Fault Impact

In this study, we measure the impact of a fault by com-
paring the DOM sequence from the fault-injected execu-
tions with the invariant DOM sequence. The training set
size for the invariants used in this study was fixed at 6 and
the match threshold set to 0.95. For each fault injected ex-
ecution, Figure 8 shows the number of nodes in the DOM
that are different from the corresponding invariant DOM se-
quence as a function of the event in which they differ. Each
line in the graph represents the average of five injection runs
for a particular fault (identified based on the event number
that is dropped). Only the faults that were detected in Fig-
ure 7 are shown in Figure 8.

The following observations may be made from Figure 8.
First, the total number of DOM nodes that differ from the
invariant DOMs is typically less than 25 for each event and
fault. This is relatively small compared to the total number
of nodes in the tree (over 5000), suggesting that the impact
of a fault is confined to a small fraction of nodes. Second,
for all faults except fault 2 and fault 8, the number of DOM
nodes that differ from the invariant tree is a constant inde-
pendent of the event number. This suggests that the portion

of the DOM affected by the corresponding events is not in-
fluenced by future events. Finally, for faults 2 and 8, the
number of DOM nodes affected by the fault first increases
and then decreases before converging to a constant value.
This suggests that the events corresponding to the faults in-
fluence the behavior of the events that immediately follow
them in the trace. However, the impact decreases with in-
creasing distance from the fault’s origin and tapers to a con-
stant value (after about three events in each case).

5.4 Aggregate Invariants

In this paper, we have derived invariants based on both
the structure and content of DOM trees as shown in Sec-
tion 3. In this section, we consider only the aggregate prop-
erties of the invariant DOMs and evaluate their error detec-
tion capabilities. The aggregate measures used correspond
to those in Section 5.1. We also measured the false-positive
rate for the aggregate invariants. The results for coverage
and false-positive rates are shown in Figure 9 and Figure 10.
Each bar in the figures represents the aggregate invariants
derived using training set sizes ranging from 2 to 10. In the
false-positive graph, the total number of executions on the
Y-axis was 58, while in the coverage graph, the total num-
ber of executions on the Y-axis was 65 (13 faults, 5 runs
each).
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Figure 8. Impact of injected faults on the DOM

The main results from Figures 9 and 10 are summa-
rized here. First, we see that both the false-positive rate
and the error-detection coverage decrease as the training set
increases from 2 to 6 after which they more or less stabi-
lize (with the exception of false positives incurred by the
maxLevels metric). This is in line with the results reported
in Section 5.2. Therefore, we consider only training sets
of 6 or more in this discussion. Further, both the number
of nodes (numNodes) and number of elements (numNodes)
have high error detection coverage, but also exhibit a high
false-positive rate. Therefore, they are unsuitable as de-
tectors because they exhibit high variations from one ex-
ecution of the web application to another. However, the
other three metrics, namely, the maximum number of lev-
els (maxLevels), average number of children (numChildren)
and number of descendants (numDescendants) have a low
false-positive rate, but also have almost zero error-detection
coverage. Hence, they are ineffective at detecting errors as
the information they capture is too coarse-grained to detect
small changes in the DOM due to errors (as we showed in
Section 5.2 the injected faults resulted in changes in rel-
atively few DOM nodes). Therefore, we do not consider
aggregate metrics in this paper, although we do not rule out
the possibility that there may exist aggregate metrics other
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Domain Total executions No. of mismatches
doubleClick.net 16 0

Fsdn.com 27 27
Google Syndication 31 0

mediaplex.com 81 2
2mdn.com 25 0
No domain 90 0

Table 6. Domain failures for Slashdot

than the ones we have considered that may be effective at
detecting errors. This is a direction for future investigation.

5.5 Domain Failures

The goal of this study is to measure the error-detection
coverage of the invariant DOMs for failures of the domains
in Slashdot. The Slashdot application imports scripts from
a number of different domains as shown in Table 5. Table 5
shows that some of the scripts are obfuscated and use un-
safe practices such as the introduction of new code into the
page. The results of the study are shown in Table 6 and
summarized below.

First, the number of executions is different for different
blocked domains. This is because we capped the total time
for running each experiment to 30 minutes for each blocked
domain. Blocking different domains has different effects
on the time taken for each execution. For example, domains
containing a lot of complex JS code take longer to execute
and blocking these domains substantially speeds up the ex-
ecution of the web application.

Second, among 90 executions in which no domain was
blocked, none affected the invariants for the page, showing
that the false-positive rate for the experiment was 0. Hence,
the invariants were stable for the training set (as in previous
experiments, the match threshold of 0.95).

Finally, each domain either impacts all the executions in
which it is blocked, or it does not impact any execution7. Of
the five domains, only fsdn.com affects the DOM tree and
when it is blocked, its failure is detected by the invariants.
The failures of other domains are not detected as they do
not affect the DOM. Hence, the invariants detect 100% of
the failures of the domain(s) that impact the DOM.

5.6 Diurnal Variations

In this section, we attempt to understand the day-to-day
variations of the invariants obtained in section 5.1. To this
end, we collected execution traces from the application by

7Mediaplex.com is an exception - it differs in 2 of 81 executions from
the invariant DOM. We believe these executions are false positives.
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Figure 11. Results of day-to-day variations for
Slashdot

replaying a set of recorded events over three different days
(we did not block domains for this experiment).

We collected a total of 90 executions, of which each day
contributed 30 executions. We then derive four sets of in-
variants from the traces. Three sets of invariants are derived
from a training set of 10 executions each drawn from a spe-
cific day, and one set of invariants is derived by combining
together the training sets of three days to form a training
set of 30 executions. We then compare each set of invari-
ant DOMs with the DOMs of the executions and measure
the false-positive rate with respect to each set of invariants
(since no faults are injected, all deviations are false pos-
itives). The results are shown in Figure 11. The X-axis
shows the executions categorized by the day on which they
were obtained while the Y-axis shows the percentage of
false positives. Each bar in the graph corresponds to the
false positives with respect to the one of the four invariant
sets described above. The match threshold used was 0.95.

The following results may be observed from Figure 11.
First, the invariants obtained across all three days do not
exhibit false positives for any of the executions. Second,
the invariants for days 2 and 3 do not exhibit false posi-
tives for the executions obtained during those days. This
suggests that the web application did not change signifi-
cantly during those two days. However, the invariants for
day 1 exhibit false-positive rates of 20% and 50% for the
executions obtained during days 2 and 3 respectively. Like-
wise, the invariants for days 2 and 3 exhibit false-positive
rates of about 80% each for the executions obtained during
day 1. This suggests that the web application underwent
significant changes between days 1 and 2. This result is
not surprising, as web applications are in constant flux and
may change on a day-to-day basis. However, even with the
changes, DoDOM was able to extract a stable set of invari-
ants for the application.
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Domain Name Lines of JS code Comments
doubleclick.net 555 1. Uses document.write to insert new scripts and function calls into the document,

2. Writes into global objects on the JavaScript heap shared by all scripts on the page.
c.fsdn.com 7460 1. Complicated code that is obfuscated and compressed using JSCrunch,

2. Adds and removes DOM tree nodes based on user’s input
Google syndication 1451 Shows advertisements on the page using the Google advertisement service

s.fsdn.com 181 Storage of media files and scripts for Slashdot
Variable domains Unknown These domains vary for different news stories or even when the same story is reloaded.

Examples are eyewonder.com, mediaplex.com, 2mdn.com

Table 5. Domains from which Slashdot imports scripts

5.7 Other applications

In this section, we summarize aggregate results from
running DoDOM on two other web applications, namely
CNN and Java PetStore. We measure the convergence of
the invariant DOMs for the two applications as a function
of the training set size. Table 7 shows the results for both
applications. The table focuses on the final events in the re-
spective applications’ traces. As can be seen in the table,
the invariant DOMs stabilize with a training set size of 6 for
both applications.

5.8 DoDOM Performance Overhead

In this section, we measure the performance overheads
introduced by the DoDOM tool. The overhead consists of
three main components.

Page load: The load time of a page depends on the
amount of data that is downloaded by it. This includes both
HTML and JavaScript code. DoDOM consists of about
1500 lines of uncompressed JS code, which corresponds
to 16.5 KB in compressed form. The amount of JS code
loaded by Web 2.0 sites ranges from 200 KB to 1.9 MB [31]
and hence DoDOM adds less than 10% to the code size.

Record Mode: After the page has loaded, DoDOM per-
forms a complete traversal of the web page’s DOM and
sends it to the proxy (in a compact form). This operation
takes approximately 3.5 seconds for the Slashdot page (we
use the Firebug profiler for the measurements). The time
taken to run the initial scripts on the page without DoDOM
is approximately 9.5 seconds. Therefore, the initialization
overhead of DoDOM for the Slashdot application is 36%.
DoDOM also introduces delays in capturing user interac-
tions as they must be sent to the proxy. However, we did
not observe any noticeable delay when using DoDOM for
the applications considered in the paper.

We currently implement DoDOM using JavaScript,
which is not optimized for performance. A more efficient
implementation as a browser plugin would substantially
speed up its operation and is a direction for future work.

Invariant Extraction: The invariant extraction process
is done offline and is not in the critical path of the applica-
tion. The overhead is on the order of a few minutes.

5.9 Threats to Validity

In this section, we discuss some of the threats to the va-
lidity of the results obtained in the study. First, the key
assumption made in this study is that the invariant DOM
does not change substantially from one execution to an-
other. However, this assumption may be violated if either
the server-side code undergoes upgrades, or if the content
of the web page undergoes substantial changes. If this hap-
pend, then the invariants need to be relearned.

The second threat to validity is the assumption of consis-
tency in the behavior of web applications under failures. For
example, we assume that a significant deviation from the in-
variant DOM is due to an event being dropped (Section 5.2)
or due to a domain being blocked (Section 5.5). However,
it is possible that factors such as load on the server or mea-
surement noise at the client result in spurious deviations.
Future work will focus on eliminating spurious deviations.

6 Discussion

Although not the focus of this paper, the invariants ex-
tracted by DoDOM have uses beyond error detection. We
outline some of the uses in this section.

Web Applications Testing: One of the challenges in
testing Web 2.0 applications is in determining the correct or
acceptable behavior of the application under different test
inputs. ATUSA [26] uses programmer-specified invariants
on the DOM to exhaustively test all paths in a Web 2.0 ap-
plication and ensure their conformance. However, writing
invariants is time and effort intensive. DoDOM can be used
to automate the extraction of invariants for a tool such as
ATUSA to check during its exploration.

Security Enforcement: The invariants learned by
DoDOM can also be used to check if a web page has been
tampered with either during transmission or rendering at the
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Training Java PetStore CNN
Size NumNodes NumChildren MaxLevels Descendants NumNodes NumChildren MaxLevels Descendants

2 397 3.04 2.81 44.29 2413 2.470 2.632 48.485
4 397 3.04 2.94 44.29 2408 2.475 2.636 48.548
6 387 3.10 2.94 45.57 2407 2.475 2.636 48.548
8 387 3.10 2.94 45.57 2407 2.475 2.636 48.548
10 387 3.10 2.94 45.57 2407 2.475 2.636 48.548

Table 7. Results for Java PetStore and CNN applications

client. This is similar to the Web Tripwire project [33], with
the difference that we can apply it to arbitrary web applica-
tions that execute client-side code. Further, the invariants
can also help identify if a web page has been permanently
defaced (for example, through a Type 2 XSS attack [13]).

Better Domain Filtering: Section 5.5 shows that fail-
ures of the majority of domains do not impact the invari-
ant DOM for Slashdot. We believe this is also likely to
be the case for many web applications that include mul-
tiple domains. We could filter such domains at the client
for advertisement blocking and performance optimization.
The NoScript plugin [24] already allows domain filtering
but leaves it to the user to decide which domains to block.
With DoDOM, we can automate the decision making pro-
cess based on whether the domain impacts the DOM.

7 Related Work

Dynamic invariant derivation: DAIKON [14] and
DIDUCE [18] derive program invariants based on dynamic
executions. DAIKON derives invariants over multiple test
inputs while DIDUCE does the same over multiple stages
of a program’s execution. These techniques attempt to
learn invariants over program structures, and do not apply to
Web 2.0 applications as these applications are typically data
centric [27]. Hence, web applications require techniques
that infer data-centric invariants.

HeapMD [7] infers invariants over data-structures on the
heap and identifies significant violations of the properties
as potential bugs. DoDOM also falls under the category of
data-invariant detection techniques. However, it infers in-
variants over the web page’s DOM, which are different from
data-structure invariants in three aspects. First, data struc-
ture invariants typically encode the connectivity properties
of data structures, while DOM invariants encode both the
content and structure of the DOM. Second, data structure
invariants are predicates over the nodes in the data structure,
while DOM invariants are parts of the DOM tree. Finally,
DOM invariants evolve with respect to specific events and
actions in the application, while data structure invariants are
typically fixed for the duration of the program.

Web application testing: A number of approaches have

been developed to test web applications that execute pri-
marily at the server, i.e., Web 1.0 applications [3, 34]. An
example of this approach is Veriweb [3], which systemati-
cally explores a web site by navigating to each of its pages.
However, Veriweb cannot be applied to Web 2.0 applica-
tions which often execute within a single page.

Marchetto et al. [25] propose an approach to test Web 2.0
applications using an abstract state machine model provided
by the developer. Mesbah and Deursen [26] extend this
work to infer the state machine model automatically by
finding clickable elements in the application and emulat-
ing clicks on them. Similar to our work, they use invariants
on the DOM tree to check the validity of a state explored
by their tool called ATUSA. ATUSA differs from DoDOM
in two aspects. First, the invariants used in ATUSA cor-
respond to generic invariants on the validity of the DOM
(e.g., invalid HTML), and are not specific to the web ap-
plication being tested8. Second, ATUSA uses heuristics to
find clickable elements on the page, and explores paths cor-
responding to the clicks. However, this exploration may not
model a real user-interaction sequence.

Recently, Bezemer et al. [4] present a dynamic approach
for security testing of widgets used in Web 2.0 applications.
Widgets are small pieces of JavaScript code and/or HTML
that co-exist within a single web page. The main differences
between this approach and ours are that (1) we can analyze
the entire web application rather than only widgets and (2)
we do not require an explicit security policy specification.

AjaxScope [22] is a tool for remotely monitoring web 2.0
applications and changing their behavior on the fly. Similar
to our approach, AjaxScope interposes on the web appli-
cation using a proxy server and rewrites the application’s
JavaScript code. AjaxScope can be used for performing
drill-down performance analysis or for debugging of com-
plex bugs such as memory leaks. However, the intrumen-
tation is at the level of JavaScript code and cannot be eas-
ily extended for DOM elements. Furthermore, AjaxScope
does not in and of itself derive invariants and it would be
non-trivial to extend it to do so.

Static Analysis: Static analysis approaches can also

8ATUSA allows the programmer to specify application-specific invari-
ants, but does not derive the invariants.
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be used for detecting errors in web applications. How-
ever, Web 2.0 applications are written in languages such as
JavaScript, which are difficult for static analysis approaches
to handle. This is because the JavaScript language has fea-
tures such as dynamic/loose types, on the fly code creation
and lack of separation between code and data [12]. Static
analysis approaches for analyzing JavaScript [8, 16, 17]
ignore these features in the interest of accuracy. How-
ever, many real web sites extensively use these unsafe fea-
tures [39] and hence cannot be statically analyzed.

Real World Studies: Kalyanakrishnan et al. [21] study
the availability of popular websites from an end-user per-
spective. Their study focused on the network connectivity
between the client and the server. Further, they focus on the
availability of a web site rather than its reliability. Chen et
al. [6] present Pinpoint, a tool to automatically determine
the root causes of failures in large internet service infras-
tructures deployed on the J2EE platform. Pinpoint targets
the backend of web services. Pertet and Narasimhan [30]
study downtime incidents of web services to understand
their root causes. The study was confined to server failures.

Fault injection into web applications: Reinecke et
al. [32] use fault injection to evaluate the resilience of
reliable messaging standards in web services. Vieira et
al. [38] use fault injection to evaluate the robustness of web-
services’ infrastructure. These approaches target errors in
communication protocols and server code respectively.

Huang et al. [19] evaluate the security of web applica-
tions using fault-injection experiments. The injected faults
correspond to SQL injection attacks and cross-site scripting
(XSS) attacks. Fonseca et al. [15] use vulnerability and at-
tack injection to test the resilience of web applications to
attacks. However, these approaches operate on the appli-
cation’s server-side code and cannot target client-side code.
Further, they are not concerned with non-malicious that re-
sult in the application deviating from its correct behavior.

Finally, Bagchi et al. [1] and Automatic failure path in-
ference(AFPI) [5] use fault injection to track dependencies
in server applications. We use fault injection for resilience
testing rather than dependency discovery.

Dynamic Checking: Web applications have also used
dynamic invariant approaches for detecting security attacks.
Swaddler [11] derives dynamic invariants on the server code
of web applications written using the PHP language. Sub-
sequently, Swaddler uses the inferred invariants to detect at-
tacks that attempt to bypass the application’s workflow and
force the application into an inconsistent state. Swaddler’s
analysis and enforcement is implemented on the server side
and hence cannot be used for Web 2.0 applications.

Blueprint [37] is an approach to enforce the integrity of
a web application’s DOM at the client in order to prevent
script injection (XSS attacks). The server encodes the in-
tended DOM of the application as part of the document sent

to the client, which is then compared with the actual DOM
generated by the client’s HTML parser. A mismatch indi-
cates that the web page has been injected with untrusted
content, a classic XSS attack. Robertson and Vigna [35]
enforce the integrity of a web application’s DOM using
static typing at the server end to prevent both XSS attacks
and SQL injection attacks. Both approaches require apriori
knowledge of which portions of an application’s DOM tree
are trusted, and this information may not always be known
to the developer. Robertson and Vigna’s approach provides
a way to automate the generation of such specifications, but
requires the developer to use their static type system.

Web tripwire [33] is a system to detect unintended mod-
ifications of web pages made in transit or at the client. The
server inserts JavaScript code into the web page to com-
pare the page’s HTML source after it has been loaded at the
client with the original page’s HTML. A mismatch indicates
that the web page has been tampered with, either in transit
to the client (e.g., by a malicious router) or by the client’s
web browser (e.g., by a malicious browser plugin). How-
ever, web tripwire requires exact knowledge of the page’s
source at the client which is hand coded and inserted into
the page. Therefore, it cannot be applied to generic web
pages. Furthermore, Web tripwire cannot be used to detect
malicious modifications to the page after the check has been
performed or by dynamic events in Web 2.0 applications.

8 Conclusions

This paper presents a novel approach to enhance the re-
liability of Web 2.0 applications using DOM-based invari-
ants. The approach dynamically derives invariants on web
applications’ DOMs and uses them to detect errors. We
present DoDOM, an automated tool to extract DOM invari-
ants over multiple executions of the application.

We show that (1) DOM invariants exist in real web appli-
cations, (2) can be learned using DoDOM within a reason-
able number of executions, and (3) are useful in detecting
failures of events and domains that impact the DOM.

As future work, we plan to (1) integrate DoDOM as a
part of the web browser, (2) extract invariants across differ-
ent user-interaction sequences, and (3) explore the use of
invariants to detect security attacks on web applications.
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