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Abstract

We consider distributed convex optimization problems originated from sample average ap-
proximation of stochastic optimization, or empirical risk minimization in machine learning. We
assume that each machine in the distributed computing system has access to a local empirical
loss function, constructed with i.i.d. data sampled from a common distribution. We propose a
communication-efficient distributed algorithm to minimize the overall empirical loss, which is
the average of the local empirical losses. The algorithm is based on an inexact damped Newton
method, where the inexact Newton steps are computed by a distributed preconditioned con-
jugate gradient method. We analyze its iteration complexity and communication efficiency for
minimizing self-concordant empirical loss functions, and discuss the results for distributed ridge
regression, logistic regression and binary classification with a smoothed hinge loss. In a standard
setting for supervised learning, the required number of communication rounds of the algorithm
does not increase with the sample size, and only grows slowly with the number of machines.

1 Introduction

Many optimization problems in data science (including statistics, machine learning, data mining,
etc.) are formulated with a large amount of data as input. They are typically solved by iterative
algorithms which need to access the whole dataset or at least part of it during each iteration. With
the amount of data we collect and process growing at a fast pace, it happens more often that
the dataset involved in an optimization problem cannot fit into the memory or storage of a single
computer (machine). To solve such “big data” optimization problems, we need to use distributed
algorithms that rely on inter-machine communication.

In this paper, we focus on distributed optimization problems generated through sample average
approximation (SAA) of stochastic optimization problems. Consider the problem

minimize
w∈Rd

Ez[φ(w, z)], (1)

where z is a random vector whose probability distribution is supported on a set Z ⊂ R
p, and the

cost function φ : Rd × Z → R is convex in w for every z ∈ Z. In general, evaluating the expected
objective function with respect to z is intractable, even if the distribution is given. The idea of
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SAA is to approximate the solution to (1) by solving a deterministic problem defined over a large
number of i.i.d. (independent and identically distributed) samples generated from the distribution
of z (see, e.g., [48, Chapter 5]). Suppose our distributed computing system consists of m machines,
and each has access to n samples zi,1, . . . , zi,n, for i = 1, . . . ,m. Then each machine can evaluate a
local empirical loss function

fi(w)
def
=

1

n

n∑

j=1

φ(w, zi,j), i = 1, . . . ,m.

Our goal is to minimize the overall empirical loss defined with all mn samples:

f(w)
def
=

1

m

m∑

i=1

fi(w) =
1

mn

m∑

i=1

n∑

j=1

φ(w, zi,j). (2)

In machine learning applications, the probability distribution of z is usually unknown, and
the SAA approach is referred as empirical risk minimization (ERM). As a concrete example, we
consider ERM of linear predictors for supervised learning. In this case, each sample has the form
zi,j = (xi,j , yi,j) ∈ R

d+1, where xi,j ∈ R
d is a feature vector and yi,j can be a target response in R

(for regression) or a discrete label (for classification). Examples of the loss function include

• linear regression: x ∈ R
d, y ∈ R, and φ(w, (x, y)) = (y − wTx)2.

• logistic regression: x ∈ R
d, y ∈ {+1,−1}, and φ(w, (x, y)) = log(1 + exp(−y(wTx))).

• hinge loss: x ∈ R
d, y ∈ {+1,−1}, and φ(w, (x, y)) = max

{
0, 1− y(wTx)

}
.

For stability and generalization purposes, we often add a regularization term (λ/2)‖w‖22 to make
the empirical loss function strongly convex. More specifically, we modify the definition of fi(w) as

fi(w)
def
=

1

n

n∑

j=1

φ(w, zi,j) +
λ

2
‖w‖22, i = 1, . . . ,m. (3)

For example, when φ is the hinge loss, this formulation yields the support-vector machine [12].
Since the functions fi(w) can be accessed only locally, we consider distributed algorithms that

alternate between a local computation procedure at each machine, and a communication round
involving simple map-reduce type of operations [13, 32]. Compared with local computation at each
machine, the cost of inter-machine communication is much higher in terms of both speed/delay
and energy consumption (e.g., [4, 45]); thus it is often considered as the bottleneck for distributed
computing. Our goal is to develop communication-efficient distributed algorithms, which try to
use a minimal number of communication rounds to reach certain precision in minimizing f(w).

1.1 Communication efficiency of distributed algorithms

We assume that each communication round requires only simple map-reduce type of operations,
such as broadcasting a vector in R

d to the m machines and computing the sum or average of m
vectors in R

d. Typically, if a distributed iterative algorithm takes T iterations to converge, then it
communicates at least T rounds (usually one or two communication rounds per iteration). There-
fore, we can measure the communication efficiency of a distributed algorithm by its iteration com-
plexity T (ǫ), which is the number of iterations required by the algorithm to find a solution wT such
that f(wT )− f(w⋆) ≤ ǫ.

For a concrete discussion, we make the following assumption:
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Assumption A. The function f : Rd → R is twice continuously differentiable, and there exist
constants L ≥ λ > 0 such that

λI � f ′′(w) � LI, ∀w ∈ R
d,

where f ′′(w) denotes the Hessian of f at w, and I is the d× d identity matrix.

Functions that satisfy Assumption A are often called L-smooth and λ-strongly convex. The
value κ = L/λ ≥ 1 is called the condition number of f , which is a key quantity in characterizing
the complexity of iterative algorithms. We focus on ill-conditioned cases where κ≫ 1.

A straightforward approach for minimizing f(w) is distributed implementation of the classical
gradient descent method. More specifically, at each iteration k, each machine computes the local
gradient f ′

i(wk) ∈ R
d and sends it to a master node to compute f ′(wk) = (1/m)

∑m
i=1 f

′
i(wk). The

master node takes a gradient step to compute wk+1, and broadcasts it to each machine for the next
iteration. The iteration complexity of this method is the same as the classical gradient method:
O(κ log(1/ǫ)), which is linear in the condition number κ (e.g., [34]). If we use accelerated gradient
methods [34, 35, 28], then the iteration complexity can be improved to O(√κ log(1/ǫ)).

Another popular technique for distributed optimization is to use the alternating direction
method of multipliers (ADMM); see, e.g., [8, Section 8]. Under the assumption that each local
function fi is L-smooth and λ-strongly convex, the ADMM approach can achieve linear conver-
gence, and the best known complexity is O(√κ log(1/ǫ)) [17]. This turns out to be the same order as
for accelerated gradient methods. In this case, ADMM can actually be considered as an accelerated
primal-dual first-order method; see the discussions in [10, Section 4].

The polynomial dependence of the iteration complexity on the condition number can be unsat-
ifactory. For machine learning applications, both the precision ǫ and the regularization parameter λ
should decrease while the overall sample size mn increases, typically on the order of Θ(1/

√
mn)

(e.g., [7, 42]). This translates into the condition number κ being Θ(
√
mn). In this case, the iteration

complexity, and thus the number of communication rounds, scales as (mn)1/4 for both accelerated
gradient methods and ADMM (with careful tuning of the penalty parameter). This suggests that
the number of communication rounds grows with the total sample size.

Despite the rich literature on distributed optimization (e.g., [5, 38, 8, 1, 19, 15, 39, 52, 46]), most
algorithms involve high communication cost. In particular, their iteration complexity have similar
or worse dependency on the condition number as the methods discussed above. It can be argued that
the iteration complexity O(√κ log(1/ǫ)) cannot be improved in general for distributed first-order
methods — after all, it is optimal for centralized first-order methods under the same assumption
that f(w) is L-smooth and λ-strongly convex [33, 34]. Thus in order to obtain better communication
efficiency, we need to look into further problem structure and/or alternative optimization methods.
And we need both in this paper.

First, we note that the above discussion on iteration complexity does not exploit the fact that
each function fi is generated by, or can be considered as, SAA of a stochastic optimization problem.
Since the data zi,j are i.i.d. samples from a common distribution, the local empirical loss functions
fi(w) = (1/n)

∑n
j=1 φ(w, zi,j) will be similar to each other if the local sample size n is large. Under

this assumption, Zhang et al. [52] studied a one-shot averaging scheme that approximates the
minimizer of function f by simply averaging the minimizers of fi. For a fixed condition number,
the one-shot approach is communication efficient because it achieves optimal dependence on the
overall sample size mn (in the sense of statistical lower bounds). But their conclusion doesn’t allow
the regularization parameter λ to decrease to zero as n goes to infinity (see discussions in [47]).
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Exploiting the stochastic nature alone seems not enough to overcome ill-conditioning in the
regime of first-order methods. This motivates the development of distributed second-order methods.
Recently, Shamir et al. [47] proposed a distributed approximate Newton-type (DANE) method.
Their method takes advantage of the fact that, under the stochastic assumptions of SAA, the
Hessians f ′′

1 , f
′′
2 , . . . , f

′′
m are similar to each other. For quadratic loss functions, DANE is shown

to converge in Õ
(
(L/λ)2n−1 log(1/ǫ)

)
iterations with high probability, where the notation Õ(·)

hides additional logarithmic factors involving m and d. If λ ∼ 1/
√
mn as in machine learning

applications, then the iteration complexity becomes Õ(m log(1/ǫ)), which scales linearly with the
number of machines m, not the total sample size mn. However, the analysis in [47] does not
guarantee that DANE has the same convergence rate on non-quadratic functions.

1.2 Outline of our approach

In this paper, we propose a communication-efficient distributed second-order method for minimizing
the overall empirical loss f(w) defined in (2). Our method is based on an inexact damped Newton
method. Assume f(w) is strongly convex and has continuous second derivatives. In the exact
damped Newton method (e.g., [34, Section 4.1.5]), we first choose an initial point w0 ∈ R

d, and
then repeat

wk+1 = wk −
1

1 + δ(wk)
∆wk, k = 0, 1, 2, . . . , (4)

where ∆wk and δ(wk) are the Newton step and the Newton decrement, respectively, defined as

∆wk = [f ′′(wk)]
−1f ′(wk) ,

δ(wk) =
√
f ′(wk)T [f ′′(wk)]−1f ′(wk) =

√
(∆wk)T f ′′(wk)∆wk . (5)

Since f is the average of f1, . . . , fm, its gradient and Hessian can be written as

f ′(wk) =
1

m

m∑

i=1

f ′
i(wk), f ′′(wk) =

1

m

m∑

i=1

f ′′
i (wk). (6)

In order to compute ∆wk in a distributed setting, the naive approach would require all the
machines to send their gradients and Hessians to a master node (say machine 1). However, the
task of transmitting the Hessians (which are d×dmatrices) can be prohibitive for large dimensions d.
A better alternative is to use the conjugate gradient (CG) method to compute ∆wk as the solution
to a linear system f ′′(wk)∆wk = f ′(wk). Each iteration of the CG method requires a matrix-vector
product of the form

f ′′(wk)v =
1

m

m∑

i=1

f ′′
i (wk)v,

where v is some vector in R
d. More specifically, the master node can broadcast the vector v to

each machine, each machine computes f ′′
i (wk)v ∈ R

d locally and sends it back to the master node,
which then forms the average f ′′(wk)v and performs the CG update. Due to the iterative nature of
the CG method, we can only compute the Newton direction and Newton decrement approximately,
especially with limited number of communication rounds.

The overall method has two levels of loops: the outer-loop of the damped Newton method, and
the inner loop of the CG method for computing the inexact Newton steps. A similar approach (using
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a distributed truncated Newton method) was proposed in [54, 26] for ERM of linear predictors,
and it was reported to perform very well in practice. However, the total number of CG iterations
(each takes a round of communication) may still be high.

First, consider the outer loop complexity. It is well-known that Newton-type methods have
asymptotic superlinear convergence. However, in classical analysis of Newton’s method (e.g., [9,
Section 9.5.3]), the number of steps needed to reach the superlinear convergence zone still depends
on the condition number; more specifically, it scales quadratically in κ. To solve this problem, we
resort to the machinery of self-concordant functions [36, 34]. For self-concordant empirical losses,
we show that the iteration complexity of the inexact damped Newton method has a much weaker
dependence on the condition number.

Second, consider the inner loop complexity. The convergence rate of the CG method also
depends on the condition number κ: it takes O(√κ log(1/ε)) CG iterations to compute an ε-
precise Newton step. Thus we arrive at the dilemma that the overall complexity of the CG-
powered inexact Newton method is no better than accelerated gradient methods or ADMM. To
overcome this difficulty, we exploit the stochastic nature of the problem and propose to use a
preconditioned CG (PCG) method for solving the Newton system. Roughly speaking, if the local
Hessians f ′′

1 (wk), . . . , f
′′
m(wk) are “similar” to each other, then we can use any local Hessian f ′′

i (wk)
as a preconditioner. Without loss of generality, let P = f ′′

1 (wk) + µI, where µ is an estimate of the
spectral norm ‖f ′′

1 (wk)− f ′′(wk)‖2. Then we use CG to solve the pre-conditioned linear system

P−1f ′′(wk)∆wk = P−1f ′(wk),

where the preconditioning (multiplication by P−1) can be computed locally at machine 1 (the
master node). The convergence rate of PCG depends on the condition number of the matrix
P−1f ′′(wk), which is close to 1 if the spectral norm ‖f ′′

1 (wk)− f ′′(wk)‖2 is small.
To exactly characterize the similarity between f ′′

1 (wk) and f ′′(wk), we rely on stochastic anal-
ysis in the framework of SAA or ERM. We show that with high probability, ‖f ′′

1 (wk) − f ′′(wk)‖2
decreases as Õ(

√
d/n) in general, and Õ(

√
1/n) for quadratic loss. Therefore, when n is large,

the preconditioning is very effective and the PCG method converges to sufficient precision within a
small number of iterations. The stochastic assumption is also critical for obtaining an initial point
w0 which further brings down the overall iteration complexity.

Combining the above ideas, we propose and analyze an algorithm for Distributed Self-Concordant
Optimization (DiSCO, which also stands for Distributed Second-Order method, or Distributed
Stochastic Convex Optimization). We show that several popular empirical loss functions in ma-
chine learning, including ridge regression, regularized logistic regression and a (new) smoothed
hinge loss, are actually self-concordant. For ERM with these loss functions, Table 1 lists the num-
ber of communication rounds required by DiSCO and several other algorithms to find an ǫ-optimal
solution. As the table shows, the communication cost of DiSCO weakly depends on the number of
machines m and on the feature dimension d, and is independent of the local sample size n (exclud-
ing logarithmic factors). Comparing to DANE [47], DiSCO not only improves the communication
efficiency on quadratic loss, but also handles non-quadratic classification tasks.

The rest of this paper is organized as follows. In Section 2, we review the definition of self-
concordant functions, and show that several popular empirical loss functions used in machine
learning are either self-concordant or can be well approximated by self-concordant functions. In
Section 3, we analyze the iteration complexity of an inexact damped Newton method for minimizing
self-concordant functions. In Section 4, we show how to compute the inexact Newton step using
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Number of Communication Rounds Õ(·)
Algorithm Ridge Regression Binary Classification

(quadratic loss) (logistic loss, smoothed hinge loss)

Accelerated Gradient (mn)1/4 log(1/ǫ) (mn)1/4 log(1/ǫ)

ADMM (mn)1/4 log(1/ǫ) (mn)1/4 log(1/ǫ)

DANE [47] m log(1/ǫ) (mn)1/2 log(1/ǫ)

DiSCO (this paper) m1/4 log(1/ǫ) m3/4d1/4 +m1/4d1/4 log(1/ǫ)

Table 1: Communication efficiency of several distributed algorithms for ERM of linear predictors,
when the regularization parameter λ in (3) is on the order of 1/

√
mn. All results are deterministic

or high probability upper bounds, except that the last one, DiSCO for binary classification, is a
bound in expectation (with respect to the randomness in generating the i.i.d. samples). For DiSCO,
the dependence on ǫ can be improved to log log(1/ǫ) with superlinear convergence.

a distributed PCG method, describe the overall DiSCO algorithm, and discuss its communication
complexity. In Section 5, we present our main theoretical results based on stochastic analysis, and
apply them to linear regression and classification. In Section 6, we report experiment results to illus-
trate the advantage of DiSCO in communication efficiency, compared with other algorithms listed
in Table 1. Finally, we discuss the extension of DiSCO to distributed minimization of composite
loss functions in Section 7, and conclude the paper in Section 8.

2 Self-concordant empirical loss

The theory of self-concordant functions were developed by Nesterov and Nemirovski for the analysis
of interior-point methods [36]. Roughly speaking, a function is called self-concordant if its third
derivative can be controlled, in a specific way, by its second derivative. Suppose the function
f : Rd → R has continuous third derivatives. We use f ′′(w) ∈ R

d×d to denote its Hessian at w ∈ R
d,

and use f ′′′(w)[u] ∈ R
d×d to denote the limit

f ′′′(w)[u]
def
= lim

t→0

1

t

(
f ′′(w + tu)− f ′′(w)

)
.

Definition 1. A convex function f : Rd → R is self-concordant with parameter Mf if the inequality

∣∣uT (f ′′′(w)[u])u
∣∣ ≤Mf

(
uT f ′′(w)u

)3/2

holds for any w ∈ dom(f) and u ∈ R
d. In particular, a self-concordant function with parameter 2

is called standard self-concordant.

The reader may refer to the books [36, 34] for detailed treatment of self-concordance. In
particular, the following lemma [34, Corollary 4.1.2] states that any self-concordant function can
be rescaled to become standard self-concordant.

Lemma 1. If a function f is self-concordant with parameter Mf , then
M2

f

4 f is standard self-
concordant (with parameter 2).
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In the rest of this section, we show that several popular regularized empirical loss functions for
linear regression and binary classification are either self-concordant or can be well approximated
by self-concordant functions.

First we consider regularized linear regression (ridge regression) with

f(w) =
1

N

N∑

i=1

(yi − wTxi)
2 +

λ

2
‖w‖22.

To simplify notation, here we use a single subscript i running from 1 to N = mn, instead of
the double subscripts {i, j} used in the introduction. Since f is a quadratic function, its third
derivatives are all zero. Therefore, it is self-concordant with parameter 0, and by definition is also
standard self-concordant.

For binary classification, we consider the following regularized empirical loss function

ℓ(w)
def
=

1

N

N∑

i=1

ϕ(yiw
Txi) +

γ

2
‖w‖22, (7)

where xi ∈ X ⊂ R
d, yi ∈ {−1, 1}, and ϕ : R→ R is a convex surrogate function for the binary loss

function which returns 0 if yi = sign(wTxi) and 1 otherwise. We further assume that the elements
of X are bounded, that is, we have supx∈X ‖x‖2 ≤ B for some finite B. Under this assumption, the
following lemma shows that the regularized loss ℓ(w) is self-concordant.

Lemma 2. Assume that γ > 0 and there exist Q > 0 and α ∈ [0, 1) such that |ϕ′′′(t)| ≤ Q(ϕ′′(t))1−α

for every t ∈ R. Then:

(a) The function ℓ(w) defined by equation (7) is self-concordant with parameter B1+2αQ
γ1/2+α .

(b) The scaled function f(w) = B2+4αQ2

4γ1+2α ℓ(w) is standard self-concordant.

Proof. We need to bound the third derivative of ℓ appropriately. Using equation (7) and the
assumption on ϕ, we have

∣∣uT (ℓ′′′(w)[u])u
∣∣ ≤ 1

N

N∑

i=1

∣∣ϕ′′′(yiw
Txi)(yiu

Txi)
3
∣∣

(i)

≤ Q

N

N∑

i=1

(
(uTxi)

2ϕ′′(yiw
Txi)

)1−α
(B‖u‖2)1+2α

(ii)

≤ B1+2αQ

(
1

N

N∑

i=1

(uTxi)
2ϕ′′(yiw

Txi)

)1−α

(‖u‖2)1+2α

(iii)

≤ B1+2αQ
(
uT ℓ′′(w)u

)1−α
(‖u‖2)1+2α.

In the above derivation, inequality (i) uses the property that |yi| = 1 and |uTxi| ≤ B‖u‖2, inequality
(ii) uses Hölder’s inequality and concavity of (·)1−α, and inequality (iii) uses the fact that the
additional regularization term in ℓ(w) is convex.

Since ℓ is γ-strongly convex, we have uT ℓ′′(w)u ≥ γ‖u‖22. Thus, we can upper bound ‖u‖2 by
‖u‖2 ≤ γ−1/2(uT ℓ′′(w)u)1/2. Substituting this inequality into the above upper bound completes
the proof of part (a). Given part (a), part (b) follows immediately from Lemma 1.
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Figure 1: Smoothed hinge loss ϕp with p = 3, 5, 10, 20.

It is important to note that the self-concordance of ℓ essentially relies on the regularization
parameter γ being positive. If γ = 0, then the function will no longer be self-concordant, as
pointed out by Bach [3] on logistic regression. Since we have the freedom to choose ϕ, Lemma 2
handles a broad class of empirical loss functions. Next, we take the logistic loss and a smoothed
hinge loss as two concrete examples.

Logistic regression For logistic regression, we minimize the objective function (7) where ϕ is
the logistic loss: ϕ(t) = log(1+ e−t). We can calculate the second and the third derivatives of ϕ(t):

ϕ′′(t) =
et

(et + 1)2
,

ϕ′′′(t) =
et(1− et)

(et + 1)3
=

1− et

1 + et
ϕ′′(t) .

Since |1−et

1+et | ≤ 1 for all t ∈ R, we conclude that |ϕ′′′(t)| ≤ ϕ′′(t) for all t ∈ R. This implies that
the condition in Lemma 2 holds with Q = 1 and α = 0. Therefore, the regularized empirical loss
ℓ(w) is self-concordant with parameter B/

√
γ, and the scaled loss function f(w) = (B2/(4γ))ℓ(w)

is standard self-concordant.

Smoothed hinge loss In classification tasks, it is sometimes more favorable to use the hinge
loss ϕ(t) = max{0, 1− t} than using the logistic loss. We consider a family of smoothed hinge loss
functions ϕp parametrized by a positive number p ≥ 3. The function is defined by

ϕp(t) =





3
2 −

p−2
p−1 − t for t < −p−3

p−1 ,

3
2 −

p−2
p−1 − t+ (t+(p−3)/(p−1))p

p(p−1) for −p−3
p−1 ≤ t < 1− p−3

p−1 ,

p+1
p(p−1) −

t
p−1 + 1

2(1− t)2 for 1− p−3
p−1 ≤ t < 1,

(2−t)p

p(p−1) for 1 ≤ t < 2,

0 for t ≥ 2.

(8)
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Algorithm 1: Inexact damped Newton method

input: initial point w0 and specification of a nonnegative sequence {ǫk}.
repeat for k = 0, 1, 2, . . .

1. Find a vector vk such that ‖f ′′(wk)vk − f ′(wk)‖2 ≤ ǫk.

2. Compute δk =
√

vTk f
′′(wk)vk and update wk+1 = wk − 1

1+δk
vk.

until a stopping criterion is satisfied.

We plot the functions ϕp for p = 3, 5, 10, 20 on Figure 1. As the plot shows, ϕp(t) is zero for t > 2,
and it is a linear function with unit slope for t < −p−3

p−1 . These two linear zones are connected by

three smooth non-linear segments on the interval [−p−3
p−1 , 2].

The smoothed hinge loss ϕp satisfies the condition of Lemma 2 with Q = p − 2 and α = 1
p−2 .

To see this, we note that the third derivative of ϕp(t) is nonzero only when t ∈ [−p−3
p−1 , 1−

p−3
p−1 ] and

when t ∈ [1, 2]. On the first interval, we have

ϕ′′
p(t) =

(
t+

p− 3

p− 1

)p−2

, ϕ′′′
p (t) = (p− 2)

(
t+

p− 3

p− 1

)p−3

.

On the second interval, we have

ϕ′′
p(t) = (2− t)p−2 , ϕ′′′

p (t) = −(p− 2) (2− t)p−3 .

For both cases we have the inequality

|ϕ′′′
p (t)| ≤ (p− 2)(ϕ′′

p(t))
1− 1

p−2 ,

which means Q = p− 2 and α = 1
p−2 . Therefore, according to Lemma 2, the regularized empirical

loss ℓ(w) is self-concordant with parameter

Mp =
(p− 2)B

1+ 2
p−2

γ
1
2
+ 1

p−2

, (9)

and the scaled loss function f(w) = (M2
p /4)ℓ(w) is standard self-concordant.

3 Inexact damped Newton method

In this section, we propose and analyze an inexact damped Newton method for minimizing self-
concordant functions. Without loss of generality, we assume the objective function f : Rd → R

is standard self-concordant. In addition, we assume that Assumption A holds. Our method is
described in Algorithm 1. If we let ǫk = 0 for all k ≥ 0, then vk = [f ′′(wk)]

−1f ′(wk) is the exact
Newton step and δk is the Newton decrement defined in (5), so the algorithm reduces to the exact
damped Newton method given in (4). But here we allow the computation of the Newton step
(hence also the Newton decrement) to be inexact and contain approximation errors.
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The explicit account of approximation errors is essential for distributed optimization. In par-
ticular, if f(w) = (1/m)

∑m
i=1 fi(w) and the components fi locate on separate machines, then we

can only perform Newton updates approximately with limited communication budget. Even in a
centralized setting on a single machine, analysis of approximation errors can be important if the
Newton system is solved by iterative algorithms such as the conjugate gradient method.

Before presenting the convergence analysis, we need to introduce two auxiliary functions

ω(t) = t− log(1 + t), t ≥ 0,

ω∗(t) = −t− log(1− t), 0 ≤ t < 1.

These two functions are very useful for characterizing the properties of self-concordant functions;
see [34, Section 4.1.4] for a detailed account. Here, we simply note that ω(0) = ω∗(0) = 0, both are
strictly increasing for t ≥ 0, and ω∗(t)→∞ as t→ 1.

We also need to define two auxiliary vectors

ũk = [f ′′(wk)]
−1/2f ′(wk),

ṽk = [f ′′(wk)]
1/2vk.

The norm of the first vector, ‖ũk‖2 =
√
f ′(wk)T [f ′′(wk)]−1f ′(wk), is the exact Newton decrement.

The norm of the second one is ‖ṽk‖2 = δk, which is computed during each iteration of Algorithm 1.
Note that we do not compute ũk or ṽk in Algorithm 1. They are introduced solely for the purpose
of convergence analysis. The following Theorem is proved in Appendix A.

Theorem 1. Suppose f : Rd → R is a standard self-concordant function and Assumption A holds.
If we choose the sequence {ǫk}k≥0 in Algorithm 1 as

ǫk = β(λ/L)1/2‖f ′(wk)‖2 with β = 1/20, (10)

then:

(a) For any k ≥ 0, we have f(wk+1) ≤ f(wk)− 1
2ω(‖ũk‖2).

(b) If ‖ũk‖2 ≤ 1/6, then we have ω(‖ũk+1‖2) ≤ 1
2ω(‖ũk‖2).

As mentioned before, when ǫk = 0, the vector vk = [f ′′(wk)]
−1f ′(wk) becomes the exact Newton

step. In this case, we have ṽk = ũk, and it can be shown that f(wk+1) ≤ f(wk)− ω(‖ũk‖2) for all
k ≥ 0 and the exact damped Newton method has quadratic convergence when ‖ũk‖2 is small (see
[34, Section 4.1.5]). With the approximation error ǫk specified in (10), we have

‖ṽk − ũk‖2 ≤ ‖(f ′′(wk))
−1/2‖2‖f ′′(wk)vk − f ′(wk)‖2 ≤ λ−1/2ǫk

= βL−1/2‖f ′(wk)‖2 ≤ β‖ũk‖2,

which implies
(1− β)‖ũk‖2 ≤ ‖ṽk‖2 ≤ (1 + β)‖ũk‖2. (11)

Appendix A shows that when β is sufficiently small, the above inequality leads to the conclusion
in part (a). Compared with the exact damped Newton method, the guaranteed reduction of the
objective value per iteration is cut by half.
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Part (b) of Theorem 1 suggests a linear rate of convergence when ‖ũk‖2 is small. This is slower
than the quadratic convergence rate of the exact damped Newton method, due to the allowed
approximation errors in computing the Newton step. Actually, superlinear convergence can be
established if we set the tolerances ǫk to be small enough; see Appendix B for detailed analysis.
However, when vk is computed through a distributed iterative algorithm (like the distributed PCG
algorithm in Section 4.2), a smaller ǫk would require more local computational effort and more
rounds of inter-machine communication. The choice in equation (10) is a reasonable trade-off in
practice.

Using Theorem 1, we can derive the iteration complexity of Algorithm 1 for obtaining an
arbitrary accuracy. We present this result as a corollary.

Corollary 1. Suppose f : R
d → R is a standard self-concordant function and Assumption A

holds. If we choose the sequence {ǫk} in Algorithm 1 as in (10), then for any ǫ > 0, we have
f(wk)− f(w⋆) ≤ ǫ whenever k ≥ K where

K =

⌈
f(w0)− f(w⋆)

1
2ω(1/6)

⌉
+

⌈
log2

(2ω(1/6)
ǫ

)⌉
. (12)

Here ⌈t⌉ denotes the smallest nonnegative integer that is larger or equal to t.

Proof. Since ω(t) is strictly increasing for t ≥ 0, part (a) of Theorem 1 implies that if ‖ũk‖2 > 1/6,
one step of Algorithm 1 decreases the value of f(w) by at least a constant 1

2ω(1/6). So within at

most K1 = ⌈f(w0)−f(w⋆)
1
2
ω(1/6)

⌉ iterations, we are guaranteed that ‖ũk‖2 ≤ 1/6.

According to [34, Theorem 4.1.13], if ‖ũk‖2 < 1, then we have

ω(‖ũk‖2) ≤ f(wk)− f(w⋆) ≤ ω∗(‖ũk‖2). (13)

Moreover, it is easy to check that ω∗(t) ≤ 2ω(t) for 0 ≤ t ≤ 1/6. Therefore, using part (b) of
Theorem 1, we conclude that when k ≥ K1,

f(wk)− f(w⋆) ≤ 2ω(‖ũk‖2) ≤ 2(1/2)k−K1ω(‖ũK1‖2) ≤ 2(1/2)k−K1ω(1/6).

Bounding the right-hand side of the above inequality by ǫ, we have f(wk) − f(w⋆) ≤ ǫ whenever

k ≥ K1 +
⌈
log2

(
2ω(1/6)

ǫ

)⌉
= K, which is the desired result.

We note that when ‖ũk‖2 ≤ 1/6 (as long as k ≥ K1), we have f(wk)− f(w⋆) ≤ 2ω(1/6). Thus
for ǫ > 2ω(1/6), it suffices to have k ≥ K1.

3.1 Stopping criteria

We discuss two stopping criteria for Algorithm 1. The first one is based on the strong convexity
of f , which leads to the inequality (e.g., [34, Theorem 2.1.10])

f(wk)− f(w⋆) ≤
1

2λ
‖f ′(wk)‖22.

Therefore, we can use the stopping criterion ‖f ′(wk)‖2 ≤
√
2λǫ, which implies f(wk)− f(w⋆) ≤ ǫ.

However, this choice can be too conservative in practice (see discussions in [9, Section 9.1.2]).
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Another choice for the stopping criterion is based on self-concordance. Using the fact that
ω∗(t) ≤ t2 for 0 ≤ t ≤ 0.68 (see [9, Section 9.6.3]), we have

f(wk)− f(w⋆) ≤ ω∗(‖ũk‖2) ≤ ‖ũk‖22 (14)

provided ‖ũk‖2 ≤ 0.68. Since we do not compute ‖ũk‖2 (the exact Newton decrement) directly
in Algorithm 1, we can use δk as an approximation. Using the inequality (11), and noticing that
‖ṽk‖2 = δk, we conclude that

δk ≤ (1− β)
√
ǫ

implies f(wk)− f(w⋆) ≤ ǫ when ǫ ≤ 0.682. Since δk is computed at each iteration of Algorithm 1,
this can serve as a good stopping criterion.

3.2 Scaling for non-standard self-concordant functions

In many applications, we need to deal with empirical loss functions that are not standard self-
concordant; see the examples in Section 2. Suppose a regularized loss function ℓ(w) is self-
concordant with parameter Mℓ > 2. By Lemma 1, the scaled function f = ηℓ with η = M2

ℓ /4
is standard self-concordant. We can apply Algorithm 1 to minimize the scaled function f , and
rewrite it in terms of the function ℓ and the scaling constant η.

Using the sequence {ǫk} defined in (10), the condition for computing vk in Step 1 is

‖f ′′(wk)vk − f ′(wk)‖2 ≤ β(λ/L)1/2‖f ′(wk)‖2.
Let λℓ and Lℓ be the strong convexity and smoothness parameters of the function ℓ. With the
scaling, we have λ = ηλℓ and L = ηLℓ, thus their ratio (the condition number) does not change.
Therefore the above condition is equivalent to

‖ℓ′′(wk)vk − ℓ′(wk)‖2 ≤ β(λℓ/Lℓ)
1/2‖ℓ′(wk)‖2. (15)

In other words, the precision requirement in Step 1 is scaling invariant.
Step 2 of Algorithm 1 can be rewritten as

wk+1 = wk −
vk

1 +
√
η ·
√
vTk ℓ

′′(wk)vk

. (16)

Here, the factor η explicitly appears in the formula. By choosing a larger scaling factor η, the
algorithm chooses a smaller stepsize. This adjustment is intuitive because the convergence of
Newton-type method relies on local smoothness conditions. By multiplying a large constant to ℓ,
the function’s Hessian becomes less smooth, so that the stepsize should shrink.

In terms of complexity analysis, if we target to obtain ℓ(wk) − ℓ(w⋆) ≤ ǫ, then the iteration
bound in (12) becomes ⌈

η
(
ℓ(w0)− ℓ(w⋆)

)

1
2ω(1/6)

⌉
+

⌈
log2

(2ω(1/6)
ηǫ

)⌉
. (17)

For ERM problems in supervised learning, the self-concordant parameter Mℓ, and hence the scaling
factor η = M2

ℓ /4, can grow with the number of samples. For example, the regularization parame-
ter γ in (7) often scales as 1/

√
N where N = mn is the total number of samples. Lemma 2 suggests

that η grows on the order of
√
mn. A larger η will render the second term in (17) less relevant, but

the first term grows with the sample size mn. In order to counter the effect of the growing scaling
factor, we need to choose the initial point w0 judiciously to guarantee a small initial gap. This will
be explained further in the next sections.
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4 The DiSCO algorithm

In this section, we adapt the inexact damped Newton method (Algorithm 1) to a distributed system,
in order to minimize

f(w) =
1

m

m∑

i=1

fi(w), (18)

where each function fi can only be evaluated locally at machine i (see background in Section 1).
This involves two questions: (1) how to set the initial point w0 and (2) how to compute the inexact
Newton step vk in a distributed manner. After answering these two questions, we will present the
overall DiSCO algorithm and analyze its communication complexity.

4.1 Initialization

In accordance with the averaging structure in (18), we choose the initial point based on averaging.
More specifically, we let

w0 =
1

m

m∑

i=1

ŵi, (19)

where each ŵi is the solution to a local optimization problem at machine i:

ŵi = arg min
w∈Rd

{
fi(w) +

ρ

2
‖w‖22

}
, i = 1, . . . ,m. (20)

Here ρ ≥ 0 is a regularization parameter, which we will discuss in detail in the context of stochastic
analysis in Section 5. Roughly speaking, if each fi is constructed with n i.i.d. samples as in (3),
then we can choose ρ ∼ 1/

√
n to make E[f(w0) − f(w⋆)] decreasing as O(1/√n). In this section,

we simply regard it as an input parameter.
Here we comment on the computational cost of solving (20) locally at each machine. Suppose

each fi(w) has the form in (3), then the local optimization problems in (20) become

ŵi = arg min
w∈Rd

{
1

n

n∑

j=1

φ(w, zi,j) +
λ+ ρ

2
‖w‖22

}
, i = 1, . . . ,m. (21)

The finite average structure of the above objective function can be effectively exploited by the
stochastic average gradient (SAG) method [40, 41] or its new variant SAGA [14]. Each step of these
methods processes only one component function φ(w, zi,j), picked uniformly at random. Suppose

fi(w) is L-smooth, then SAG returns an ǫ-optimal solution with O
(
(n + L+ρ

λ+ρ ) log(1/ǫ)
)
steps of

stochastic updates. For ERM of linear predictors, we can also use the stochastic dual coordinate
ascent (SDCA) method [44], which has the same complexity. We also mention some recent progress
in accelerated stochastic coordinate gradient methods [43, 27, 53], which can be more efficient both
in theory and practice.

4.2 Distributed computing of the inexact Newton step

In each iteration of Algorithm 1, we need to compute an inexact Newton step vk such that
‖f ′′(wk)vk − f ′(wk)‖2 ≤ ǫk. This boils down to solving the Newton system f ′′(wk)vk = f ′(wk)
approximately. When the objective f has the averaging form (18), its Hessian and gradient are
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Algorithm 2: Distributed PCG algorithm (given wk and µ, compute vk and δk)

master machine (i = 1) machines i = 1, . . . ,m

input: wk ∈ R
d and µ ≥ 0.

let H = f ′′(wk) and P = f ′′
1 (wk) + µI.

communication:

broadcasts wk to other machines; −−−−−−→ compute f ′
i(wk)

aggregate f ′
i(wk) to form f ′(wk). ←−−−−−−

initialization: compute ǫk given in (10) and set

v(0) = 0, s(0) = P−1r(0),
r(0) = f ′(wk), u(0) = s(0).

repeat for t = 0, 1, 2 . . . ,

1. communication:

broadcast u(t) and v(t); −−−−−−→ compute f ′′
i (wk)u

(t)

aggregate to form Hu(t) and Hv(t). ←−−−−−− compute f ′′
i (wk)v

(t)

2. compute αt =
〈r(t),s(t)〉

〈u(t),Hu(t)〉 and update

v(t+1) = v(t) + αtu
(t),

r(t+1) = r(t) − αtHu(t).

3. compute βt =
〈r(t+1),s(t+1)〉

〈r(t),s(t)〉 and update

s(t+1) = P−1r(t+1),

u(t+1) = s(t+1) + βtu
(t).

until ‖r(t+1)‖2 ≤ ǫk

return vk = v(t+1), rk = r(t+1), and δk =
√

vTk Hv(t) + α(t)vTk Hu(t).

given in (6). In the setting of distributed optimization, we propose to use a preconditioned conjugate
gradient (PCG) method to solve the Newton system.

To simplify notation, we use H to represent f ′′(wk) and use Hi to represent f ′′
i (wk). Without

loss of generality, we define a preconditioning matrix using the local Hessian at the first machine
(the master node):

P
def
= H1 + µI,

where µ > 0 is a small regularization parameter. Algorithm 2 describes our distributed PCG
method for solving the preconditioned linear system

P−1Hvk = P−1f ′(wk).

In particular, the master machine carries out the main steps of the classical PCG algorithm (e.g.,
[20, Section 10.3]), and all machines (including the master) compute the local gradients and Hessians
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and perform matrix-vector multiplications. Communication between the master and other machines
are used to form the overall gradient f ′(wk) and the matrix-vector products

Hu(t) =
1

m

m∑

i=1

f ′′
i (wk)u

(t), Hv(t) =
1

m

m∑

i=1

f ′′
i (wk)v

(t).

We note that the overall Hessian H = f ′′(wk) is never formed and the master machine only stores
and updates the vectors Hu(t) and Hv(t).

As explained in Section 1.2, the motivation for preconditioning is that when H1 is sufficiently
close toH, the condition number of P−1H might be close to 1, which is much smaller than that ofH
itself. As a result, the PCG method may converge much faster than CG without preconditioning.
The following lemma characterizes the extreme eigenvalues of P−1H based on the closeness between
H1 and H.

Lemma 3. Suppose Assumption A holds. If ‖H1 −H‖2 ≤ µ, then we have

σmax(P
−1H) ≤ 1, (22)

σmin(P
−1H) ≥ λ

λ+ 2µ
. (23)

Here ‖ · ‖2 denote the spectral norm of a matrix, and σmax(·) and σmin(·) denote the largest and
smallest eigenvalues of a diagonalizable matrix, respectively.

Proof. Since both P and H are symmetric and positive definite, all eigenvalues of P−1H are
positive real numbers (e.g., [21, Section 7.6]). The eigenvalues of P−1H are identical to that of
P−1/2HP−1/2. Thus, it suffices to prove inequalities (22) and (23) for the matrix P−1/2HP−1/2. To
prove inequality (22), we need to show that H � P = H1+µI. This is equivalent to H −H1 � µI,
which is a direct consequence of the assumption ‖H1 −H‖2 ≤ µI.

Similarly, the second inequality (23) is equivalent to H � λ
λ+2µ(H1 + µI), which is the same as

2µ
λ H − µI � H1 −H. Since H � λI (by Assumption A), we have 2µ

λ H − µI � µI. The additional
assumption ‖H1 −H‖2 ≤ µI implies µI � H1 −H, which complete the proof.

By Assumption A, the condition number of the Hessian matrix is κ(H) = L/λ, which can be
very large if λ is small. Lemma 3 establishes that the condition number of the preconditioned linear
system is

κ(P−1H) =
σmax(P

−1H)

σmin(P−1H)
= 1 +

2µ

λ
, (24)

provided that ‖H1 − H‖2 ≤ µ. When µ is small (comparable with λ), the condition number
κ(P−1H) is close to one and can be much smaller than κ(H). Based on classical convergence
analysis of the CG method (e.g., [29, 2]), the following lemma shows that Algorithm 2 terminates
in O(

√
1 + µ/λ) iterations. See Appendix C for the proof.

Lemma 4. Suppose Assumption A holds and assume that ‖H1 −H‖2 ≤ µ. Let

Tµ =

⌈√
1 +

2µ

λ
log

(
2
√
L/λ‖f ′(wk)‖2

ǫk

)⌉
.

Then Algorithm 2 terminates in Tµ iterations and the output vk satisfies ‖Hvk − f ′(wk)‖2 ≤ ǫk.
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Algorithm 3: DiSCO

input: parameters ρ, µ ≥ 0 and precision ǫ > 0.
initialize: compute w0 according to (19) and (20).
repeat for k = 0, 1, 2, . . .

1. Run Algorithm 2: given wk and µ, compute vk and δk.

2. Update wk+1 = wk − 1
1+δk

vk.

until δk ≤ (1− β)
√
ǫ.

output: ŵ = wk+1.

When the tolerance ǫk is chosen as in (10), the iteration bound Tµ is independent of f ′(wk),
i.e.,

Tµ =

⌈√
1 +

2µ

λ
log

(
2L

βλ

)⌉
. (25)

Under Assumption A, we always have ‖H1 −H‖2 ≤ L. If we choose µ = L, then Lemma 4 implies
that Algorithm 2 terminates in Õ(

√
L/λ) iterations. where the notation Õ(·) hides logarithmic

factors. In practice, however, the matrix norm ‖H1 −H‖2 is usually much smaller than L due to the
stochastic nature of fi. Thus, we can choose µ to be a tight upper bound on ‖H1 −H‖2, and expect
the algorithm terminating in Õ(

√
µ/λ) iterations. In Section 5, we show that if the local empirical

losses fi are constructed with n i.i.d. samples from the same distribution, then ‖H1 −H‖2 ∼ 1/
√
n

with high probability. As a consequence, the iteration complexity of Algorithm 2 is upper bounded
by Õ(1 + λ−1/2n−1/4).

We wrap up this section by discussing the computation and communication complexities of
Algorithm 2. The bulk of computation is at the master machine, especially computing the vector
s(t) = P−1r(t) in Step 3, which is equivalent to minimize the quadratic function (1/2)sTPs−sT r(t).
Using P = f ′′

1 (wk) + µI and the form of f1(w) in (3), this is equivalent to

s(t) = arg min
s∈Rd

{
1

n

n∑

j=1

sTφ′′(wk, zi,j)s

2
+ 〈r(t), s〉+ λ+ µ

2
‖s‖22

}
. (26)

This problem has the same structure as (21), and an ǫ-optimal solution can be obtained with
O
(
(n+ L+µ

λ+µ ) log(1/ǫ)
)
stochastic-gradient type of steps (see discussions at the end of Section 4.1).

As for the communication complexity, we need one round of communication at the beginning
of Algorithm 2 to compute f ′(wk). Then, each iteration takes one round of communication to
compute Hu(t) and Hv(t). Thus, the total rounds of communication is bounded by Tµ + 1.

4.3 Communication efficiency of DiSCO

Putting everything together, we present the DiSCO algorithm in Algorithm 3. Here we study
its communication efficiency. Recall that by one round of communication, the master machine
broadcasts a message of O(d) bits to all machines, and every machine processes the aggregated
message and sends a message of O(d) bits back to the master. The following proposition gives an
upper bound on the number of communication rounds taken by the DiSCO algorithm.
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Algorithm 4: Adaptive DiSCO

input: parameters ρ ≥ 0 and µ0 > 0, and precision ǫ > 0.
initialize: compute w0 according to (19) and (20).
repeat for k = 0, 1, 2, . . .

1. Run Algorithm 2 up to Tµk
PCG iterations, with output vk, δk, rk and ǫk.

2. if ‖rk‖2 > ǫk then

set µk := 2µk and go to Step 1;
else

set µk+1 := µk/2 and go to Step 3.

3. Update wk+1 = wk − 1
1+δk

vk.

until δk ≤ (1− β)
√
ǫ.

output: ŵ = wk+1.

Theorem 2. Assume that f is a standard self-concordant function and it satisfies Assumption A.
Suppose the input parameter µ in Algorithm 3 is an upper bound on ‖f ′′

1 (wk)− f ′′(wk)‖2 for all
k ≥ 0. Then for any ǫ > 0, in order to find a solution ŵ satisfying f(ŵ) − f(w⋆) < ǫ, the total
number of communication rounds T is bounded by

T ≤ 1 +

(⌈
f(w0)− f(w⋆)

1
2ω(1/6)

⌉
+

⌈
log2

(
2ω(1/6)

ǫ

)⌉)(
2 +

√
1 +

2µ

λ
log

(
2L

βλ

))
. (27)

Ignoring logarithmic terms and universal constants, the rounds of communication T is bounded by

Õ
((

f(w0)− f(w⋆) + log(1/ǫ)
)√

1 + 2µ/λ
)
.

Proof. First we notice that the number of communication rounds in each call of Algorithm 2 is
no more than 1 + Tµ, where Tµ is given in (25), and the extra 1 accounts for the communication
round to form f ′(wk). Corollary 1 states that in order to guarantee f(wk) − f(w⋆) ≤ ǫ, the total
number of calls of Algorithm 2 in DiSCO is bounded by K given in (12). Thus the total number of
communication rounds is bounded by 1 +K(1 + Tµ), where the extra one count is for computing
the initial point w0 defined in (19).

It can be hard to give a good a priori estimate of µ that satisfies the condition in Theorem 2.
In practice, we can adjust the value of µ adaptively while running the algorithm. Inspired by a line
search procedure studied in [35], we propose an adaptive DiSCO method, described in Algorithm 4.
The following proposition bounds the rounds of communication required by this algorithm.

Theorem 3. Assume that f is a standard self-concordant function and it satisfies Assumption A.
Let µmax be the largest value of µk generated by Algorithm 4, i.e., µmax = max{µ0, µ1, . . . , µK}
where K is the number of outer iterations. Then for any ǫ > 0, in order to find a solution ŵ
satisfying f(ŵ)− f(w⋆) < ǫ, the total number of communication rounds T is bounded by

T ≤ 1+

(
2

⌈
f(w0)− f(w⋆)

ω(1/6)

⌉
+ 2

⌈
log2

(
2ω(1/6)

ǫ

)⌉
+ log2

(
µmax

µ0

))(
2 +

√
1 +

2µmax

λ
log

(
2L

βλ

))
.
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Proof. Let nk be the number of calls to Algorithm 2 during the kth iteration of Algorithm 4. We
have

µk+1 =
1

2
µk2

nk−1 = µk2
nk−2,

which implies

nk = 2 + log2
µk+1

µk
.

The total number of calls to Algorithm 2 is

NK =
K−1∑

k=0

nk =
K−1∑

k=0

(
1 + log2

µk+1

µk

)
= 2K + log2

µK

µ0
≤ 2K + log2

µmax

µ0
.

Since each call of Algorithm 2 involves no more than Tµmax + 1 communication rounds, we have

T ≤ 1 +NK(Tµmax + 1).

Plugging in the expression of K in (12) and Tµmax in (25), we obtain the desired result.

From the above proof, we see that the average number of calls to Algorithm 2 at each iteration

is 2+ 1
K log2

(
µK
µ0

)
, roughly twice as the non-adaptive Algorithm 3. Ignoring logarithmic terms and

universal constants, the number of communication round T used by Algorithm 4 is bounded by

Õ
((

f(w0)− f(w⋆) + log2(1/ǫ)
)√

1 + 2µmax/λ
)
.

In general, we can update µk in Algorithm 4 as follows:

µk :=

{
θincµk if ‖rk‖2 > ǫk,
µk/θdec if ‖rk‖2 ≤ ǫk,

with any θinc > 1 and θdec ≥ 1 (see [35]). We have used θinc = θdec = 2 to simplify presentation.

4.4 A simple variant without PCG iterations

We consider a simple variant of DiSCO where the approximate Newton step vk is computed without
using the PCG method described in Algorithm 2. Instead, we simply set

vk = P−1f ′(wk) = (f ′′
1 (wk) + µI)−1f ′(wk), (28)

which is equivalent to setting vk = s(0) in the initialization phase of Algorithm 2, or forcing it to
always exit during the first PCG iteration. (The latter choice gives the same search direction but
with a slightly different scaling.) In this variant, each iteration of the inexact damped Newton
method requires two communication rounds: one to form f ′(wk) and another to compute the
stepsize parameter δk = (vTk f

′′(wk)vk)
1/2.

A distributed algorithm that is similar to this variant of DiSCO is proposed in [31]. It does not
compute δk; instead it uses line search to determine the step size, which also requires extra round(s)
of communication. It is shown in [31] that this method works well in experiments, requiring less
number of iterations to converge than ADMM. However, according to their theoretical analysis, its
iteration complexity still depends badly on the condition number.
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Here we examine the theoretical conditions under which this variant of DiSCO enjoys a low
iteration complexity. Recall the two auxiliary vectors defined in Section 3:

ũk = H−1/2f ′(wk), ṽk = H1/2vk.

The norm of their difference can be bounded as

‖ṽk − ũk‖2 =
∥∥H1/2P−1f ′(wk)− ũk

∥∥
2

=
∥∥H1/2P−1H1/2ũk − ũk

∥∥
2

≤
∥∥I −H1/2P−1H1/2

∥∥
2
· ‖ũk‖2 =

∥∥I − P−1H
∥∥
2
· ‖ũk‖2.

From Lemma 3, we know that when ‖H1 −H‖2 ≤ µ, the eigenvalues of P−1H are located within
the interval [ λ

λ+2µ , 1]. Therefore, we have

‖ṽk − ũk‖2 ≤
(
1− λ

λ+ 2µ

)
‖ũk‖2 =

2µ

λ+ 2µ
‖ũk‖2.

The above inequality implies

(
1− 2µ

λ+ 2µ

)
‖ũk‖2 ≤ ‖ṽk‖2 ≤

(
1 +

2µ

λ+ 2µ

)
‖ũk‖2.

This inequality has the same form as (11), which is responsible to obtain the desired low complexity
result if 2µ

λ+µ is sufficiently small. Indeed, if 2µ
λ+2µ ≤ β = 1

20 as specified in (10), the same convergence
rate and complexity result stated in Theorem 1 and Corollary 1 apply. Since each iteration of
the damped Newton method involves only two communication rounds (to compute f ′(wk) and δk
respectively), we have the following corollary.

Corollary 2. Assume that f is a standard self-concordant function and it satisfies Assumption A.
In the DiSCO algorithm, we compute the inexact Newton step using (28). Suppose 2µ

λ+2µ ≤ 1
20 and

‖f ′′
1 (wk)− f ′′(wk)‖2 ≤ µ for all k ≥ 0. Then for any ǫ > 0, in order to find a solution ŵ satisfying

f(ŵ)− f(w⋆) < ǫ, the total number of communication rounds T is bounded by

T ≤ 1 + 2

(⌈
f(w0)− f(w⋆)

1
2ω(1/6)

⌉
+

⌈
log2

(
2ω(1/6)

ǫ

)⌉)
. (29)

In Corollary 2, the requirement on µ, which upper bounds ‖f ′′
1 (wk)− f ′′(wk)‖2 for all k ≥ 0, is

quite strong. In particular, it requires µ to be a small fraction of λ in order to satisfy 2µ
λ+2µ ≤ 1

20 . As
we will see from the stochastic analysis in the next section, the spectral bound µ decreases on the
order of 1/

√
n. Therefore, in the standard setting where the regularization parameter λ ∼ 1/

√
mn,

the condition in Corollary 2 cannot be satisfied, and the convergence of this simple variant may be
slow. In contrast, DiSCO with PCG iterations is much more tolerant of a relatively large µ, and
can achieve superlinear convergence with a smaller ǫk.

5 Stochastic analysis

From Theorems 2 and 3 of the previous section, we see that the communication complexity of
the DiSCO algorithm mainly depends on two quantities: the initial objective gap f(w0) − f(w⋆)
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and the upper bound µ on the spectral norms ‖f ′′
1 (wk) − f ′′(wk)‖2 for all k ≥ 0. As we discussed

in Section 3.2, the initial gap f(w0) − f(w⋆) may grow with the number of samples due to the
scaling used to make the objective function standard self-concordant. On the other hand, the
upper bound µ may decrease as the number of samples increases based on the intuition that the
local Hessians and the global Hessian become similar to each other. In this section, we show how to
exploit the stochastic origin of the problem (SAA or ERM, as explained in Section 1) to mitigate the
effect of objective scaling and quantify the notion of similarity between local and global Hessians.
These lead to improved complexity results.

We focus on the setting of distributed optimization of regularized empirical loss. That is, our
goal is to minimize f(w) = (1/m)

∑m
i=1 fi(w), where

fi(w) =
1

n

n∑

j=1

φ(w, zi,j) +
λ

2
‖w‖22, i = 1, . . . ,m. (30)

We assume that zi,j are i.i.d. samples from a common distribution. Our theoretical analysis relies
on refined assumptions on the smoothness of the loss function φ. In particular, we assume that for
any z in the sampling space Z, the function φ(·, z) has bounded first derivative in a compact set,
and its second derivatives are bounded and Lipschitz continuous. We formalize these statements
in the following assumption.

Assumption B. There are finite constants (V0, G, L,M), such that for any z ∈ Z:

(i) φ(w, z) ≥ 0 for all w ∈ R
d, and φ(0, z) ≤ V0;

(ii) ‖φ′(w, z)‖2 ≤ G for any ‖w‖2 ≤
√

2V0/λ;

(iii) ‖φ′′(w, z)‖2 ≤ L− λ for any w ∈ R
d;

(iv) ‖φ′′(u, z)− φ′′(w, z)‖2 ≤M‖u− w‖2 for any u,w ∈ R
d.

For the regularized empirical loss in (30), condition (iii) in the above assumption implies λI �
f ′′
i (w) � LI for i = 1, . . . ,m, which in turn implies Assumption A.

Recall that the initial point w0 is obtained as the average of the solutions to m regularized local
optimization problems; see equations (19) and (20). The following lemma shows that expected value
of the initial gap f(w0) − f(w⋆) decreases with order 1/

√
n as the local sample size n increases.

The proof uses the notion and techniques of uniform stability for analyzing the generalization
performance of ERM [7]. See Appendix D for the proof.

Lemma 5. Suppose that Assumption B holds and E[‖w⋆‖22] ≤ D2 for some constant D > 0. If we

choose ρ =
√
6G√
nD

in (20) to compute ŵi, then the initial point w0 =
1
m

∑m
i=1 ŵi satisfies

max{‖w⋆‖2, ‖w0‖2} ≤
√

2V0

λ
(31)

and

E[f(w0)− f(w⋆)] ≤
√
6GD√
n

. (32)

Here the expectation is taken with respect to the randomness in generating the i.i.d. data.
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Next, we show that with high probability, ‖f ′′
i (w)− f ′′(w)‖2 ∼

√
d/n for any i ∈ {1, . . . ,m}

and for any vector w in an ℓ2-ball. Thus, if the number of samples n is large, the Hessian matrix of f
can be approximated well by that of fi. The proof uses random matrix concentration theories [30].
We defer the proof to Appendix E.

Lemma 6. Suppose Assumption B holds. For any r > 0 and any i ∈ {1, . . . ,m}, we have with
probability at least 1− δ,

sup
‖w‖2≤r

‖f ′′
i (w)− f ′′(w)‖2 ≤ µr,δ,

where

µr,δ
def
= min



L,

√
32L2d

n
·

√

log
(
1 +

rM
√
2n

L

)
+

log(md/δ)

d



 . (33)

If φ(w, zi,j) are quadratic functions in w, then we have M = 0 in Assumption B. In this case,
Lemma 6 implies ‖f ′′

i (w)− f ′′(w)‖2 ∼
√
1/n. For general non-quadratic loss, Lemma 6 implies

‖f ′′
i (w)− f ′′(w)‖2 ∼

√
d/n. We use this lemma to obtain an upper bound on the spectral norm of

the Hessian distances ‖f ′′
1 (wk)− f ′′(wk)‖2, where the vectors wk are generated by Algorithm 1.

Corollary 3. Suppose Assumption B holds and the sequence {wk}k≥0 is generated by Algorithm 1.

Let r =
(
2V0
λ + 2G

λ

√
2V0
λ

)1/2
. Then with probability at least 1− δ, we have for all k ≥ 0,

‖f ′′
1 (wk)− f ′′(wk)‖2 ≤ min



L,

√
32L2d

n
·

√

log
(
1 +

rM
√
2n

L

)
+

log(md/δ)

d



 . (34)

Proof. We begin by upper bounding the ℓ2-norm of wk, for k = 0, 1, 2 . . ., generated by Algorithm 1.
By Theorem 1, we have f(wk) ≤ f(w0) for all k ≥ 0. By Assumption B (i), we have φ(w, z) ≥ 0
for all w ∈ R

d and z ∈ Z. As a consequence,

λ

2
‖wk‖22 ≤ f(wk) ≤ f(w0) ≤ f(0) +G‖w0‖2 ≤ V0 +G‖w0‖2.

Substituting ‖w0‖2 ≤
√

2V0/λ (see Lemma 5) into the above inequality yields

‖wk‖2 ≤
(
2V0

λ
+

2G

λ

√
2V0

λ

)1/2

= r.

Thus, we have ‖wk‖2 ≤ r for all k ≥ 0. Applying Lemma 6 establishes the corollary.

Here we remark that the dependence on d of the upper bound in (34) comes from Lemma 6,
where the bound needs to hold for all point in a d-dimensional ball with radius r. However, for
the analysis of the DiSCO algorithm, we only need the matrix concentration bound to hold for a
finite number of vectors w0, w1, . . . , wK , instead of for all vectors satisfying ‖w‖2 ≤ r. Thus we
conjecture that the bound in (34), especially its dependence on the dimension d, is too conservative
and very likely can be tightened.

We are now ready to present the main results of our stochastic analysis. The following theo-
rem provides an upper bound on the expected number of communication rounds required by the
DiSCO algorithm to find an ǫ-optimal solution. Here the expectation is taken with respect to the
randomness in generating the i.i.d. data set {zi,j}.
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Theorem 4. Let Assumption B hold. Assume that the regularized empirical loss function f is
standard self-concordant, and its minimizer w⋆ = argminw f(w) satisfies E[‖w⋆‖22] ≤ D2 for some

constant D > 0. Let the input parameters to Algorithm 3 be ρ =
√
6G√
nD

and µ = µr,δ in (33) with

r =

(
2V0

λ
+

2G

λ

√
2V0

λ

)1/2

, δ =
GD√
n
·
√
λ/(4L)

4V0 + 2G2/λ
. (35)

Then for any ǫ > 0, the total number of communication rounds T required to reach f(ŵ)−f(w⋆) ≤ ǫ
is bounded by

E[T ] ≤ 1 +

(
C1 +

6

ω(1/6)
· GD√

n

)(
2 + C2

(
1 + 2

√
32L2d C3

λ2n

)1/2)
,

where C1, C2, C3 are Õ(1) or logarithmic terms:

C1 =

(
1 +

⌈
log2

(
2ω(1/6)

ǫ

)⌉)(
1 +

1√
n
· GD

4V0 + 2G2/λ

)
,

C2 = log

(
2L

βλ

)
,

C3 = log

(
1 +

rM
√
2n

L

)
+

log(dm/δ)

d
.

In particular, ignoring numerical constants and logarithmic terms, we have

E[T ] = Õ
((

log(1/ǫ) +
GD

n1/2

)(
1 +

L1/2d1/4

λ1/2n1/4

))
.

Proof. Suppose Algorithm 3 terminates in K iterations, and let tk be the number of conjugate
gradient steps in each call of Algorithm 2, for k = 0, 1, . . . ,K − 1. For any given µ > 0, we define
Tµ as in (25). Let A denotes the event that tk ≤ Tµ for all k ∈ {0, . . . ,K − 1}. Let Ā be the
complement of A, i.e., the event that tk > Tµ for some k ∈ {0, . . . ,K − 1}. In addition, let the
probabilities of the events A and Ā be 1 − δ and δ respectively. By the law of total expectation,
we have

E[T ] = E[T |A]P(A) + E[T |Ā]P(Ā) = (1− δ)E[T |A] + δ E[T |Ā].

When the event A happens, we have T ≤ 1 +K(Tµ + 1) where Tµ is given in (25); otherwise we
have T ≤ 1 +K(TL + 1), where

TL =

√
2 +

2L

λ
log

(
2L

βλ

)
(36)

is an upper bound on the number of PCG iterations in Algorithm 2 when the event Ā happens (see
the analysis in Appendix F). Since Algorithm 2 always return a vk such that ‖f ′′(wk)vk−f ′(wk)‖2 ≤
ǫk, the outer iteration count K share the same bound (12), which depends on the random variable
f(w0)− f(w⋆). However, Tµ and TL are deterministic constants. So we have

E[T ] ≤ 1 + (1− δ)E[K(Tµ + 1)|A] + δ E[K(TL + 1)|Ā]
= 1 + (1− δ)(Tµ + 1)E[K|A] + δ(TL + 1)E[K|Ā]. (37)
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Next we bound E[K|A] and E[K|Ā] separately. To bound E[K|A], we use

E[K] = (1− δ)E[K|A] + δ E[K|Ā] ≥ (1− δ)E[K|A]

to obtain
E[K|A] ≤ E[K]/(1− δ). (38)

In order to bound E[K|Ā], we derive a deterministic bound on f(w0) − f(w⋆). By Lemma 5, we
have ‖w0‖2 ≤

√
2V0/λ, which together with Assumption B (ii) yields

‖f ′(w)‖2 ≤ G+ λ‖w‖2 ≤ G+
√
2λV0.

Combining with the strong convexity of f , we obtain

f(w0)− f(w⋆) ≤
1

2λ
‖f ′(w0)‖22 ≤

1

2λ

(
G+

√
2λV0

)2
≤ 2V +

G2

λ
.

Therefore by Corollary 1,

K ≤ Kmax
def
= 1 +

4V0 + 2G2/λ

ω(1/6)
+

⌈
log2

(
2ω(1/6)

ǫ

)⌉
, (39)

where the additional 1 counts compensate for removing one ⌈·⌉ operator in (12).
Using inequality (37), the bound on E[K|A] in (38) and the bound on E[K|Ā] in (39), we obtain

E[T ] ≤ 1 + (Tµ + 1)E[K] + δ(TL + 1)Kmax.

Now we can bound E[K] by Corollary 1 and Lemma 5. More specifically,

E[K] ≤ E[f(w0)− f(w⋆)]
1
2ω(1/6)

+

⌈
log2

(2ω(1/6)
ǫ

)⌉
+ 1 = C0 +

2
√
6

ω(1/6)
· GD√

n
, (40)

where C0 = 1 + ⌈log2(2ω(1/6)/ǫ)⌉. With the choice of δ in (35) and the definition of TL in (36),
we have

δ(TL + 1)Kmax =
GD√
n
·
√
λ/(4L)

4V0 + 2G2/λ

(
2 +

√
2 +

2L

λ
log

(
2L

βλ

))(
C0 +

4V0 + 2G2/λ

ω(1/6)

)

=

(
C0√
n
· GD

4V0 + 2G2/λ
+

1

ω(1/6)
· GD√

n

)(√
λ

L
+ C2

√
λ

2L
+

1

2

)

≤
(
C0√
n
· GD

4V0 + 2G2/λ
+

1

ω(1/6)
· GD√

n

)(
2 + C2

√
1 +

2µ

λ

)

=

(
C0√
n
· GD

4V0 + 2G2/λ
+

1

ω(1/6)
· GD√

n

)
(Tµ + 1)

Putting everything together, we have

E[T ] ≤ 1 +

(
C0 +

C0√
n
· GD

4V0 + 2G2/λ
+

2
√
6 + 1

ω(1/6)
· GD√

n

)
(Tµ + 1)

≤ 1 +

(
C1 +

6

ω(1/6)
· GD√

n

)
(Tµ + 1).

Replacing Tµ by its expression in (25) and applying Corollary 3, we obtain the desired result.
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According to Theorem 4, we need to set the two input parameters ρ and µ in Algorithm 3
appropriately to obtain the desired communication efficiency. Using the adaptive DiSCO method
given in Algorithm 4, we can avoid the explicit specification of µ = µr,δ defined in (33) and (35).
This is formalized in the following theorem.

Theorem 5. Let Assumption B hold. Assume that the regularized empirical loss function f is
standard self-concordant, and its minimizer w⋆ = argminw f(w) satisfies E[‖w⋆‖22] ≤ D2 for some

constant D > 0. Let the input parameters to Algorithm 4 be ρ =
√
6G√
nD

and any µ0 > 0. Then the

total number of communication rounds T required to reach f(ŵ)− f(w⋆) ≤ ǫ is bounded by

E[T ] = Õ
((

log(1/ǫ) +
GD

n1/2

)(
1 +

L1/2d1/4

λ1/2n1/4

))
.

Proof. In Algorithm 4, the parameter µk is automatically tuned such that the number of PCG
iterations in Algorithm 2 is no more than Tµk

. By Corollary 3, with probability at least 1− δ, we
have

max{µ0, . . . , µK} ≤ 2µr,δ

where µr,δ is defined in (33), and r and δ are given in (35). Therefore we can use the same arguments
in the proof of Theorem 4 to show that

E[T ] ≤ 1 +

(
C̃1 +

6

ω(1/6)
· GD√

n

)(
2 + C2

(
1 + 4

√
32L2d C3

λ2n

)1/2)

where

C̃1 =

(
2 + 2

⌈
log2

(
2ω(1/6)

ǫ

)⌉
+ log2

(
L

µ0

))(
1 +

1√
n
· GD

4V0 + 2G2/λ

)
,

and C2 and C3 are the same as given in Theorem 4. Ignoring constants and logarithmic terms, we
obtain the desired result.

In both Theorems 4 and 5, the parameter ρ =
√
6G√
nD

depends on a constant D such that

E[‖w⋆‖22] ≤ D2. In practice, it may be hard to give a tight estimate of E[‖w⋆‖22]. An alterna-
tive is to fix a desired value of D and consider the constrained optimization problem

minimize
‖w‖2≤D

f(w).

To handle the constraint ‖w‖2 ≤ D, we need to replace the inexact damped Newton method in
DiSCO with an inexact proximal Newton method, and replace the distributed PCG method for
solving the Newton system with a preconditioned accelerated proximal gradient method. Further
details of such an extension are given in Section 7.

Remarks The expectation bounds on the rounds of communication given in Theorems 4 and 5
are obtained by combining two consequences of averaging over a large number of i.i.d. local sam-
ples. One is the expected reduction of the initial gap f(w0) − f(w⋆) (Lemma 5), which helps
to mitigate the effect of objective scaling used to make f standard self-concordant. The other is
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a high-probability bound that characterizes the similarity between the local and global Hessians
(Corollary 3). If the empirical loss f is standard self-concordant without scaling, then we can regard
f(w0)− f(w⋆) as a constant, and only need to use Corollary 3 to obtain a high-probability bound.
This is demonstrated for the case of linear regression in Section 5.1.

For applications where the loss function needs to be rescaled to be standard self-concordant,
the convexity parameter λ as well as the “constants” (V0, G, L,M) in Assumption B also need to
be rescaled. If the scaling factor grows with n, then we need to rely on Lemma 5 to balance the
effects of scaling. As a result, we only obtain bounds on the expected number of communication
rounds. These are demonstrated in Section 5.2 for binary classification with logistic regression and
a smoothed hinge loss.

5.1 Application to linear regression

We consider linear regression with quadratic regularization (ridge regression). More specifically, we
minimize the overall empirical loss function

f(w) =
1

mn

m∑

i=1

n∑

j=1

(yi,j − wTxi,j)
2 +

λ

2
‖w‖22, (41)

where the i.i.d. instances (xi,j , yi,j) are sampled from X×Y. We assume that X ⊂ R
d and Y ⊂ R are

bounded: there exist constants Bx and By such that ‖x‖2 ≤ Bx and |y| ≤ By for any (x, y) ∈ X×Y.
It can be shown that the least-squares loss φ(w, (x, y)) = (y − wTx)2 satisfies Assumption B with

V0 = B2
y , G = 2Bx

(
By +BxBy

√
2/λ

)
, L = λ+ 2B2

x, M = 0.

Thus we can apply Theorems 4 and 5 to obtain an expectation bound on the number of communi-
cation rounds for DiSCO. For linear regression, however, we can obtain a stronger result.

Since f is a quadratic function, it is self-concordant with parameter 0, and by definition also
standard self-concordant (with parameter 2). In this case, we do not need to rescale the objective
function, and can regard the initial gap f(w0) − f(w⋆) as a constant. As a consequence, we can
directly apply Theorem 2 and Corollary 3 to obtain a high probability bound on the communication
complexity, which is stronger than the expectation bounds in Theorems 4 and 5. In particular,
Theorem 2 states that if

∥∥f ′′
1 (wk)− f ′′(wk)

∥∥
2
≤ µ, for all k = 0, 1, 2, . . . , (42)

then the number of communication rounds T is bounded as

T ≤ 1 +

(⌈
f(w0)− f(w⋆)

ω(1/6)

⌉
+

⌈
log2

(
2ω(1/6)

ǫ

)⌉)(
2 +

√
1 +

2µ

λ
log

(
2L

βλ

))
.

Since there is no scaling, the initial gap f(w0)−f(w⋆) can be considered as a constant. For example,
we can simply pick w0 = 0 and have

f(0)− f(w⋆) ≤ f(0) =
1

N

N∑

i=1

y2i ≤ B2
y .
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By Corollary 3 and the fact that M = 0 for quadratic functions, the condition (42) holds with
probability at least 1− δ if we choose

µ =

√
32L2d

n

√
log(md/δ)

d
=

8L√
n

√
2 log(md/δ). (43)

Further using L ≤ λ+ 2B2
x, we obtain the following corollary.

Corollary 4. Suppose we apply DiSCO (Algorithm 3) to minimize f(w) defined in (41) with the
input parameter µ in (43), and let T be the total number of communication rounds required to find
an ǫ-optimal solution. With probability at least 1− δ, we have

T = Õ
((

1 +
Bx

λ1/2n1/4

)
log(1/ǫ) log(md/δ)

)
. (44)

We note that the same conclusion also holds for the adaptive DiSCO algorithm (Algorithm 4),
where we do not need to specify the input parameter µ based on (43). For the adaptive DiSCO
algorithm, the bound in (44) holds for any δ ∈ (0, 1).

The communication complexity guaranteed by Corollary 4 is strictly better than that of dis-
tributed implementation of the accelerated gradient method and ADMM (cf. Table 1). If we choose
λ = Θ(1/

√
mn), then Corollary 4 implies

T = Õ
(
m1/4 log(1/ǫ)

)

with high probability. The DANE algorithm [47], under the same setting, converges in Õ(m log(1/ǫ))
iterations with high probability (and each iteration requires two rounds of communication). Thus
DiSCO enjoys a better communication efficiency.

5.2 Application to binary classification

For binary classification, we consider the following regularized empirical loss function

ℓ(w)
def
=

1

mn

m∑

i=1

n∑

j=1

ϕ(yi,jw
Txi,j) +

γ

2
‖w‖22, (45)

where xi,j ∈ X ⊂ R
d, yi,j ∈ {−1, 1}, and ϕ : R → R is a convex surrogate function for the binary

loss. We further assume that the elements of X are bounded, i.e., we have supx∈X ‖x‖2 ≤ B for
some finite B.

Under the above assumptions, Lemma 2 gives conditions on ϕ for ℓ to be self-concordant. As
we have seen in Section 2, the function ℓ usually needs to be scaled by a large factor to become
standard self-concordant. Let the scaling factor be η, we can use DiSCO to minimize the scaled
function f(w) = ηℓ(w). Next we discuss the theoretical implications for logistic regression and the
smoothed hinge loss constructed in Section 2. These results are summarized in Table 1.

Logistic Regression For logistic regression, we have ϕ(t) = log(1 + e−t). In Section 2, we have
shown that the logistic loss satisfies the condition of Lemma 2 with Q = 1 and α = 0. Consequently,
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with the factor η = B2

4γ , the rescaled function f(w) = ηℓ(w) is standard self-concordant. If we
express f in the standard form

f(w) =
1

mn

m∑

i=1

n∑

j=1

φ(yi,jw
Txi,j) +

λ

2
‖w‖22, (46)

then we have φ(w, (x, y)) = ηϕ(ywTx) and λ = ηγ. It is easy to check that Assumption B holds
with

V0 = η log(2), G = ηB, L = η(B2/4 + γ), M = ηB3/10,

which all containing the scaling factor η. Plugging these scaled constants into Theorems 4 and 5,
we have the following corollary.

Corollary 5. For logistic regression, the number of communication rounds required by DiSCO to
find an ǫ-optimal solution is bounded by

E[T ] = Õ
((

log(1/ǫ) +
B3D

γn1/2

)(
1 +

Bd1/4

γ1/2n1/4

))
.

In the specific case when γ = Θ(1/
√
mn), Corollary 5 implies

E[T ] = Õ
(
m3/4d1/4 +m1/4d1/4 log(1/ǫ)

)
.

If we ignore logarithmic terms, then the expected number of communication rounds is independent
of the sample size n, and only grows slowly with the number of machines m.

Smoothed Hinge Loss We consider minimizing ℓ(w) in (45) where the loss function ϕ is the
smoothed hinge loss defined in (8), which depends on a parameter p ≥ 3. Using Lemma 2, we have
shown in Section 2 that ℓ(w) is self-concordant with parameter Mp given in (9). As a consequence,
by choosing

η =
M2

p

4
=

(p− 2)2B
2+ 4

p−2

4γ
1+ 2

p−2

,

the function f(w) = ηℓ(w) is standard self-concordant. If we express f in the form of (46), then
φ(w, (x, y)) = ηϕp(yw

Tx) and λ = ηγ. It is easy to verify that Assumption B holds with

V0 = η, G = ηB, L = η(B2 + λ), M = η(p− 2)B3.

If we choose p = 2 + log(1/γ), then applying Theorems 4 and 5 yields the following result.

Corollary 6. For the smoothed hinge loss ϕp defined in (8) with p = 2+log(1/γ), the total number
of communication rounds required by DiSCO to find an ǫ-optimal solution is bounded by

E[T ] = Õ
((

log(1/ǫ) +
B3D

γn1/2

)(
1 +

Bd1/4

γ1/2n1/4

))
.

Thus, the smoothed hinge loss enjoys the same communication efficiency as the logistic loss.
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Dataset name number of samples number of features sparsity

Covtype 581,012 54 22%

RCV1 20,242 47,236 0.16%

News20 19,996 1,355,191 0.04%

Table 2: Summary of three binary classification datasets.

6 Numerical experiments

In this section, we conduct numerical experiments to compare the DiSCO algorithm with several
state-of-the-art distributed optimization algorithms: the ADMM algorithm (e.g., [8]), the acceler-
ated full gradient method (AFG) [34, Section 2.2], the L-BFGS quasi-Newton method (e.g., [37,
Section 7.2]), and the DANE algorithm [47].

The algorithms ADMM, AFG and L-BFGS are well known and each has a rich literature. In
particular, using ADMM for empirical risk minimization in a distributed setting is straightforward;
see [8, Section 8]. For AFG and L-BFGS, we use the simple distributed implementation discussed
in Section 1.1: at each iteration k, each machine computes the local gradients f ′

i(wk) and sends
it to the master machine to form f ′(wk) = (1/m)

∑m
i=1 f

′
i(wk), and the master machine executes

the main steps of the algorithm to compute wk+1. The iteration complexities of these algorithms
stay the same as their classical analysis for a centralized implementation, and each iteration usually
involves one or two rounds of communication.

Here we briefly describe the DANE (Distributed Approximate NEwton) algorithm proposed
by Shamir et al. [47]. Each iteration of DANE takes two rounds of communication to compute
wk+1 from wk. The first round of communication is used to compute the gradient f ′(wk) =
(1/m)

∑m
i=1 f

′
i(wk). Then each machine solves the local minimization problem

vk+1,i = arg min
w∈Rd

{
fi(w)− 〈f ′

i(wk)− f ′(wk), w〉+
µ

2
‖w − wk‖22

}
,

and take a second round of communication to compute wk+1 = (1/m)
∑m

i=1 vk+1,i. Here µ ≥ 0
is a regularization parameter with a similar role as in DiSCO. For minimizing the quadratic loss
in (41), the iteration complexity of DANE is Õ((L/λ)2n−1 log(1/ǫ)). As summarized in Table 1,
if the condition number L/λ grows as

√
mn, then DANE is more efficient than AFG and ADMM

when n is large. However, the same complexity cannot be guaranteed for minimizing non-quadratic
loss functions. According to the analysis in [47], the convergence rate of DANE on non-quadratic
functions might be as slow as the ordinary full gradient descent method.

6.1 Experiment setup

For comparison, we solve three binary classification tasks using logistic regression. The datasets are
obtained from the LIBSVM datasets [11] and summarized in Table 2. These datasets are selected
to cover different relations between the sample size N = mn and the feature dimensionality d:
N ≫ d (Covtype [6]), N ≈ d (RCV1 [25]) and N ≪ d (News20 [22, 23]). For each dataset, our
goal is to minimize the regularized empirical loss function:

ℓ(w) =
1

N

N∑

i=1

log(1 + exp(−yi(wTxi))) +
γ

2
‖w‖22
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Figure 2: Comparing DiSCO with other distributed optimization algorithms. We splits each dataset
evenly to m machines, with m ∈ {4, 16, 64}. Each plot above shows the reduction of the logarith-
mic gap log10(ℓ(ŵ) − ℓ(w⋆)) (the vertical axis) versus the number of communication rounds (the
horizontal axis) taken by each algorithm.

where xi ∈ R
d and yi ∈ {−1, 1}. The data have been normalized so that ‖xi‖ = 1 for all i =

1, . . . , N . The regularization parameter is set to be γ = 10−5.
We describe some implementation details. In Section 5.2, the theoretical analysis suggests that

we scale the function ℓ(w) by a factor η = B2/(4γ). Here we have B = 1 due to the normalization
of the data. In practice, we find that DiSCO converges faster without rescaling. Thus, we use
η = 1 for all experiments. For Algorithm 3, we choose the input parameters µ = m1/2µ0, where
µ0 is chosen manually. In particular, we used µ0 = 0 for Covtype, µ0 = 4 × 10−4 for RCV1, and
µ0 = 2×10−4 for News20. For the distributed PCG method (Algorithm 2), we choose the stopping
precision ǫk = ‖f ′(wk)‖2/10.

Among other methods in comparison, we manually tune the penalty parameter of ADMM and
the regularization parameter µ for DANE to optimize their performance. For AFG, we used an
adaptive line search scheme [35, 28] to speed up its convergence. For L-BFGS, we adopted the
memory size 30 (number of most recent iterates and gradients stored) as a general rule of thumb
suggested in [37],

We want to evaluate DiSCO not only on wk, but also in the middle of calculating vk, to show
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Figure 3: Comparing the sensitivity of DiSCO and DANE with respect to the regularization pa-
rameter µ, when the datasets are split on m = 16 machines. We varied µ from 10−5 to 128× 10−5.
The vertical axis is the logarithmic gap log10(ℓ(ŵ)− ℓ(w⋆)) after 40 rounds of communications.

its progress after each round of communication. To this end, we follow equation (16) to define an
intermediate solution ŵt

k for each iteration t of the distributed PCG method (Algorithm 2):

ŵt
k = wk −

v(t)

1 +
√
η
(
v(t))T ℓ′′(wk)v(t)

)1/2 ,

and evaluate the associated objective function ℓ(ŵt
k). This function value is treated as a measure

of progress after each round of communication.

6.2 Performance evaluation

It is important to note that different algorithms take different number of communication rounds per
iteration. ADMM requires one round of communication per iteration. For AFG and L-BFGS, each
iteration consists of at least two rounds of communications: one for finding the descent direction,
and another one or more for searching the stepsize. For DANE, there are also two rounds of
communications per iteration, for computing the gradient and for aggregating the local solutions.
For DiSCO, each iteration in the inner loop takes one round of communication, and there is an
additional round of communication at the beginning of each inner loop. Since we are interested
in the communication efficiency of the algorithms, we plot their progress in reducing the objective
value with respect to the number of communication rounds taken.

We plot the performance of ADMM, AFG, L-BFGS, DANE and DiSCO in Figure 2. According
to the plots, DiSCO converges substantially faster than ADMM and AFG. It is also notably faster
than L-BFGS and DANE. In particular, the convergence speed (and the communication efficiency)
of DiSCO is more robust to the number of machines in the distributed system. For m = 4, the
performance of DiSCO is somewhat comparable to that of DANE. As m grows to 16 and 64,
the convergence of DANE becomes significantly slower, while the performance of DiSCO only
degrades slightly. This coincides with the theoretical analysis: the iteration complexity of DANE
is proportional to m, but the iteration complexity of DiSCO is proportional to m1/4.

Since both DANE and DiSCO take a regularization parameter µ, we study their sensitivity to
the choices of this parameter. Figure 3 shows the performance of DANE and DiSCO with the value
of µ varying from 10−5 to 128× 10−5. We observe that the curves of DiSCO are relatively smooth
and stable. In contrast, the curves of DANE exhibit sharp valley at particular values of µ. This
suggests that DiSCO is more robust to the non-optimal choice of parameters.
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7 Extension to distributed composite minimization

Thus far, we have studied the problem of minimizing empirical loss functions that are standard
self-concordant. In this section, we sketch how to extend the DiSCO algorithm to solve distributed
composite minimization problems. By composite minimization, we consider the minimization of

F (w)
def
= f(w) + Ψ(w), (47)

where f is a standard self-concordant function taking the form of (2), and Ψ a closed convex
function with a simple structure (see discussions in [35]). For solving the Lasso [49], for example,
the ℓ1-penalty Ψ(w) = σ‖w‖1 with σ > 0 is nonsmooth but admits a simple proximal mapping.

We modify Algorithm 1 and Algorithm 2 to minimize the composite function F (w). To modify
Algorithm 1, we update wk+1 using an inexact version of the proximal-Newton method (e.g.,
[24, 50]). More specifically, the two steps in each iteration of Algorithm 1 are replaced with:

1. Find a vector vk that is an approximate solution of

minimize
v∈Rd

{
1

2
vT f ′′(wk)v − vT f ′(wk) + Ψ(wk − v)

}
. (48)

2. Update wk+1 = wk − vk
1+
√

vT f ′′(wk)vk
.

Note that for Ψ(w) ≡ 0, the above proximal-Newton method reduces to Algorithm 1. Since vk only
needs to be an inexact solution to problem (48), we need a measure to quantify the approximation
error. For this purpose, we define the following gradient mapping

g(vk)
def
= arg min

g∈Rd

{L
2
‖g‖22 + 〈f ′′(wk)vk − f ′(wk), g〉+Ψ(wk − vk + g)

}
.

If vk is an exact minimizer of (48), then we have ‖g(vk)‖2 = 0. In the distributed setting, we only
need to find a vector vk such that ‖g(vk)‖2 ≤ ǫk.

It remains to devise an distributed algorithm to compute an inexact minimizer vk. Since the
objective function in (48) is not quadratic, we can no longer employ the distributed PCG method
in Algorithm 2. Instead, we propose a preconditioned accelerated proximal gradient method. In
particular, we modify the algorithm on the master machine in Algorithm 2 as follows:

v(t+1) = arg min
v∈Rd

{1
2
(v − s(t))T [f ′′

1 (wk) + µI](v − s(t))

+ 〈f ′′(wk)s
(t) − f ′(wk), v − s(t)〉+Ψ(wk + v)

}
, (49)

s(t+1) = v(t+1) +

√
1 + 2µ/λ− 1√
1 + 2µ/λ+ 1

(v(t+1) − v(t)),

where s(t+1) is an auxiliary vector. We output vk = v(t+1) once the condition ‖g(v(t+1))‖2 ≤ ǫk is
satisfied. Each update takes one round of communication to compute the vector f ′′(wk)s

(t). Then,
the sub-problem (49) is locally solved by the master machine. This problem has similar structure
as problems (20) and (26), and can be solved in O

(
(n + L+µ

λ+µ ) log(1/ǫ)
)
time using the methods

proposed in [44, 51, 14].
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If we replace the first term on the right-hand side of equation (49) by L
2 ‖v − v(t)‖22 and set

µ = L, then the above algorithm is exactly the accelerated proximal gradient algorithm [35, 28],
which converges in Õ(

√
L/λ) iterations. By utilizing the similarity between f ′′

1 (wk) and f ′′(wk),
and assuming ‖f ′′

1 (wk)− f ′′(wk)‖2 ≤ µ for all k ≥ 0, it can be shown that our algorithm in (49)

converges in Õ(1 +
√
µ/λ) iterations, which is of the same order as the PCG algorithm.

In summary, to minimize the composite function f(w) + Ψ(w), we replace Algorithm 1 by the
inexact proximal Newton method, and replace Algorithm 2 by a distributed implementation of the
above preconditioned accelerated proximal gradient method. Under the same assumptions on f ,
we can obtain similar guarantees on the communication efficiency as stated in Theorems 4 and 5.

8 Conclusions

We considered distributed convex optimization problems originated from SAA or ERM, which
involve large amount of i.i.d. data stored on a distributed computing system. Since the cost of inter-
machine communication is very high in practice, communication efficiency is a critical measure in
evaluating the performance of a distributed algorithm. For algorithms based on first-order methods,
including accelerated gradient methods and ADMM, the required number of communication rounds
grows with the condition number of the objective function. The condition number itself often grows
with the number of samples due to weaker regularization required. This causes the total number
of communication rounds to grow with the overall sample size.

In this paper, we proposed and analyzed DiSCO, a communication-efficient distributed algo-
rithm for minimizing self-concordant empirical loss functions, and discussed its application to linear
regression and classification. DiSCO is based on an inexact damped Newton method, where the
inexact Newton steps are computed by a distributed preconditioned conjugate gradient method. In
a standard setting for supervised learning, its required number of communication rounds does not
increase with the sample size, but only grows slowly with the number of machines in the distributed
system. There are three main thrusts in our approach:

• Self-concordant analysis. We showed that several popular empirical loss functions used in
machine learning are either self-concordant or can be well approximated by self-concordant
functions. We gave complexity analysis of the inexact damped Newton method, and charac-
terized the conditions for both linear and superlinear convergence.

• Preconditioned conjugate gradient (PCG) method. We proposed a distributed implementation
of the PCG method for computing the inexact Newton step. In particular, the preconditioner
based on similarity between local and global Hessians is very effective in reducing the number
of communication rounds, both in theory and practice.

• Stochastic analysis of communication efficiency. Our main theoretical results combine two
consequences of averaging over a large number of i.i.d. samples. One is the expected reduction
of the initial objective value, which counters the effect of objective scaling required to make
the objective function standard self-concordant. The other is a high-probability bound that
characterizes the similarity between the local and global Hessians.

Our numerical experiments on real datasets confirmed the superior communication efficiency of the
DiSCO algorithm. In addition, we also proposed an extension for solving distributed optimization
problems with composite empirical loss functions.
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Appendices

A Proof of Theorem 1

First, we recall the definitions of the two auxiliary functions

ω(t) = t− log(1 + t), t ≥ 0,

ω∗(t) = −t− log(1− t), 0 ≤ t < 1,

which form a pair of convex conjugate functions.
We notice that Step 2 of Algorithm 1 is equivalent to

wk+1 − wk =
vk

1 + δk
=

vk
1 + ‖ṽk‖2

,

which implies

‖[f ′′(wk)]
1/2(wk+1 − wk)‖2 =

‖ṽk‖2
1 + ‖ṽk‖2

< 1. (50)

When inequality (50) holds, Nesterov [34, Theorem 4.1.8] has shown that

f(wk+1) ≤ f(wk) + 〈f ′(wk), wk+1 − wk〉+ ω∗
(
‖[f ′′(wk)]

1/2(wk+1 − wk)‖2
)
.

Using the definition of functions ω and ω∗, and with some algebraic operations, we obtain

f(wk+1) ≤ f(wk)−
〈ũk, ṽk〉
1 + ‖ṽk‖2

− ‖ṽk‖2
1 + ‖ṽk‖2

+ log(1 + ‖ṽk‖2)

= f(wk)− ω(‖ũk‖2) +
(
ω(‖ũk‖2)− ω(‖ṽk‖2)

)
+
〈ṽk − ũk, ṽk〉
1 + ‖ṽk‖2

. (51)

By the second-order mean-value theorem, we have

ω(‖ũk‖2)− ω(‖ṽk‖2) = ω′(‖ṽk‖2)(‖ũk‖2 − ‖ṽk‖2) +
1

2
ω′′(t) (‖ũk‖2 − ‖ṽk‖2)2

for some t satisfying
min{‖ũk‖2, ‖ṽk‖2} ≤ t ≤ max{‖ũk‖2, ‖ṽk‖2}.

Using the inequality (11), we can upper bound the second derivative ω′′(t) as

ω′′(t) =
1

(1 + t)2
≤ 1

1 + t
≤ 1

1 + min{‖ũk‖2, ‖ṽk‖2}
≤ 1

1 + (1− β)‖ũk‖2
.

Therefore,

ω(‖ũk‖2)− ω(‖ṽk‖2) =
(‖ũk‖2 − ‖ṽk‖2)‖ṽk‖2

1 + ‖ṽk‖2
+

1

2
ω′′(t) (‖ũk‖2 − ‖ṽk‖2)2

≤ ‖ũk − ṽk‖2‖ṽk‖2
1 + (1− β)‖ũk‖2

+
(1/2)‖ũk − ṽk‖22
1 + (1− β)‖ũk‖2

≤ β(1 + β)‖ũk‖22 + (1/2)β2‖ũk‖22
1 + (1− β)‖ũk‖2

33



In addition, we have

〈ṽk − ũk, ṽk〉
1 + ‖ṽk‖2

≤ ‖ũk − ṽk‖2‖ṽk‖2
1 + ‖ṽk‖2

≤ β(1 + β)‖ũk‖22
1 + (1− β)‖ũk‖2

.

Combining the two inequalities above, and using the relation t2/(1 + t) ≤ 2ω(t) for all t ≥ 0, we
obtain

ω(‖ũk‖2)− ω(‖ṽk‖2) +
〈ṽk − ũk, ṽk〉
1 + ‖ṽk‖2

≤
(
2β(1 + β) + (1/2)β2

) ‖ũk‖22
1 + (1− β)‖ũk‖2

=

(
2β + (5/2)β2

(1− β)2

)
(1− β)2‖ũk‖22

1 + (1− β)‖ũk‖2

≤
(
2β + (5/2)β2

(1− β)2

)
2ω
(
(1− β)‖ũk‖2

)

≤
(
4β + 5β2

1− β

)
ω
(
‖ũk‖2

)
.

In the last inequality above, we used the fact that for any t ≥ 0 we have ω((1− β)t) ≤ (1− β)ω(t),
which is the result of convexity of ω(t) and ω(0) = 0; more specifically,

ω((1− β)t) = ω(β · 0 + (1− β)t) ≤ βω(0) + (1− β)ω(t) = (1− β)ω(t).

Substituting the above upper bound into inequality (51) yields

f(wk+1) ≤ f(wk)−
(
1− 4β + 5β2

1− β

)
ω(‖ũk‖2). (52)

With inequality (52), we are ready to prove the statements of the lemma. In particular, Part (a)
of the Lemma holds for any 0 ≤ β ≤ 1/10.

For part (b), we assume that ‖ũk‖2 ≤ 1/6. According to [34, Theorem 4.1.13], when ‖ũk‖2 < 1,
it holds that for every k ≥ 0,

ω(‖ũk‖2) ≤ f(wk)− f(w⋆) ≤ ω∗(‖ũk‖2). (53)

Combining this sandwich inequality with inequality (52), we have

ω(‖ũk+1‖2) ≤ f(wk+1)− f(w⋆)

≤ f(wk)− f(w⋆)− ω(‖ũk‖2) +
4β + 5β2

1− β
ω(‖ũk‖2)

≤ ω∗(‖ũk‖2)− ω(‖ũk‖2) +
4β + 5β2

1− β
ω(‖ũk‖2). (54)

It is easy to verify that ω∗(t) − ω(t) ≤ 0.26ω(t) for all t ≤ 1/6, and (4β + 5β2)/(1 − β) ≤ 0.23 if
β ≤ 1/20. Applying these two inequalities to inequality (54) completes the proof.

It should be clear that other combinations of the value of β and bound on ‖ũk‖2 are also possible.
For example, for β = 1/10 and ‖ũk‖2 ≤ 1/10, we have ω(‖ũk+1‖2) ≤ 0.65ω(‖ũk‖2).
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B Super-linear convergence of Algorithm 1

Theorem 6. Suppose f : Rd → R is a standard self-concordant function and Assumption A holds.
If we choose the sequence {ǫk}k≥0 in Algorithm 1 as

ǫk =
λ1/2

2
min

{
ω(rk)

2
,
ω3/2(rk)

10

}
, where rk = L−1/2‖f ′(wk)‖2, (55)

then:

(a) For any k ≥ 0, we have f(wk+1) ≤ f(wk)− 1
2ω(‖ũk‖2).

(b) If ‖ũk‖2 ≤ 1/8, then we have ω(‖ũk+1‖2) ≤
√
6ω3/2(‖ũk‖2).

Part (b) suggests superlinear convergence when ‖ũk‖2 is small. This comes at the cost of a
smaller approximation tolerance ǫk given in (55), compared with (10). Roughly speaking, when

‖f ′(wk)‖2 is relative large, the tolerance ǫk in (55) needs to be proportional to ‖f ′(wk)‖3/22 since
ω(t) = O(t). When ‖f ′(wk)‖2 is very small, the tolerance ǫk in (55) needs to be proportional to
‖f ′(wk)‖32 because ω(t) ∼ t2 as t → 0. In contrast, for linear convergence, the tolerance in (10) is
proportional to ‖f ′(wk)‖2.

Proof. We start with the inequality (51), and upper bound the last two terms on its right-hand
side. Since ω′(t) = t

1+t < 1, we have

ω(‖ũk‖2)− ω(‖ṽk‖2) ≤
∣∣‖ũk‖2 − ‖ṽk‖2

∣∣ ≤ ‖ũk − ṽk‖2.

In addition, we have

〈ṽk − ũk, ṽk〉
1 + ‖ṽk‖2

≤ ‖ṽk‖2
1 + ‖ṽk‖2

‖ũk − ṽk‖2 ≤ ‖ũk − ṽk‖2.

Applying these two bounds to (51), we obtain

f(wk+1) ≤ f(wk)− ω(‖ũk‖2) + 2‖ũk − ṽk‖2. (56)

Next we bound ‖ũk − ṽk‖2 using the approximation tolerance ǫk specified in (55),

‖ũk − ṽk‖2 =
∥∥∥[f ′′(wk)]

−1/2f ′(wk)− [f ′′(wk)]
1/2vk

∥∥∥
2

=
∥∥∥[f ′′(wk)]

−1/2
(
f ′′(wk)vk − f ′(wk)

)∥∥∥
2

≤ λ−1/2
∥∥f ′′(wk)vk − f ′(wk)

∥∥
2

≤ λ−1/2ǫk

=
1

2
min

{
ω(rk)

2
,
ω3/2(rk)

10

}
.

Combining the above inequality with (56), and using rk = L−1/2‖f ′(wk)‖2 ≤ ‖ũk‖2 with the
monotonicity of ω(·), we arrive at

f(wk+1) ≤ f(wk)− ω(‖ũk‖2) + min

{
ω(ũk)

2
,
ω3/2(ũk)

10

}
. (57)
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Part (a) of the theorem follows immediately from inequality (57).
For part (b), we assume that ‖ũk‖2 ≤ 1/8. Combining (53) with (57), we have

ω(‖ũk+1‖2) ≤ f(wk+1)− f(w⋆) ≤ f(wk)− f(w⋆)− ω(‖ũk‖2) +
ω3/2(‖ũk‖2)

10

≤ ω∗(‖ũk‖2)− ω(‖ũk‖2) +
ω3/2(‖ũk‖2)

10
. (58)

Let h(t) :=ω∗(t) − ω(t) and consider only t ≥ 0. Notice that h(0) = 0 and h′(t) = 2t2

1−t2
< 128

63 t
2

for t ≤ 1/8. Thus, we conclude that h(t) ≤ 128
189 t

3 for t ≤ 1/8. We also notice that ω(0) = 0 and
ω′(t) = t

1+t ≥ 8
9 t for t ≤ 1/8. Thus, we have ω(t) ≥ 4

9 t
2 for t ≤ 1/8. Combining these results, we

obtain

ω∗(t)− ω(t) ≤ 128

189
t3 =

128

189
(t2)3/2 ≤ 128

189

(
9

4
ω(t)

)3/2

≤
(√

6− 1

10

)
ω3/2(t).

Applying this inequality to the right-hand side of (58) completes the proof.

In classical analysis of inexact Newton methods [18, 16], asymptotic superlinear convergence

occurs with ǫk ∼ ‖f ′(wk)‖3/22 (in fact with ǫ ∼ ‖f ′(wk)‖s2 for any s > 1). This agrees with
our analysis since ω(t) = O(t) when t is not too small. Our result can be very conservative
asymptotically because ω(t) ∼ t2 as t→ 0. However, using ω(t) and the associated self-concordance
analysis, we are able to derive a much better global complexity result.

Corollary 7. Suppose f : R
d → R is a standard self-concordant function and Assumption A

holds. If we choose the sequence {ǫk} in Algorithm 1 as in (55), then for any ǫ ≤ 1/(3e), we have
f(wk)− f(w⋆) ≤ ǫ whenever

k ≥
⌈
f(w0)− f(w⋆)

1
2ω(1/8)

⌉
+

⌈
log log(1/(3ǫ))

log(3/2)

⌉
. (59)

where ⌈t⌉ denotes the smallest nonnegative integer that is larger than or equal to t.

Proof. By part (a) of Theorem 6, if ω(‖ũk‖2) ≥ 1/8, then each iteration of Algorithm 1 decreases the

function value at least by the constant 1
2ω(1/8). So within at most K1 :=

⌈
f(w0)−f(w⋆)

1
2
ω(1/8)

⌉
iterations,

we are guaranteed to have ‖ũk‖2 ≤ 1/8.

Part (b) of Theorem 6 implies 6ω(‖ũk+1‖2) ≤ (6ω(‖ũk‖2))3/2 when ‖ũk‖2 ≤ 1/8, and hence

log
(
6ω(‖ũk‖2)

)
≤
(
3

2

)k−K1

log (6ω(1/8)) , k ≥ K1.

Note that both sides of the above inequality is negative. Therefore, after k ≥ K1 +
log log(1/(3ǫ))

log(3/2)

iterations (assuming ǫ ≤ 1/(3e)), we have

log
(
6ω(‖ũk‖2)

)
≤ log(1/(3ǫ)) log(6ω(1/8)) ≤ − log(1/(3ǫ)),

which implies ω(‖ũk‖2) ≤ ǫ/2. Finally using (53) and the fact that ω∗(t) ≤ 2ω(t) for t ≤ 1/8, we
obtain

f(wk)− f(w⋆) ≤ ω∗(‖ũk‖2) ≤ 2ω(‖ũk‖2) ≤ ǫ.

This completes the proof.
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C Proof of Lemma 4

It suffices to show that the algorithm terminates at iteration t ≤ Tµ−1, because when the algorithm
terminates, it outputs a vector vk which satisfies ‖Hvk − f ′(wk)‖2 = ‖r(t+1)‖2 ≤ ǫk. Denote by
v∗ = H−1f ′(wk) the solution of the linear system Hvk = f ′(wk). By the classical analysis on the
preconditioned conjugate gradient method (e.g., [29, 2]), Algorithm 2 has the convergence rate

(v(t) − v∗)TH(v(t) − v∗) ≤ 4

(√
κ− 1√
κ+ 1

)2t

(v∗)THv∗, (60)

where κ = 1 + 2µ/λ is the condition number of P−1H given in (24). For the left-hand side of
inequality (60), we have

(v(t) − v∗)TH(v(t) − v∗) = (r(t))TH−1r(t) ≥ ‖r
(t)‖22
L

.

For the right-hand side of inequality (60), we have

(v∗)THv∗ = (f ′(wk))
TH−1f ′(wk) ≤

‖f ′(wk)‖22
λ

.

Combining the above two inequalities with inequality (60), we obtain

‖r(t)‖2 ≤ 2

√
L

λ

(√
κ− 1√
κ+ 1

)t

‖f ′(wk)‖2 ≤ 2

√
L

λ

(
1−

√
λ

λ+ 2µ

)t

‖f ′(wk)‖2.

To guarantee that ‖r(t)‖2 ≤ ǫk, it suffices to have

t ≥
log
(
2
√

L/λ‖f ′(wk)‖2
ǫk

)

− log
(
1−

√
λ

λ+2µ

) ≥
√
1 +

2µ

λ
log

(
2
√

L/λ‖f ′(wk)‖2
ǫk

)
,

where in the last inequality we used − log(1−x) ≥ x for 0 < x < 1. Comparing with the definition
of Tµ, this is the desired result.

D Proof of Lemma 5

First, we prove inequality (31). Recall that w⋆ and ŵi minimizes f(w) and fi(w) +
ρ
2‖w‖22. Since

both function are λ-strongly convex, we have

λ

2
‖w⋆‖22 ≤ f(w⋆) ≤ f(0) ≤ V0,

λ

2
‖ŵi‖22 ≤ fi(ŵi) +

ρ

2
‖ŵi‖22 ≤ fi(0) ≤ V0,

which implies ‖w⋆‖2 ≤
√

2V0
λ and ‖ŵi‖2 ≤

√
2V0
λ . Then inequality (31) follows since w0 is the

average over {ŵi}mi=1.
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In the rest of Appendix D, we prove inequality (32). Let z be a random variable in Z ⊂ R
p

with an unknown probability distribution. We define a regularized population risk:

R(w) = Ez[φ(w, z)] +
λ+ ρ

2
‖w‖22.

Let S be a set of n i.i.d. samples in Z from the same distribution. We define a regularized empirical
risk

rS(w) =
1

n

∑

z∈S
φ(w, z) +

λ+ ρ

2
‖w‖22,

and its minimizer
ŵS = argmin

w
rS(w).

The following lemma states that the population risk of ŵS is very close to its empirical risk. The
proof is based on the notion of stability of regularized empirical risk minimization [7].

Lemma 7. Suppose Assumption B holds and S is a set of n i.i.d. samples in Z. Then we have

ES

[
R(ŵS)− rS(ŵS)

]
≤ 2G2

ρn
.

Proof. Let S = {z1, . . . , zn}. For any k ∈ {1, . . . , n}, we define a modified training set S(k) by
replacing zk with another sample z̃k, which is drawn from the same distribution and is independent
of S. The empirical risk on S(k) is defined as

r
(k)
S (w) =

1

n

∑

z∈S(k)

φ(w, z) +
λ+ ρ

2
‖w‖22.

and let ŵ
(k)
S = argminw r

(k)
S (w). Since both rS and r

(k)
S are ρ-strongly convex, we have

rS(ŵ
(k)
S )− rS(ŵS) ≥

ρ

2
‖ŵ(k)

S − ŵS‖22

r
(k)
S (ŵS)− r

(k)
S (ŵ

(k)
S ) ≥ ρ

2
‖ŵ(k)

S − ŵS‖22.

Summing the above two inequalities, and noticing that

rS(w)− r
(k)
S (w) =

1

n
(φ(w, zk)− φ(w, z̃k)),

we have

‖ŵ(k)
S − ŵS‖22 ≤

1

ρn

(
φ(ŵ

(k)
S , zk)− φ(ŵ

(k)
S , z̃k)− φ(ŵS , zk) + φ(ŵS , z̃k)

)
. (61)

By Assumption B (ii) and the facts ‖ŵS‖2 ≤
√
2V0/λ and ‖ŵ(k)

S ‖2 ≤
√

2V0/λ, we have

∣∣φ(ŵ(k)
S , z)− φ(ŵS , z)

∣∣ ≤ G‖ŵ(k)
S − ŵS‖2, ∀ z ∈ Z.

Combining the above Lipschitz condition with (61), we obtain

‖ŵ(k)
S − ŵS‖22 ≤

2G

ρn
‖ŵ(k)

S − ŵS‖2.
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As a consequence, we have ‖ŵ(k)
S − ŵS‖2 ≤ 2G

ρn , and therefore

∣∣φ(ŵ(k)
S , z)− φ(ŵS , z)

∣∣ ≤ 2G2

ρn
, ∀ z ∈ Z. (62)

In the terminology of learning theory, this means that empirical minimization over the regularized
loss rS(w) has uniform stability 2G2/(ρn) with respect to the loss function φ; see [7].

For any fixed k ∈ {1, . . . , n}, since z̃k is independent of S, we have

ES

[
R(ŵS)− rS(ŵS)

]
= ES

[
Ez̃k [φ(ŵS , z̃k)]−

1

n

n∑

j=1

φ(ŵS , zj)

]

= ES,z̃k

[
φ(ŵS , z̃k)− φ(ŵS , zk)

]

= ES,z̃k

[
φ(ŵS , z̃k)− φ(ŵ

(k)
S , z̃k)

]
,

where the second equality used the fact that ES [φ(ŵS , zj) has the same value for all j = 1, . . . , n,
and the third equality used the symmetry between the pairs (S, zk) and (S(k), z̃k) (also known as
the renaming trick; see [7, Lemma 7]). Combining the above equality with (62) yields the desired
result.

Next, we consider a distributed system withmmachines, where each machine has a local dataset
Si of size n, for i = 1, . . . ,m. To simplify notation, we denote the local regularized empirical loss
function and its minimizer by ri(w) and ŵi, respectively. We would like to bound the excessive
error when applying ŵi to a different dataset Sj . Notice that

ESi,Sj

[
rj(ŵi)− rj(ŵj)

]
= ESi,Sj

[
rj(ŵi)− ri(ŵi)

]
︸ ︷︷ ︸

v1

+ESi,Sj

[
ri(ŵi)− rj(ŵR)

]
︸ ︷︷ ︸

v2

+ESj

[
rj(ŵR)− rj(ŵj)

]
︸ ︷︷ ︸

v3

(63)

where ŵR is the constant vector minimizing R(w). Since Si and Sj are independent, we have

v1 = ESi

[
ESj [rj(ŵi)]− ri(ŵi)

]
= ESi

[
R(ŵi)− ri(ŵi)] ≤

2G2

ρn
,

where the inequality is due to Lemma 7. For the second term, we have

v2 = ESi

[
ri(ŵi)− ESj [rj(ŵR)]

]
= ESi

[
ri(ŵi)− ri(ŵR)

]
≤ 0.

It remains to bound the third term v3. We first use the strong convexity of rj to obtain (e.g., [34,
Theorem 2.1.10])

rj(ŵR)− rj(ŵj) ≤
‖r′j(ŵR)‖22

2ρ
, (64)

where r′j(ŵR) denotes the gradient of rj at ŵR. If we index the elements of Sj by z1, . . . , zn, then

r′j(ŵR) =
1

n

n∑

k=1

(
φ′(ŵR, zk) + (λ+ ρ)ŵR

)
. (65)
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By the optimality condition of ŵR = argminw R(w), we have for any k ∈ {1, . . . , n},

Ezk

[
φ′(ŵR, zk) + (λ+ ρ)ŵR

]
= 0.

Therefore, according to (65), the gradient rj(ŵR) is the average of n independent and zero-mean
random vectors. Combining (64) and (65) with the definition of v3 in (63), we have

v3 ≤
ESj

[∑n
k=1 ‖φ′(ŵR, zk) + (λ+ ρ)ŵR‖22

]

2ρn2

=

∑n
k=1 ESj

[
‖φ′(ŵR, zk) + (λ+ ρ)ŵR‖22

]

2ρn2

≤
∑n

k=1 E[‖φ′(ŵR, zk)‖22]
2ρn2

≤ G2

2ρn
.

In the equality above, we used the fact that φ′(ŵR, zk) + (λ + ρ)ŵR are i.i.d. zero-mean random
variables; so the variance of their sum equals the sum of their variances. The last inequality above
is due to Assumption B (ii) and the fact that ‖ŵR‖2 ≤

√
2V0/(λ+ ρ) ≤

√
2V0/λ. Combining the

upper bounds for v1, v2 and v3, we have

ESi,Sj [rj(ŵi)− rj(ŵj)] ≤
3G2

ρn
. (66)

Recall the definition of f(w) as

f(w) =
1

mn

m∑

i=1

n∑

k=1

φ(w, zi,k) +
λ

2
‖w‖22,

where zi,k denotes the kth sample at machine i. Let r(w) = 1
m

∑m
j=1 rj(w); then we have

r(w) = f(w) +
ρ

2
‖w‖22. (67)

We compare the value r(ŵi), for any i ∈ {1, . . . ,m}, with the minimum of r(w):

r(ŵi)−min
w

r(w) =
1

m

m∑

j=1

rj(ŵi)−min
w

1

m

m∑

j=1

rj(w)

≤ 1

m

m∑

j=1

rj(ŵi)−
1

m

m∑

j=1

min
w

rj(w)

=
1

m

m∑

j=1

(rj(ŵi)− rj(ŵj)) .

Taking expectation with respect to all the random data sets S1, . . . , Sm and using (66), we obtain

E[r(ŵi)−min
w

r(w)] ≤ 1

m

n∑

j=1

E[rj(ŵi)− rj(ŵj)] ≤
3G2

ρn
. (68)
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Finally, we bound the expected value of f(ŵi):

E[f(ŵi)] ≤ E[r(ŵi)] ≤ E

[
min
w

r(w)
]
+

3G2

ρn

≤ E

[
f(w⋆) +

ρ

2
‖w⋆‖22

]
+

3G2

ρn

≤ E [f(w⋆)] +
ρD2

2
+

3G2

ρn
,

where the first inequality holds because of (67), the second inequality is due to (68), and the

last inequality follows from the assumption that E[‖w⋆‖2] ≤ D2. Choosing ρ =
√

6G2

nD2 results in

E[f(ŵi) − f(w⋆)] ≤
√
6GD√
n

for every i ∈ {1, . . . ,m}. Since w0 = 1
m

∑m
i=1 ŵi, using the convexity of

function f yields E[f(w0)− f(w⋆)] ≤
√
6GD√
n

, which is the desired result.

E Proof of Lemma 6

We consider the regularized empirical loss functions fi(w) defined in (30). For any two vectors
u,w ∈ R

d satisfying ‖u− w‖2 ≤ ε, Assumption B (iv) implies

‖f ′′
i (u)− f ′′

i (w)‖2 ≤Mε.

Let B(0, r) be the ball in R
d with radius r, centered at the origin. Let N cov

ε (B(0, r)) be the covering
number of B(0, r) by balls of radius ε, i.e., the minimum number of balls of radiusr ε required to
cover B(0, r). We also define Npac

ε (B(0, r)) as the packing number of B(0, r), i.e., the maximum
number of disjoint balls whose centers belong to B(0, r). It is easy to verify that

N cov
ε (B(0, r)) ≤ Npac

ε/2 (B(0, r)) ≤ (1 + 2r/ε)d .

Therefore, there exist a set of points U ⊆ R
d with cardinality at most (1 + 2r/ε)d, such that for

any vector w ∈ B(0, r), we have

min
u∈U
‖f ′′

i (w)− f ′′
i (u)‖2 ≤Mε. (69)

We consider an arbitrary point u ∈ U and the associated Hessian matrices for the functions
fi(w) defined in (30). We have

f ′′
i (u) =

1

n

n∑

j=1

(
φ′′(u, zi,j) + λI

)
, i = 1, . . . ,m.

The components of the above sum are i.i.d. matrices which are upper bounded by LI. By the
matrix Hoeffding’s inequality [30, Corollary 4.2], we have

P
[
‖f ′′

i (u)− E[f ′′
i (u)]‖2 > t

]
≤ d · e−

nt2

2L2 .
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Note that E[f ′′
1 (w)] = E[f ′′(w)] for any w ∈ B(0, r). Using the triangular inequality and inequal-

ity (69), we obtain

‖f ′′
1 (w)− f ′′(w)]‖2 ≤ ‖f ′′

1 (w)− E[f ′′
1 (w)]‖2 + ‖f ′′(w)− E[f ′′(w)]‖2

≤ 2 max
i∈{1,...,m}

‖f ′′
i (w)− E[f ′′

i (w)]‖2

≤ 2 max
i∈{1,...,m}

(
max
u∈U
‖f ′′

i (u)− E[f ′′
i (u)]‖2 +Mε

)
. (70)

Applying the union bound, we have with probability at least

1−md(1 + 2r/ε)d · e−
nt2

2L2 ,

the inequality ‖f ′′
i (u)− E[f ′′

i (u)]‖2 ≤ t holds for every i ∈ {1, . . . ,m} and every u ∈ U . Combining
this probability bound with inequality (70), we have

P

[
sup

w∈B(0,r)
‖f ′′

1 (w)− f ′′(w)‖2 > 2t+ 2Mε
]
≤ md (1 + 2r/ε)d · e−

nt2

2L2 . (71)

As the final step, we choose ε =
√
2L√
nM

and then choose t to make the right-hand side of inequal-

ity (71) equal to δ. This yields the desired result.

F More analysis on the number of PCG iterations

Here we analyze the number of iterations of the distributed PCG method (Algorithm 2) when µ is
misspecified, i.e., when µ used in P = H1+µI is not an upper bound on ‖H1−H‖2. For simplicity
of discussion, we assume that Assumption A holds, ‖H1 − H‖2 ≤ L and µ ≤ L. In this case, we
can show (using similar arguments for proving Lemma 3):

σmax((H1 + µI)−1H) ≤ 2L

L+ µ
,

σmin((H1 + µI)−1H) ≥ λ

L+ µ+ λ
.

Hence the condition number of the preconditioned linear system is

κµ,L =
2L

λ

(
1 +

λ

L+ µ

)
≤ 2 +

2L

λ
,

and the number of PCG iterations is bounded by (cf. Appendix C)

⌈
√
κµ,L log

(
2L

βλ

)⌉
≤
√
2 +

2L

λ
log

(
2L

βλ

)
.

This gives the bound on number of PCG iterations in (36).
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[18] J. E. Dennis and J. J. Moré. A characterization of superlinear convergence and its application
to quasi-Newton methods. Mathematics of Computation, 28(126):549–560, April 1974.

[19] J. C. Duchi, A. Agarwal, and M. J. Wainwright. Dual averaging for distributed optimiza-
tion: convergence analysis and network scaling. IEEE Transactions on Automatic Control,
57(3):592–606, 2012.

[20] G. H. Golub and C. F. Van Loan. Matrix Computations. The John Hopkins University Press,
Baltimore, MD, third edition, 1996.

[21] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[22] S. S. Keerthi and D. DeCoste. A modified finite Newton method for fast solution of large scale
linear svms. Journal of Machine Learning Research, 6:341–361, 2005.

[23] K. Lang. Newsweeder: Learning to filter netnews. In Proceedings of the Twelfth International
Conference on Machine Learning (ICML), pages 331–339, 1995.

[24] J. D. Lee, Y. Sun, and M. Saunders. Proximal Newton-type methods for minimizing composite
functions. SIAM Journal on Optimization, 24(3):1420–1443, 2014.

[25] D. D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new benchmark collection for text
categorization research. Journal of Machine Learning Research, 5:361–397, 2004.

[26] C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin. Large-scale logistic regression and linear
support vector machines using Spark. In Proceedings of the IEEE Conference on Big Data,
Washington DC, USA, 2014.

[27] Q. Lin, Z. Lu, and L. Xiao. An accelerated proximal coordinate gradient method and its
application to regularized empirical risk minimization. Technical Report MSR-TR-2014-94,
Microsoft Research, 2014. arXiv:1407.1296.

[28] Q. Lin and L. Xiao. An adaptive accelerated proximal gradient method and its homotopy
contiuation for sparse optimization. Computational Optimization and Applications, published
online, September 2014.

[29] D. G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison-Wesley, New
York, 1973.

[30] L. Mackey, M. I. Jordan, R. Y. Chen, B. Farrell, J. A. Tropp, et al. Matrix concentration
inequalities via the method of exchangeable pairs. The Annals of Probability, 42(3):906–945,
2014.

[31] D. Mahajan, S. S. Keerthi, S. Sundararajan, and L. Bottou. A functional approximation based
distributed learning algorithm. arXiv:1310.8418, 2013.

[32] MPI Forum. MPI: a message-passing interface standard, Version 3.0. Document available at
http://www.mpi-forum.org, 2012.

44



[33] A. Nemirovsky and D. Yudin. Problem Complexity and Method Efficiency in Optimization. J.
Wiley & Sons, New York, 1983.

[34] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer, Boston,
2004.

[35] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Program-
ming, Ser. B, 140:125–161, 2013.

[36] Y. Nesterov and A. Nemirovski. Interior Point Polynomial Time Methods in Convex Program-
ming. SIAM, Philadelphia, 1994.

[37] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006.
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