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ABSTRACT 

Many cities suffer from noise pollution, which compromises 

people’s working efficiency and even mental health. New 

York City (NYC) has opened a platform, entitled 311, to 

allow people to complain about the city’s issues by using a 

mobile app or making a phone call; noise is the third largest 

category of complaints in the 311 data. As each complaint 

about noises is associated with a location, a time stamp, and 

a fine-grained noise category, such as “Loud Music” or 

“Construction”, the data is actually a result of “human as a 

sensor” and “crowd sensing”, containing rich human 

intelligence that can help diagnose urban noises. In this paper 

we infer the fine-grained noise situation (consisting of a 

noise pollution indicator and the composition of noises) of 

different times of day for each region of NYC, by using the 

311 complaint data together with social media, road network 

data, and Points of Interests (POIs). We model the noise 

situation of NYC with a three dimension tensor, where the 

three dimensions stand for regions, noise categories, and 

time slots, respectively. Supplementing the missing entries 

of the tensor through a context-aware tensor decomposition 

approach, we recover the noise situation throughout NYC. 

The information can inform people and officials’ decision 

making. We evaluate our method with four real datasets, 

verifying the advantages of our method beyond four 

baselines, such as the interpolation-based approach.    
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INTRODUCTION 

The rapid progress of urbanization modernizes people’s lives, 

but also creates noise pollution in cities. In addition to 

compromising working efficiency and quality of sleep, urban 

noises may impair people’s physical and mental health. 

People living in major cities, especially in NYC, are 

increasingly concerned about tackling the problem, calling 

for technology that can diagnose the citywide noise situation 

and the composition of noises in different places. 

Modeling citywide noises, however, is very difficult, as the 

level of noises varies by locations and changes over time 

significantly. Moreover, besides the level of sound measured 

in decibels, the measurement of noise pollution also depends 

on people’s tolerance to noises, which changes over different 

times of day. For example, at night, people’s tolerance to 

noises is much lower than during the daytime. A quieter 

noise at night may be considered a heavier noise pollution. 

Consequently, even if we could deploy sound sensors 

everywhere, diagnosing urban noise pollution solely based 

on sensor data is not thorough. Furthermore, urban noises are 

usually a mixture of multiple sound sources. Understanding 

the composition of noises, e.g., in evening rush hour, 40 

percent of noise in a given place comes from loud music, 30% 

from vehicle traffic and 10% from constructions, is vital to 

tackling noise pollution. 

While modeling urban noise pollution is very difficult, other 

ubiquitous data sources indicating urban noises are already 

available. For example, since 2010, NYC has operated a 

platform that allows people to call 311 to complain about 

what they feel annoyed by (without being an emergency) in 

the city [1]. According to 311 records from 2010 to 2014, the 

third largest category of complaints has been about urban 

noises. When complaining about noises, people are required 

to provide the location, time and a fine-grained noise 

category, such as loud music or construction. This means that 

the 311 complaint data about noises is actually a result of 

“human as a sensor” and “crowd sensing”, containing rich 

human intelligence that can help us understand noise 

pollution from people’s perspectives. Specifically, the 

number of 311 calls (about noises) made in a location is an 

indicator of the noise pollution of the location (see Figure 5), 

and the distribution of these 311 complaints over different 

noise categories may describe the composition of noises in 

the location. On the other hand, the 311 data is very sparse 

(see Figure 6 for details), as there are not always people 

reporting ambient noises at a given place and time. 

Recovering the noise situation of locations that do not have 

sufficient 311 data remains a challenge.   

Fortunately, the big data era has brought us unprecedented 

data in urban areas, such as user check-in data from location-

based social networks, POIs, and road networks. Those data 
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sources also have a correlation with urban noises, providing 

complementary information to pinpointing urban noises. For 

instance, a region with a denser road network is more likely 

to embrace heavier traffic noises. Likewise, a region with 

many bars is very likely to generate music noises in the 

evening. Additionally, a bar with more user check-ins would 

generate a louder noise (see later sections for more details).  

In this paper, we infer the noise situation (consisting of a 

noise pollution indicator and a noise composition) of 

arbitrary regions of NYC, at different time intervals of a day, 

by combining the historical 311 noise complaint data over a 

period of time with social media, POIs, and road network 

data. According to the noise pollution indicator, we can rank 

locations in different time spans, e.g. 0am-5am on weekdays 

and 7pm-11pm on weekends, as illustrated in Figure 1 A); 

the darker the color is the heavier the noise pollution is. Or, 

we can rank locations by a particular noise category, such as 

construction, as depicted in Figure 1 B). We can also check 

the noise composition of a particular location changing over 

time, e.g. Time Square, as shown in Figure 1 C). 

 
Figure 1. Results of our research 

To achieve these goals, we first partition NYC into disjoint 

regions by major roads, using a map segmentation algorithm 

[24]. We then map the 311 noise complaints onto these 

regions according to their geospatial locations, building a 

three dimension tensor, where the three dimensions denote 

regions, categories of noises and time slots. Each entry of the 

tensor stores the number of 311 complaints about a particular 

noise category in a particular region and a particular time slot. 

We fill in the tensor’s missing entries (i.e., without 311 

complaints), using a context-aware tensor decomposition 

approach that combines 311 data with user check-ins, road 

network data and POIs. After that, the value of an entry is 

used as a noise pollution indicator of a region in a time slot 

and in a noise category, and the values of the entries across 

different categories denote the composition of noises in the 

region. Our approach has three primary contributions: 

 Citywide noise modeling: Beyond raw sensor data, the 

311 data indicates not only the level of noise in a place 

but also people’s reaction and tolerance to different 

categories of noise and during different time spans of a 

day. Using a 3D tensor, we simultaneously model the 

correlation of noises among different locations, time 

spans and noise categories.    

 Dealing with data sparsity: The 311 data is very sparse, 

resulting in a sparse tensor.  Filling in the missing entries 

of the tensor solely based on non-zero entries is not 

accurate enough. To deal with the data sparsity of the 

tensor, we extract three categories of features from users’ 

check-in data, POIs and road network data. From 

different perspectives and built from other data sources, 

the three feature sets represent the temporal correlation 

between different time slots, the geospatial correlation 

between different regions, and the correlation between 

different noise categories. By feeding these feature sets 

into the tensor decomposition process, we reduce the 

error of tensor decomposition, thereby improving the 

accuracy of noise inferences.  

 Real evaluation: We evaluated our method by extensive 

experiments that use four real data sets [31]. The results 

demonstrate the advantages of our method beyond four 

baselines, such as Kriging [14], and reveal interesting 

discoveries that can bring social good to NYC. 

The rest of this paper is organized as follows: the second 

section overviews the framework of our method. The third 

section describes the datasets we use and how they are 

correlated with noises. The fourth section introduces the 

method for noise inferences, and the fifth section presents 

results and visualizations. The sixth section summarizes the 

related work, followed by the conclusion in the last section. 

OVERVIEW 

Preliminary 

Definition 1 (Road Network): A road network 𝑅𝑁  is 

comprised of a set of road segments {𝑠} connected between 

each other in the format of a graph. Each road segment 𝑠 has 

two terminal nodes, a series of intermediate points between 

the two terminals, a length 𝑠. 𝑙𝑒𝑛 , a classification (level) 

𝑠. 𝑙𝑒𝑣 (e.g., a highway or a street). The smaller 𝑠. 𝑙𝑒𝑣 of road 

segment 𝑠 is, the higher the level of 𝑠 is. 

Definition 2 (POI): A point of interest (POI) is a venue in a 

physical world, like a shopping mall or theatre, having a 

name, address, coordinates, category, and other attributes. 

Definition 3 (User Check-in): In a location-based social 

networking service (e.g., Foursquare), a user can mark a 

venue (e.g. a shopping mall) when the user arrives there, 

which is known as a check-in. Each check-in has a time 

stamp and a geospatial coordinate, usually associated with a 

POI category, such as food and dining.  

Definition 4 (Noise Complaint): Each noise complaint 𝑛𝑠 

contains a timestamp, a location 𝑛𝑠. 𝑙 denoted by a (latitude, 

longitude) or street address, and a complaint category 𝑛𝑠. 𝑐. 

Weekday: 6am-6pmWeekend: 7pm-11pm

B)  Construction

Weekday:0-5am

A) Overall noises

C)  Different noise categories in Time Square



 

Framework 

Figure 2 presents the architecture of our system, which 

consists of three major layers: 1) data acquisition, 2) noise 

inference, and 3) service providing. We will detail the first 

two layers in the following sections respectively.  

 

Figure 2. The architecture of our method 

DATA ACQUISITION AND ANALYSIS 

This section introduces four data sources, and analyzes the 

correlation between them and NYC’s noises.   

311 Data about Noises 

311 is NYC’s governmental non-emergency service number, 

allowing people in the city to complain about everything that 

is not urgent by making a phone call, or texting, or using a 

mobile app. According to the 311 data recorded from May 

23, 2013 to Jan. 31, 2014 (168 weekdays and 68 weekends), 

67,378 complaints were about urban noise, which is ranked 

the third largest out of the 187 complaint categories. Table 1 

shows the 14 fine-grained noise categories and their 

proportions in the total number of noise complaints. Loud 

music/party is the largest. Figure 3 paints the 236-day 311 

complaints about noises on a digital map, where the height 

of a bar denotes the number of complaints in a location. For 

example, we can see that south Manhattan was suffering 

from Construction and Loud music/party. 

Table 1. Categories of noise and their proportion in 311 data  

Categories % Categories % 

𝑐1. Loud Music/Party 42.2 𝑐8. Alarms 1.7 

𝑐2. Construction 17.2 𝑐9. Private carting noise 0.8 

𝑐3. Loud Talking 14.6 𝑐10. Manufacturing 0.3 

𝑐4. Vehicle 13.7 𝑐11. Lawn care equipment 0.3 

𝑐5. AC/Ventilation 
equipment 

3.9 𝑐12. Horn Honking  0.2 

𝑐6.Banging/Pounding 2.1 𝑐13. Loud Television 0.1 

𝑐7. Jack Hammering 2.1 𝑐14. Others 0.8 

Figure 4 shows the number of 311 complaints in the top five 

noise categories changing over time of day, where the 

complaints of the 68 weekend days are aggregated into one 

day. As the number of weekdays (168) is more than weekend 

days, we randomly select 68 weekdays and aggregate the 

complaints of these days into one day, for a fair comparison 

with weekend days. It is interesting that more complaints 

were made at night than daytime. This indicates that people’s 

tolerance for noise is lower at night. Generally, weekends 

have much more noise complaints than workdays. This could 

be for two possible reasons. One is weekends could have 

more sources of noises than weekdays, such as football 

games and parties. The other is people have more time to 

complain during the weekends. Staying at home, their 

expectation for a quiet day is higher than a workday. 

Specifically, weekends have less complaints about air 

conditions/ventilation than weekdays. The reason is very 

intuitive. The air conditioning and ventilation systems of 

many buildings may be suspended during weekends.  

 

 
Figure 3. Complaints of noises in NYC (5/23/2013 to 1/13/2014) 

    

                   A) Weekdays                                 B) Weekends 

Figure 4. Number of complaints changing over time of day 

The data presented in Figure 3 and 4 well demonstrates the 

value of “human as a sensor” and “crowd sensing”, where 

each individual contributes their own information about the 

ambient noises; the individual information is then aggregated 

to diagnose the noise pollution throughout a city. The noise 

categories tagged by a complainer can help analyze the 

composition of noises in a location. We also find 311 noise 

complaints in a location have a correlation with its real noise 

level. Figure 5 studies the number of noise complaints and 

real noise levels (collected through a mobile phone) in 36 

locations, in daytime and nighttime respectively. [12] details 

how we collect real noise levels. First, given the same time 

span in a day, the more 311 calls are made in a location, the 

louder the real noise is in the location. We see the same trend 

in Figure 5 B) and C). If given sufficient 311 complaints of 

any location and at anytime, we can recover the noise 

situation throughout the city by doing some simple statistical 

analysis on the complaint data. On the other hand, there are 

some locations (marked by the red circles shown in Figure 5) 

having very few 311 complaints but still with considerable 

real noises. This is caused by the sparsity of 311 complaint 

data, i.e., having no complaint records does not mean no 

noise. To diagnose the noises throughout a city, we need to 

recover these missing locations. Second, the data of different 

6am 8am 10am 12pm

Road Networks

Map
Segmentation

311 data

Tensor 
Construction

POIsCheck-ins

 Feature 
Extraction 

Features

Tensor 
Decomposition

Visualization

GovernmentsEnd users

D
at

a 
A

cq
u
is

it
io

n
N

oi
se

 I
nf

er
en

ce
S

er
v

ic
es

0 4 8 12 16 20
0

1000

2000

3000

 

 

N
u

m
b
e

r 
o

f 
C

o
m

p
la

in
ts

Time of Day

 Loud Music/Party

 Construction

 Loud Talking

 Vehicle

 AC & Ventilation

0 4 8 12 16 20
0

1000

2000

3000

 

 

N
u
m

b
e
r 

o
f 
C

o
m

p
la

in
ts

Time of Day

 Loud Music/Party

 Construction

 Loud Talking

 Vehicle

 AC & Ventilation



 

time spans are not comparable. As shown in Figure 5 C), the 

real noise level at 6am-6pm is actually higher than 7pm-

11pm; however, more complaints were made in the latter 

time span, as people’s tolerance to noises is much lower at 

night. The discovery reveals the advantage of 311 data 

beyond raw sound data. This also motivates us to model the 

noise situation in different time spans respectively.  

 
Figure 5. Correlation between 311 complaints and real noise 

level: A) shows the geo-distribution of the 36 locations in NYC 

that we test, B) plots the correlation during the time span 6am-

6pm. The blue broken line fits the majority of points except for 

those falling in the red circle. 

Figures 6 and 7 further explore the sparsity of the 311 data. 

Each plot in Figure 6 denotes the proportion of regions (see 

Definition 5) with the number of complaints smaller than its 

value on the horizontal axis. For instance, over 90 percent of 

regions have received less than 60 complaints in total in the 

68 weekdays (i.e. less than one complaint per region per day). 

Figure 7 presents the proportion of regions having at least 

one complaint from the top five most frequent noise 

categories. While a few regions may not really have any 

noise pollution, the majority of regions without 311 data are 

due to lack of people reporting noise. Given the sparseness 

of the complaints, recovering the noise situation throughout 

a city solely based on the complaint data is not good enough, 

so, we turn to other data sources for help. 

 

User Check-in Data 

User check-in data from location-based social networks 

denotes human mobility in cities, which is relevant to urban 

noise. First, people themselves are source of noise, talking 

loudly or playing music intensely. Second, human mobility 

indicates the traffic volume and function of a region [25][26]. 

These factors have a strong correlation with noises. To deal 

with the data sparsity problem of 311 data, we also collect 

from Gowalla 127,558 check-ins that were generated from 

4/24/2009 to 10/13/2013 in NYC, and 173,275 check-ins 

from Foursquare (generated from 5/5/2008 to 7/23/2011) 

also in NYC. The check-in data from Foursquare are also 

associated with one or more categories: Art & Entertainment, 

College & University, Food, Great Outdoors, Nightlife Spot, 

Home/work/other, Shop, and Travel spot.  As NYC has not 

changed tremendously recently, people’s check-ins patterns 

have remained similar over the past two years. This allows 

us to correlate the check-in data of different times with the 

311 data. Other types of human mobility data, such as mobile 

phone data or GPS traces of taxis, can also be applied here.  

As shown in Figure 8 A), we found a strong correlation 

(Pearson correlation 0.873, P-value of T-Test << 0.001) 

between the number of check-ins in the Art & Entertainment 

category and the number of noise complaints about vehicles 

in each hour of a day. The number of check-ins and 

complaints are normalized into a value falling in [0, 1]. 

Likewise, the number of user check-ins at the nightlife spot 

category also has a positive correlation with the number of 

complaints in the category Loud music/Party (Pearson 

correlation 0.745, P-value of T-Test << 0.001). Figure 8 B) 

respectively presents the geospatial distributions of user 

check-ins (in Art & Entertainment and Nightlife spot 

categories) and the noise complaints (in Loud music/party 

category), where they have a similar geospatial distribution 

in some regions (marked by the dotted circles). 

    
A) Temporal review: categories of check-ins vs categories of noises     

 
B) Geospatial distributions of check-ins and noise complaints  

Figure 8. Correlation between user check-ins and 311 in NYC 

Road Network and POIs 

The information on POIs in a region, such as the number of 

POIs in different categories and the density of POIs, 

indicates the function of the region as well as the flow of 

people in the region, which are very relevant to a region’s 

noise situation. For example, if a region has many bars, the 

amount of loud music and talking tend to be high. A park, 

however, is usually quiet. The structure of a road network in 

a region, like the number of intersections and the total length 

of road segments, also has a strong correlation with the 

region’s traffic patterns, which is a major noise source.  

Location with few complaints Locations with sufficient complaints

A) Locations B) Correlation in 6am-6pm C) Correlation in 7pm-11pm

Figure 7. The proportion of regions with 

complaints of a noise category

Figure 6. Proportion of regions with 

complaints smaller than a number
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Figure 9 shows the correlation between noise complaints in 

the vehicles category and a few road network/POI features 

(e.g. the total length of road segments, the number of 

intersections, and the density of POIs). Each column and row 

represents one feature; each marker is a region; different 

symbols stand for different numbers of complaints in the 

vehicles category, e.g. a green square denotes 1-5 complaints. 

So, each box in Figure 9 shows the 311 complaints in the 

vehicles category with respect to two road network/POI 

features. As illustrated in the box of the first row and second 

column, where its horizontal axis denotes the number of 

intersections in a region and the vertical axis means the total 

length of road segments in a region, we can clearly see that 

the more intersections a region has the more red crosses and 

purple triangles occur (denoting more complaints about 

vehicles). We also find a similar trend with respect to length 

of roads.   

 
Figure 9. Correlation between the features of road 

network/POIs and the noises of vehicles 

As illustrated in Figure 10 A) and B), the geospatial 

distribution of Loud talking noise complaints shares some 

similar regions (marked by the dotted circles) with the 

distribution of POIs of food. We also find the similarity 

between the distributions of noises of Loud music and the 

POIs of Art & Entertainment. So, POIs and road network 

data can be treated as complementary information, helping 

supplement the noises of regions without sufficient 311 data. 

There are still some differences between these distributions, 

as each piece of data may only tell us a part of the panoramic 

view of urban noises. That is the reason why we need to 

embrace multiple data sources.  

     
A) Loud talking           B) POI: Food     C) Loud Music  D) POI: Entertainment    

Figure 10. Geospatial distributions of POIs and noise complaints 

NOISE INFERENCE 

Map Segmentation 

We partition NYC’s map into disjoint regions, 𝒓 =
[𝑟1, 𝑟2, ⋯ , 𝑟𝑖 , ⋯ , 𝑟𝑛], by major roads (with 𝑠. 𝑙𝑒𝑣 <5), using a 

map segmentation algorithm we propose in [24]. A region 

bound by major roads may stand for a block or a community, 

carrying more semantic meanings than using uniform grid-

based partition. We want to study the noise of a location as 

fine-grained as possible. But, this will lead to an even worse 

data sparsity problem, significantly reducing the accuracy of 

recovered noises. The map segmentation can also be done by 

using NYC ZIP codes. We find that the regions segmented 

by the road network are finer than by ZIP codes. 

The algorithm chooses the raster-based model to represent 

the road network and utilize morphological image processing 

techniques to segment a map. Specifically, a raster-based 

map is regarded as a binary image (e.g., 0 stands for road 

segments and 1 stands for blank space). In order to remove 

the unnecessary details, such as the lanes of a road and 

overpasses, the algorithm first performs a dilation operation 

to thicken the roads, as demonstrated in Figure 11 B). Second, 

the algorithm obtains the skeleton of the road networks by 

performing a thinning operation. This operation recovers the 

size of a region which was reduced by the dilation operation, 

while keeping the connectivity between regions. Finally, by 

clustering “1”-labeled grids through a connected component 

labeling (CCL) algorithm, individual regions can be found.  

     
 A) Raster-based map       B) Dilation operation     C) Thinning operation 

Figure 11. Map Segmentation by major roads 

Definition 5. (Region): Each region may consist of a number 

of road segments and lands, standing for some connected 

neighborhoods or a community. We use regions as the 

minimal units to study urban noises, assuming each region 

could have a similar noise constitution while different 

regions could have different ones. 

Tensor Construction 

As shown in the left part of Figure 12, we model the noises 

in each region using a tensor,  𝒜 ∈ ℝ𝑁×𝑀×𝐿  with three 

dimensions denoting 𝑁  regions, 𝑀  noise categories, and 𝐿 

time slots, respectively. As weekdays and weekends have 

different noise patterns, we build a tensor for them separately:  

 Region dimension: The first dimension denotes regions 

𝒓 = [𝑟1, 𝑟2, ⋯ , 𝑟𝑖 , ⋯ , 𝑟𝑁] obtained after the segmentation;  

 Time span dimension: We divide a day into equal slots 

𝒕 = [𝑡1, 𝑡2, ⋯ , 𝑡𝑘, ⋯ , 𝑡𝐿] . Each time slot lasts for a 

period of time, e.g. 2pm-3pm. We project the 311 data 

over a long period of time into one day. As a result, the 

number of slots in the time dimension is fixed.   

 Category dimension: This dimension denotes the 

categories shown in Table 1, 𝒄 = [𝑐1, 𝑐2, ⋯ , 𝑐𝑗 , ⋯ 𝑐𝑀]. 

Length of 

roads

Intersections

Density of 
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 An entry: An entry 𝒜(𝑖, 𝑗, 𝑘) stores the total number of 

311 complaints of category 𝑐𝑗 in region 𝑟𝑖 and time slot 

𝑡𝑘 over the given period of time (e.g., 68 weekends). For 

the entries with a value smaller than a threshold, e.g. 2, 

we regard them as a missing entry (i.e., filled with an 

inferred value).  The value of each entry in tensor 𝒜 is 

then normalized to [0, 1] for decomposition.  

 

Figure 12. Structure of the noise tensor 

A common approach to filling the missing entries of tensor 

𝒜 is to decompose 𝒜 into the multiplication of a few (low-

rank) matrices and a core tensor (or just a few vectors), based 

on 𝒜’s non-zero entries. For example, as illustrated in the 

right part of Figure 12, we can decompose 𝒜  into the 

multiplication of a core tensor  𝑆 ∈ ℝ𝑑𝑅×𝑑𝐶×𝑑𝑇  and three 

matrices, 𝑅 ∈ ℝ𝑁×𝑑𝑅 , 𝐶 ∈ ℝ𝑀×𝑑𝐶 , 𝑇 ∈ ℝ𝐿×𝑑𝑇  , using a 

tucker decomposition model [7]. The objective function to 

control the error of the decomposition is usually defined as: 

ℒ(𝑆, 𝑅, 𝐶, 𝑇) =
1

2
‖𝒜 − 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇‖2 +

𝜆

2
(‖𝑆‖2 + ‖𝑅‖2 +

‖𝐶‖2 + ‖𝑇‖2),  (1)  

where ‖∙‖2 denotes the 𝑙2 norm; the first part is to control the 

decomposition error and 
𝜆

2
(‖𝑆‖2 + ‖𝑅‖2 + ‖𝑈‖2 + ‖𝑇‖2) 

is a regularization penalty to avoid over-fitting; 𝑑𝑅, 𝑑𝐶 , and 

𝑑𝑇  are usually very small, denoting the number of latent 

factors. 𝜆 is a parameter controlling the contribution of the 

regularization penalty. By minimizing the objective function, 

we can get optimized 𝑅 , 𝐶 , and 𝑇 . Afterwards, we can 

recover the missing values in 𝒜 by Equation 2: 

                         𝒜𝑟𝑒𝑐 = 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇.                      (2) 

The Symbol “ × ” denotes the matrix multiplication; ×𝑅 

stands for the tensor-matrix multiplication, where the 

subscript 𝑅 stands for the mode of a tensor, e.g., 𝐻 = 𝑆 ×𝑅 𝑅 

is 𝐻𝑖𝑗𝑘 = ∑ 𝑆𝑖𝑗𝑘 × 𝑅𝑖𝑗
𝑑𝑅
𝑖=1 ;  

Each entry’s value in 𝒜𝑟𝑒𝑐  denotes the noise pollution 

indicator of a region in a time slot and a category. Given 

𝒜𝑟𝑒𝑐 , we can easily obtain the distribution of noise over 

different categories in region 𝑟𝑖 , in a time slot 𝑡𝑘 , by 

retrieving the vector 𝒜𝑟𝑒𝑐(𝑖, 𝑗, 𝑘), 𝑗 = 1,2, … , 𝑀. Or, we can 

rank regions in a time slot 𝑘 by a noise category 𝑗, by using 

𝒜𝑟𝑒𝑐(𝑖, 𝑗, 𝑘), 𝑖 = 1,2, … , 𝑁. Or, ranking regions according to 

overall noises by ∑ ∑ 𝒜𝑟𝑒𝑐(𝑖, 𝑗, 𝑘)𝑘𝑗 . 

In our problem, however, the tensor is over sparse. For 

example, if setting 1 hour as a time slot, only 5.18% entries 

of 𝒜  have values on weekends. Decomposing 𝒜  solely 

based on its own non-zero entries is not accurate enough (we 

prove this in the experiments). So, we need to seek help from 

additional information sources.  

Feature Extraction 

To deal with the data sparsity problem, we extract three 

categories of features, geographical features, human mobility 

features and noise category correlation features (denoted by 

matrices 𝑋 , 𝑌 , and 𝑍), from POI/road network data, user 

check-ins, and 311 data, respectively. These features will be 

used as contexts in the decomposition process to reduce 

inference errors.  

The geographical feature set is comprised of two parts: POI 

features 𝑭𝒑 and road network features 𝑭𝒓. As illustrated in 

Figure 13, road network features 𝑭𝒓 consist of the number of 

intersections 𝑓𝑠 (denoted as blue points) and the total length 

of road segments in different levels, 𝑓𝑟 (e.g., 𝑠. 𝑙𝑒𝑣 ∈ [1,6], 
|𝑓𝑟 |=6). The major roads binding a region are also counted in 

𝑓𝑟. 𝑭𝒑 is extracted from POIs falling in a region, consisting 

of the total number of POIs 𝑓𝑛, density of POIs 𝑓𝑑, and the 

distribution of POIs 𝑓𝑐 over 15 categories: Entertainment & 

Arts, Vehicles, Business to Business, Computers, Education, 

Food & Dining, Government, Health & Beauty, Home & 

Family, Legal & Finance, Professional & Services, Estate & 

Construction, Shopping, Sports & Recreation, and Travel. 

By putting together the geographical features of a region into 

a vector, we formulate a matrix 𝑋 ∈ ℝ𝑁×𝑃 (𝑃  denotes the 

dimension of geographical features), as illustrated in the 

bottom left part of Figure 13. Matrix 𝑋  incorporates the 

similarity between two regions in terms of their geographic 

features. Intuitively, regions with similar geographic features 

could have a similar noise situation.  

 

Figure 13. Feature extraction and representation 

Human mobility features are derived from check-ins created 

by users in different regions and time slots. An entry 𝑑𝑘𝑖 of 

matrix 𝑌 ∈ ℝ𝐿×𝑁, shown in the bottom right part of Figure 

13, denotes the number of check-ins generated in region 𝑟𝑖 

and time slot 𝑡𝑘 . Matrix 𝑌 reveals the correlation between 

different time slots in terms of the distribution of check-ins 

over different regions. Two time slots sharing a similar user 

check-in pattern could have a similar noise situation. 

The correlation between different noise categories can be 

learned from the 311 data itself. Once the correlation is 

determined, we can infer the presence of other categories in 
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a region given the observed category in the region. For 

example, private carting noise (𝑐9) has a strong correlation 

with Jack Hammering (𝑐7) on weekdays, as shown in Figure 

14 A), while is correlated with loud television (𝑐13 ) on 

weekends, as illustrated in Figure 14 B). (Refer to Table 1) 

 
Figure 14. Correlation between different noise categories 

Specifically, for a 311 complaint record 𝑛𝑠  (of the 𝑖 th 

category), we count the complaints of other categories 𝜑𝑗 

( 1 ≤ 𝑗 ≤ 𝑀, 𝑗 ≠ 𝑖 ) within a circle distance 𝛿  to 𝑛𝑠 , as 

illustrated in Figure 13.  Then the correlation between two 

categories 𝑐𝑖 and 𝑐𝑗 can be calculated by Equation 3. 

               𝐶𝑜𝑟(𝑐𝑖 , 𝑐𝑗) =
∑ |𝜑𝑗|𝑛𝑠∈𝚿,𝑛𝑠.𝑐=𝑐𝑖

|𝑐𝑖|∙|𝑐𝑗|
;  𝑐𝑖 ≠ 𝑐𝑗;                                      

         𝜑𝑗 = {𝑛𝑠′|𝑑𝑖𝑠𝑡(𝑛𝑠. 𝑙, 𝑛𝑠′. 𝑙) ≤ 𝛿 ∧ 𝑛𝑠′. 𝑐 = 𝑐𝑗};          (3)   

Where |𝑐𝑖|  and |𝑐𝑗|  denote the number of complaints in 

category 𝑐𝑖  and 𝑐𝑗  respectively; 𝚿 is the collection of 311 

data. By putting together 𝐶𝑜𝑟(𝑐𝑖 , 𝑐𝑗), we formulate matrix 

𝑍 ∈ ℝ𝑀×𝑀 . Though tensor 𝒜  can capture the correlation 

between different noise categories to some extent, matrix 𝑍 

can further intensify the correlation.  

Context-Aware Tensor Decomposition 

To achieve a higher accuracy of filling in the missing entries 

of 𝒜, we decompose 𝒜 with feature matrices 𝑋, 𝑌, and 𝑍 

collaboratively, as illustrated in Figure 15. Matrix 𝑋 can be 

factorized into the multiplication of two matrices, 𝑋 = 𝑅 ×
𝑈 , where 𝑅 ∈ ℝ𝑁×𝑑𝑅  and 𝑈 ∈ ℝ𝑑𝑅×𝑃  are low rank latent 

factors for regions and geographical features, respectively. 

Likewise, matrix 𝑌 can be factorized into the multiplication 

of two matrices, 𝑌 = 𝑇 × 𝑅𝑇 , where 𝑇 ∈ ℝ𝐿×𝑑𝑇  is a low 

rank latent factor matrices for time slots. 𝑑𝑇  and 𝑑𝑅  are 

usually very small (in our model 𝑑𝑇 = 𝑑𝑅 ); 

 

Figure 15. Context-aware tensor decomposition  

The objective function is defined as Equation 4: 

ℒ(𝑆, 𝑅, 𝐶, 𝑇, 𝑈) =
1

2
‖𝒜 − 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇‖2 + 

𝜆1

2
‖𝑋 − 𝑅𝑈‖2 +  

𝜆2

2
tr(𝐶𝑇𝐿𝑍𝐶) +

𝜆3

2
‖𝑌 − 𝑇𝑅𝑇‖2 +

𝜆4

2
(‖𝑆‖2 + ‖𝑅‖2 + ‖𝐶‖2 + ‖𝑇‖2 + ‖𝑈‖2)                         (4)                               

Where ‖𝒜 − 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇‖2 is to control the error of 

decomposing 𝒜 ; ‖𝑋 − 𝑅𝑈‖2  is to control the error of 

factorization of 𝑋 ; ‖𝑌 − 𝑇𝑅𝑇‖2  is to control the error of 

factorization of 𝑌 ; ‖𝑆‖2 + ‖𝑅‖2 + ‖𝐶‖2 + ‖𝑇‖2 + ‖𝑈‖2  is a 

regularization penalty to avoid over-fitting;  𝜆1, 𝜆2, 𝜆3, and 

𝜆4 are parameters controlling the contribution of each part 

during the collaborative decomposition. When 𝜆1=𝜆2= 𝜆3= 

𝜆4 =0, our model degenerates to the original tucker 

decomposition. 𝐶 ∈ ℝ𝑀×𝑑𝐶,  𝑡𝑟(∙) denotes the matrix trace; 

𝐷𝑖𝑖 = ∑ 𝑍𝑖𝑗𝑖  is a diagonal matrix, and 𝐿𝑍 = 𝐷 − 𝑍  is the 

Laplacian matrix of the category correlation graph. 

𝑡𝑟(𝐶𝑇𝐿𝑍𝐶)  is obtained through the following deduction, 

which guarantees two (e.g. the 𝑖th and 𝑗th) noise categories 

with a higher similarity (i.e., 𝑍𝑖𝑗 is big) should also have a 

closer distance between the vectors ( 𝑐𝑖  and 𝑐𝑗 ) they 

correspond to in 𝐶. 
1

2
∑ ‖𝑐𝑖 − 𝑐𝑗‖

2
𝑍𝑖𝑗𝑖,𝑗 = ∑ 𝑐𝑖𝑖,𝑗 𝑍𝑖𝑗𝑐𝑖

𝑇 − ∑ 𝑐𝑖𝑖,𝑗 𝑍𝑖𝑗𝑐𝑗
𝑇  

= ∑ 𝑐𝑖𝑖,𝑗 𝐷𝑖𝑖𝑐𝑖
𝑇 − ∑ 𝑐𝑖𝑖,𝑗 𝑍𝑖𝑗𝑐𝑗

𝑇  

= 𝑡𝑟(𝐶𝑇(𝐷 − 𝑍)𝐶) = 𝑡𝑟(𝐶𝑇𝐿𝑍𝐶),                                 (5) 

where 𝐶𝑇 = {𝑐1, 𝑐2, … , 𝑐𝑀}. 

Finally, we can recover 𝒜 by 𝒜𝑟𝑒𝑐 = 𝑆 ×𝑅 𝑅 ×𝐶 𝐶 ×𝑇 𝑇.  

In our model, 𝒜  and 𝑋  share matrix 𝑅 ; 𝒜  and 𝑌  share 

matrix 𝑅  and 𝑇; 𝐿𝑍  influences factor matrix 𝐶 . The dense 

representation of 𝑋, 𝑌 and 𝑍 contributes to the generation of 

a relatively accurate 𝑅 , 𝐶 , and 𝑇 , which reduce the 

decomposition error of 𝒜  in turn. In other words, the 

knowledge from geographical features, human mobility 

features, and the correlation between noise categories is 

propagated into tensor 𝒜.  

Algorithm 1: Context-Aware Tensor Decomposition 

Input: tensor 𝒜, matrix 𝑋, matrix 𝑌, matrix 𝑍, an error threshold 𝜀 

Output: 𝑅, 𝐶, 𝑇, 𝑆 

1. Initialize 𝑆 ∈ ℝ𝑑𝑅×𝑑𝑈×𝑑𝑇, 𝑅 ∈ ℝ𝑁×𝑑𝑅, 𝐶 ∈ ℝ𝑀×𝑑𝐶, 𝑇 ∈ ℝ2𝐿×𝑑𝑇, 

                   𝑈 ∈ ℝ𝑑𝑅×𝑃 with small random values 

2. Set 𝜂 as step size 

3. 𝐷𝑖𝑖 = ∑ 𝑍𝑖𝑗𝑖  

4. 𝐿𝑍 = 𝐷 − 𝑍 

5. While 𝐿𝑜𝑠𝑠𝑡 − 𝐿𝑜𝑠𝑠𝑡+1 > 𝜀  

6.      Foreach 𝒜𝑖𝑗𝑘 ≠0  

7.           𝑌𝑖𝑗𝑘 = 𝑆 ×𝑅 𝑅𝑖∗ ×𝐶 𝐶𝑗∗ ×𝑇 𝑇𝑘∗; 

8.           𝑅𝑖∗ ← 𝑅𝑖∗ − 𝜂𝜆4𝑅𝑖∗ − 𝜂(𝑌𝑖𝑗𝑘 − 𝒜𝑖𝑗𝑘) × 𝑆 ×𝐶 𝐶𝑗∗ ×𝑇 𝑇𝑘∗ 

                        −𝜂𝜆1(𝑅𝑖∗ × 𝑈 − 𝑋𝑖∗) × 𝑈 − 𝜂𝜆3(𝑇 × 𝑅𝑖∗
𝑇 − 𝑌∗𝑖) × 𝑇; 

9.           𝐶𝑗∗ ← 𝐶𝑗∗ − 𝜂𝜆4𝐶𝑗∗ − 𝜂(𝑌𝑖𝑗𝑘 − 𝒜𝑖𝑗𝑘) × 𝑆 ×𝑅 𝑅𝑖∗ ×𝑇 𝑇𝑘∗ 

                        −𝜂𝜆2(𝐿𝑍 ∗ 𝐶)𝑗∗; 

10.          𝑇𝑘∗ ← 𝑇𝑘∗ − 𝜂𝜆4𝑇𝑘∗ − 𝜂(𝑌𝑖𝑗𝑘 − 𝒜𝑖𝑗𝑘) × 𝑆 ×𝑅 𝑅𝑖∗ ×𝑈 𝐶𝑗∗ 

                         −𝜂𝜆3(𝑇𝑘∗ × 𝑅𝑇 − 𝑌𝑘∗) × 𝑅; 

11.          𝑆 ← 𝑆 − 𝜂𝜆4𝑆 − 𝜂(𝑌𝑖𝑗𝑘 − 𝒜𝑖𝑗𝑘) × 𝑅𝑖∗ ⊗ 𝐶𝑗∗ ⊗ 𝑇𝑘∗; 

12.          𝑈 ← 𝑈 − 𝜂𝜆4𝑈 − 𝜂𝜆1(𝑅𝑖∗ × 𝑈 − 𝑋𝑖∗) × 𝑅𝑖∗;  

13. Return 𝑅, 𝐶, 𝑈, 𝑇, 𝑆 

Figure 16. Algorithm for the tensor decomposition 

Figure 16 presents the algorithm for the collaborative tensor 

decomposition. As there is no closed-form solution for 
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finding the global optimal result of the objective function 

(shown in Equation 3), we use a numeric method, gradient 

descent, to find a local optimization. Specifically, we use an 

element-wise optimization algorithm [6], which updates 

each entry in the tensor independently. 

EVALUATION 

Datasets 

Table 2 summarizes the information of the four data sets; 

Table 3 further details the road network data. Road segments 

with a level from 𝐿1  to 𝐿5  are used to partition NYC, 

resulting in 891 regions. As weekdays and weekends have 

different noise situations, we build an individual tensor for 

them. If setting 1 hour as a time slot, the size of the two 

tensors is 891×14×24. The time length of a time slot can be 

adjusted based on applications. By feeding the 311 data of 

168 weekdays and 68 weekends into the two tensors, we 

obtain 7.39% non-zero entries (i.e., the entry’s value≥1) on 

weekdays and 5.18% on weekends, as shown in Table 4. 

However, one complaint in an hour may not be safe enough, 

which could be a false record. Setting a higher threshold to 

determine a none-zero entry improves the quality of an 

individual entry’s value, but leading to a worse data sparsity. 

Considering the trade-off, we set threshold=2 here. Thus, 

291,143 cells in the weekday tensor and 293,897 cells in the 

weekend tensor need supplemented by the inference. 

Table 2. Description on datasets  

Data sets Period Scales  

311 noise data 5/23/2013-1/31/2014 67,378; 14 categories 

Foursquare 4/24/2009-10/13/2013 173,275 

Gowalla 5/5/2008-7/23/2011 127,558 

POIs 2013 26,884; 15 categories 

Road Network 2013 87,898 nodes, 91,649 edges 

Table 3. Statistics on NYC’s road network data 

Lev Num. edges Length Lev Num. edges Length 

𝐿1 3,236 381 𝐿4 8,409 699 

𝐿2 4,816 677 𝐿5 1,906 1,321 

𝐿3 762 54 𝐿6 96,934 9,279 

  KM Total 133,225 12,412 

Table 4. The sparseness of the tensor with different thresholds 

Data sets Threshold=1 Threshold=2 Threshold=3 

Weekdays 7.39% 2.75% 1.49% 

Weekends 5.18% 1.83% 1.01% 

Evaluation on the Tensor Model 

We evaluate the context-aware tensor decomposition model 

in two approaches. In the first approach, we randomly 

remove 30% non-zero entries from the tensor and fill in these 

entries using our model. We then use the original values of 

these entries as a ground truth to measure the inferred values. 

In the second approach, we perform an in-the-field study in 

36 locations in Manhattan (24 in the daytime and 12 in the 

nighttime), collecting the real noise level of each location via 

a mobile phone’s microphone. We then rank these locations 

in terms of the real noise level and the inferred values 

respectively, measuring the closeness of the two ranks using 

NDCG (Normalized Discounted cumulative gain) [22]. 

Table 5 shows the results of the first evaluation approach, in 

which we compare our model with four baselines: 1) AWR 

fills a missing entry with the average of all non-zero entries 

that pertain to the region; 2) AWH fills in a missing entry with 

the average of all entries belonging to the time slot; 3) MF 

fills the missing entries by factorizing the region-category 

matrix hour by hour; 4) Kriging interpolates the noise of a 

missing entry with the non-zero entries geospatially nearby. 

We also study the contribution of matrix 𝑋 , 𝑌 , and 𝑍  in 

helping supplement the missing entries. The performance is 

measured by two metrics: Root Mean Square Error (RMSE) 

and Mean Absolute Error (MAE), where 𝑦𝑖̂is an inference 

and 𝑦𝑖  is the ground truth; 𝑛 is the number of instances. 

                                 𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑦𝑖̂)2

𝑖

𝑛
,                        (6) 

                                    𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑦𝑖̂|𝑖

𝑛
   ,                         (7) 

Table 5. Performance comparison of different methods 

Methods 
Weekdays Weekends 

RMSE MAE RMSE MAE 

AWR 4.736 2.582 4.446 2.599 

AWH 4.631 2.461 4.42 2.522 

MF 4.600 2.474 4.393 2.516 

Kriging 

 

4.59 2.424 4.253 2.495 

TD 4.391 2.381 4.141 2.393 

TD+ 𝑋 4.285 2.279 4.155 2.326 

TD+ 𝑋 + 𝑌 4.160 2.110 4.003 2.198 

TD+ 𝑿 + 𝒀+ 𝒁 4.010 2.013 3.930 2.072 

Figure 17 presents the performance of the second evaluation 

approach, where our method outperforms the method only 

using 311 noise complaints. The higher NDCG is the better 

ranking performance is. The results validate the capability of 

our model in differentiating between locations with different 

noise levels in the same time span [12]. 

 

Figure 17. Performance of in-the field study 

Results 

Figure 18 presents six heat maps of NYC in different time 

spans of weekdays and weekends, in terms of the overall 

noise pollution indicator of a region, i.e., ∑ ∑ 𝒜𝑟𝑒𝑐(𝑖, 𝑗, 𝑘)𝑘𝑗 . 

As mentioned previously, the noise pollution indicator is a 

result of two factors: the noise level in a location and 

people’s reaction (or tolerance) to the noises. So, we can 

understand the heat maps in the following way: to what 

extent people would feel uncomfortable due to the noises in 

a given time span and a region. The deeper the color is, the 

higher the probability of feeling uncomfortable. Generally, 
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people complain more about noise pollution on weekends as 

1) they have time to complain and 2) their tolerance to noise 

is lower than on weekdays. Particularly, during the night (0-

5am) when people expect to have quality sleep, their 

tolerance to noise pollution is very low; so, the noise 

pollution indicator is higher than other time slots, as shown 

in the bottom-left part of Figure 18. More specifically, the 

region where Columbia University is located has a heavier 

noise pollution than other areas, while Central Park is 

generally a quieter place.  

 

Figure 18. Overall noise situation in NYC 

Figure 19 shows the noise composition of the five locations 

marked in Figure 18. The noise indicators of the five regions 

is a summation of their own individual noise indicators in 

each hour and on both weekends and weekdays. Columbia 

University and Wall Street have a heavier noise situation 

than other places. The largest noise category in Wall Street 

is Construction while the other four is Loud music/Party.  

 

Figure 19. Noise composition of five well-known places in NYC 

Figure 20 further compares the noise pollution indicator of 

the top six noise categories, changing over time of day, at 

Columbia University and New York University (NYU), 

where we find some similarities and differences. Both 

locations have two spikes in the daytime; the same one is at 

6am. But, the second spike of NYU comes earlier than 

Columbia. The noise pollution caused by Loud Music 

reaches a local peak at 12pm, indicating that the party time 

starts earlier at NYU than Columbia University. Additionally, 

Air condition/ventilation and Jack Hamming in NYU have a 

higher presence than Columbia University. It is quite true 

that quite a few regions around NYU are under construction.    

 

Figure 20. Top six noise categories changing over time 

Figure 21 presents the heat maps of NYC in terms of the 

noise pollution indicator in four different categories, from 

7pm-11pm. Weekends generally have a heavier noise 

pollution of Loud music, while weekdays have more 

Construction noise pollution. Specifically, the strip region 

marked in the first column is Riverbank State Park, where 

many people entertain themselves with loud music on 

weekends. On the contrary, as illustrated in the second 

column, the region where Columbia University is located has 

less Loud talking noise pollution on weekends, as many 

students may be off the campus. Yankee Stadium, marked in 

the third column, has a heavier vehicle noise on weekends, 

because many people drive there to watch baseball games.  

 

Figure 21. Noise situation of specific categories in NYC. 

Figure 22 compares the heat maps built based on 311 data 

and our inference values, illustrating the value of our model. 

Without recovering the noises of missing locations, we can 

barely see vehicle noises from 6am-6pm on weekends. After 

the inference, we find that the regions close to bridges 

(marked by the dotted circles) are suffering from vehicle 

noises. According to our experiences visiting these places, 

the vehicles passing by the bridges are quite noisy. Likewise, 

without using our model, we cannot find loud talking to be a 

problem at Times Square and Columbia University either. 
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Figure 22. Comparison of heat maps in weekend 

RELATED WORK 

Urban Noise Sensing 

The first step towards understanding noise pollution is to 

monitor noises. Silvia et al. [4][17][18] propose using 

wireless sensor networks to monitor environmental noise 

pollution in urban areas. To deploy and maintain a citywide 

sensor network, especially in major cities like NYC, however, 

is very expensive, in terms of money and human resources. 

Another solution is to leverage crowdsourcing, where people 

collect and share their ambient environmental information 

using a mobile device, e.g., a smart phone [10][15][20]. For 

example, NoiseTube [8] presents a person-centric approach 

that leverages noise measurements shared by mobile phone 

users to paint a noise map in a city [3][19]. Because we 

cannot guarantee having a user reporting their ambient noises 

anywhere and anytime, the noise map generated through this 

approach is usually very sparse. As mentioned before, urban 

noises change by location and over time non-linearly; Thus, 

we cannot use a linear interpolation to fill the missing places 

in the map. To deal with this issue, Rajib et al. [16] proposed 

to recover a noise map from incomplete and random samples 

based on compressive sensing.   

Though our method is also a crowd sensing-based approach, 

the differences between our research and the above-

mentioned works lie in three aspects. First, beyond raw 

sensor data, the 311 data we use does not indicate the noise 

levels but also people’s reaction and tolerance to noise. 

Second, besides recovering the noise pollution of a city, our 

method also explores the distribution of noises over different 

categories. The information can inform governmental 

authorities’ decision making on tackling noise pollution. 

Third, when dealing with the data sparsity problem, we 

incorporate other data sources, such as user check-ins and 

POIs. According to the experimental results and data 

analytics, these datasets have a correlation with urban noises, 

therefore helping supplement the noise situation of places 

without sufficient 311 data. 

Noise Understanding 

A number of works [2][5][9][11][13] have focused on 

classifying environmental noises so as to understand a user’s 

contexts, such as in a car or on a street. For example, 

Couvreur and Bresleer [2] propose a statistical framework 

for a noise event recognition, including noises from cars, 

trucks and airplanes. This approach works for recognizing a 

separated noise event rather than mixed noise sources [9]. 

Later, Gainard et al. [5] proposed a hidden Markov model 

(HMM)-based classifier to recognize five noise events (car, 

truck, moped, aircraft and train), which is claimed to be 

better than human listeners. Ma et al. [9] use a HMM-based 

strategy capable of classifying ten environments. 

SoundSense [13] combines supervised and unsupervised 

learning techniques to classify not only general sound types 

(e.g., music) but also novel sound events. 

Our method differs from the above-mentioned approaches in 

two aspects. First, diagnosing the composition of noises in a 

location is different from classifying the environmental 

contexts of a user. The output of the latter is usually a 

probability distribution over possible noise categories, where 

the category with the biggest probability is used as a 

prediction. In our method, instead, the proportion of 311 

complaints of different noise categories in a location could 

well describe the composition of the noises in the location. 

Second, applying such classification methods to a major city 

like NYC needs a huge volume of training data that covers 

different locations and time spans. However, we model urban 

noises with a 3D tensor, which incorporates the temporal 

correlation among different time slots and the spatial 

correlation among different locations to recover a location’s 

noises. Using a tensor decomposition-based method, which 

is an unsupervised approach, we can obtain the composition 

of noises in a location based on sparse data. 

Tensor Decomposition for Urban Computing 

The method of tensor decomposition incorporating multiple 

datasets has been widely used in urban computing [30]. 

[21][23][28][29] used a context-aware tensor decomposition 

incorporating additional information, such as the activity-

activity correlation and geographical features of a location, 

to conduct different kinds of recommendations. Tensor 

factorization was also applied in [27] to infer urban refueling 

behavior, together with POI data, traffic features, and gas 

stations’ contextual features. Sharing the similar approach 

with these works, our goal is different from theirs and more 

data sources (e.g., user check-ins) are included. 

CONCLUSION 

In this paper, we diagnose the noise pollution in NYC using 

four data sources: 311 complaint data, social media, POIs 

and road network data. We model the noise in NYC with a 

three dimension tensor, filling in the missing entries of the 

tensor using a context-aware tensor decomposition approach. 

A noise pollution indicator is generated for each region in a 

time span and a noise category. The indicator reflects not 

only the level of noise in a location but also people’s 

tolerance to noise during different time spans. This is an 

approach of using human as a sensor and crowd sensing 

implicitly. With the research, we can rank locations by using 

the noise pollution indicator (individually or aggregately) 

and study the composition of noises in arbitrary locations. 

We evaluate our model with extensive experiments and 

validate its advantages beyond four baseline methods. The 

data we use in the research has been released at [31], and a 

demonstration is available at [32].  
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