
Detecting Nearly Duplicated Records in Location Datasets
Yu Zheng, Xixuan Fen, Xing Xie

Microsoft Research Asia,

4F, Sigma Building, No.49 Zhichun Road, Haidian
District, Beijing 100190, China

{yuzheng, xingx}@microsoft.com,

Shuang Peng, James Fu

Search Technology Center, Microsoft,

4F, Sigma Building, No.49 Zhichun Road, Haidian
District, Beijing 100190, China

{speng, jamesfu}@microsoft.com

ABSTRACT

The quality of a local search engine, such as Google and Bing

Maps, heavily relies on its geographic datasets. Typically, these

datasets are obtained from multiple sources, e.g., different vendors

or public yellow-page websites. Therefore, the same location

entity, like a restaurant, might have multiple records with slightly

different presentations of title and address in different data

sources. For instance, „Seattle Premium Outlets‟ and „Seattle

Premier Outlet Mall‟ describe the same Outlet located in the same

place while their titles are not identical. This will cause many

nearly-duplicated records in a location database, which would

bring trouble to data management and make users confused by the

various search results of a query. To detect these nearly duplicated

records, we propose a machine-learning-based approach, which is

comprised of three steps: candidate selection, feature extraction

and training/inference. Three key features consisting of name

similarity, address similarity and category similarity, as well as

corresponding metrics, are proposed to model the differences

between two entity records. We evaluate our method with

intensive experiments based on a large-scale real dataset. As a

result, both the precision and recall of our method exceeded 90%.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications - data

mining, Spatial databases and GIS.

General Terms

Algorithms, Performance, Experimentation.

Keywords

Local search, Geographical information systems, Data quality,

name similarity, address similarity.

1. INTRODUCTION
With the combination of geographical information systems and

the Web, users are increasingly relying on mobile/location search

services, such as Google and Bing Maps, to find destinations like

shopping malls or restaurants. The quality of these kinds of search

engines heavily depends on their location datasets, which annotate

the digital map with landmarks, businesses and points of interest.

In this kind of dataset each location entity consists of a set of

properties shown in Table I. We call each row a record, and name

a column as a field. The location entities are usually classified as

“point of interest” (POI) entities or “yellow page” (YP) entities.

POI entities are often created by users with mobile, GPS-enabled

devices. Accordingly, the GPS coordinates for such entities tend

to have a high degree of accuracy. Other fields of a POI entity

(e.g., name, address, etc.), however, tend to be less accurate as the

entity-creating user may not enter those fields with a great degree

of care. YP entities are often created by the businesses or

locations that they identify, and may be captured for the dataset by,

e.g., crawling the Internet. Because YP entities are often created

by businesses or locations having a strong desire to be found,

name and address fields of the entities are likely to be highly

accurate. GPS coordinates for YP entities are then geo-coded

based on the address field and vary in quality based on the

accuracy of the address field.

Table 1. Properties of a location entity

Name Address
GPS

Position

Phone

Num.
Category Type

The Matt‟s

Bar

701 5
th

 Ave

Seattle, WA

116.325,

35.364

1-

56987452
Café YP

Silver

Cloud Inn

314 7
th

 Ave

Redmond,

WA

116.451,

35.209

1-

25698716
Hotel POI

Typically, these datasets are obtained from a variety of sources,

such as purchased from multiple professional data providers and

crawled from the Web. Intuitively, different people would pay

different attention when manually recording a location entity in

the physical world. Meanwhile, some fields of an entity could

change as time goes by. For example, a restaurant could change

its name, and a street can be renamed. Therefore, a location entity

could have multiple records with slightly different presentations in

different data sources. For instance, „Seattle Premium Outlets‟ and

„Seattle Premier Outlet Mall‟ describe the same Outlet located in

the same place while their titles are not identical. We call this

phenomena nearly duplicated entities, which means two records

from a (multiple) location dataset(s) describe the same real-world

entity with slightly different (very similar) presentations.

These nearly duplicated entities will bring trouble to the

management of a location database. Also, users would be

confused by the multiple results associated with a query. For

instance, when searching for “Matt Bar”, three results (“The

Matt‟s Bar”, “Matt‟s Bar”, “The Matt Bar”) with different geo-

positions could be retrieved for the user. As a result, the user

would have no idea which one is the correct answer. However, by

merging these nearly duplicated records, we can get the following

two benefits. First, we can save lots of storage by normalizing the

nearly duplicated records and make our location database more

consistent. Second, if a POI record and a YP record are detected

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

GIS '10, 03-NOV-2010, San Jose CA, USA
Copyright © 2010 ACM 978-1-4503-0428-3/10/11…$10.00

as nearly duplicated, we are able to improve the geo-position

accuracy of the YP entity using the POI entity‟s GPS position.

However, it is very challenging to identify whether or not two

records are nearly duplicated. First, the two records might have

different presentations in the same field. Therefore, we cannot

make a decision by exactly matching the fields of two records.

Second, each field of a record might not be very accurate. (As we

mentioned before, the geo-position of a YP entity would not be

very precise and the address information of a POI entity might be

less accurate.) Consequently, it is very difficult to define some

thresholds to determine the similarity between two records. For

instance, it is hard to say two records are nearly duplicated if the

geo-distance between them is less than 50 meters and the edit

distance between their names is less than 2. Third, metrics like the

edit distance and Euclidian distance cannot well model the

difference between two records. For example, „Sunshine Day

coffee‟ and „Sunny Day coffee‟ are different restaurants located in

the same street while the edit distance between their names is very

small and their locations are very close.

In this paper, we propose a machine-learning-based approach,

which can detect nearly duplicated records from a (or multiple)

location dataset(s). It is a step towards improving the data quality

of geographical information systems for mobile/local search

services. In this approach, we first select a small set of similar

candidates for each given location entity using a preprocessing

algorithm. Then, for each pair of similar candidates, we

investigate the similarity of each field, such as name similarity,

address similarity and category similarity, between them, and

identify a set of features representing these similarities. Later,

these features are fed in a classification model, which has been

trained in advance using human labeling datasets, to attain

prediction results (duplicated or non-duplicated). The contribution

of this work lies in the following three aspects:

 We employ the philosophy of machine learning to infer the

similarity between two entities rather than using exact match

or rule-based heuristics. Meanwhile, instead of checking

each single field, multiple fields of an entity are considered

comprehensively when performing the inference.

 We identify a set of key features including name similarity,

address similarity and category similarity, which can be

used to effectively differentiate nearly-duplicated from non-

duplicated records. Also, we define corresponding metrics

that can better model these similarities beyond existing

distance measures, such as the edit and Euclidian distances.

 We evaluate our approach using a large-scale real dataset

and justify its effectiveness with intensive experiments.

As the technology has been transferred into Microsoft Bing Local

Search, we will not introduce our approach in detail.

The structure of the rest of this paper is organized as follows. In

Section 2, we give an overview of our approach. Then, in Section

3 we present some key modules of our method, including

candidate selection and feature extraction. In Section 4, we

conduct intensive experiments on the real dataset and report on

some major results followed by a discussion. Finally, we draw our

conclusion and present future work in Section 5.

2. SYSTEM OVERVIEW
In this Section, we first introduce some basic concepts used in our

method and then briefly describe the architecture of our approach,

consisting of online inference and offline learning.

2.1 Preliminary
Definition 1. Record. A record R in a location database is a set of

descriptions of different properties of a location entity O from

the real world. Each record has a set of fields F={name, Address,

geo-position, category, phone, type}, where a field

represents a property of the location entity O.

Definition 2. Nearly duplicated records. Two records R1 and R2

describe the same location entity O, while .

Definition 3. City structure C. City structure is a tree-based

hierarchy specifying the parent-child relationships between

locations of different granularities. Nodes appearing on a higher

level have a larger geo-scale than those occurring on a lower level.

This structure can be built based on the zip codes of a city or some

predefined schema offered by governments.

Figure 1 demonstrates the city structure of New York City.
denotes the i-th level of the city structure , e.g., represents

the 4th level (could be streets, in a semantic meaning) of the city.

Of course, different cities have different structures, and some

cities may only have a three-level structure (such as city  area

code  zip code).

Figure 1. The city structure of New York City

Definition 4. Category Hierarchy CH: Category hierarchy is a

tree-based structure describing the parent-child relationship

between location entity categories of different granularities. The

children nodes denote the sub-categories of their parent node;

therefore, they have a relatively finer granularity.

Figure 2. Category hierarchy

Figure 2 depicts an example of category hierarchy. On the first

level, location entities can be partitioned into categories of

education, entertainment, sports and government, etc. Further, the

categories on the second level, e.g., entertainment, can be divided

New York City

1xxxx

Manhattan

100xxx

Lower East

1000x

City

Borough

Street

Upper East

1002x

Queen

113xxx

Area

5th Street Wall Street

Entertaiment

Restaurant

Level 3

Level 1

Level 2

Chinese

Restaurant

Cinema

Italian

Restaurant

Education

into finer subcategories, such as restaurant, coffee, and Movie

Theater. Later, the category of restaurant can be classified into

Chinese restaurant and Italian restaurant, etc., on the third level.

2.2 Architecture
Figure 3 shows the architecture of our approach, which is

comprised of offline learning and online inference operations.

Offline Learning: First, for each record R from a location dataset

 , we filter obviously irrelevant ones using some simple

heuristics and select some similar candidates , where ; we

call this operation candidate selection. For example, if the names

of two entities are totally different (or the geo-positions of two

records are far away from each other), they would not describe the

same entity in the physical world. In order to improve the

efficiency of the selection, a spatial index is built over the whole

dataset, i.e., only the records within a distance threshold to the

given record will be considered as similar candidates.

Second, given a record , we formulate some record pairs, e.g.,

 , between and its similar candidates.

Then, we investigate the similarity between the records in each

pair by respectively checking the similarity between their names,

addresses and categories. Later, a set of features are extracted to

represent these similarities. With regard to the name similarity,

the idea of inverse document frequency (idf) is used to weight

different terms of an entity name according to their occurring

frequencies in the name fields of the total corpus. Regarding the

address similarity, we project the addresses of these two records

to the city structure by parsing their addresses. The lower the level

two entities encounter, the higher the address similarity these two

entities share.

Third, the extracted features are employed to train a classification

model with human labeled ground truths. Later, this model will be

used to answer online queries.

Figure 3. Architecture of our approach

Online Inference: Given a record, we first select a set of similar

candidates using the same method as the offline learning. Then,

the same features are extracted from each record pair, consisting

of the record and one of its similar candidates. We feed these

features into the inference model learned in the offline process

and obtain a predicted result.

3. Detailed Methodology
This section presents some key components of our method,

including candidate selection and feature extraction.

3.1 Candidate Selection
The candidate selection aims to filter some obviously irrelevant

entities in terms of some insights generated from commonsense

knowledge; therefore improving the efficiency of our approach.

Insight 1: If the name fields of two records are totally different,

we believe they describe different location entities.

Typically, people might make some mistakes, such as typos, when

recording a location entity in the physical world. However, these

mistakes would not be that huge so as to totally change the name

of a POI entity.

Insight 2: If the geo-distance between two entities exceeds a

threshold, we believe they are impossible to be nearly duplicated

ones.

Although the accuracy of a YP entity‟s geo-position varies in the

quality of a geo-coder and that of its address, the inferred geo-

position could not be very far away from its real location, e.g., 10

km away.

Insight 3: If the level-1 category fields of two records are

different, they are impossible to be nearly duplicated records of

the same physical entity.

Sometimes, people may fail in differentiating a European

restaurant from US ones; however, they would not regard a movie

center as a café. Therefore, if two entities pertain to different

categories on a high level, we believe they are different records.

3.2 Feature Extraction
Herein, we identify three key features, consisting of name, address

and category similarities, and calculate these similarities with

corresponding metrics.

3.2.1 Name Similarity
Normally, people use edit distance [3] to measure the difference

between two strings. The edit distance is given by the minimum

number of operations needed to transform one string into the other,

where an operation is an insertion, deletion, or substitution of a

single character. Basically, the bigger the edit distance between

two strings is, the more different these two strings are. However,

this distance metric cannot be used directly to measure the

similarity between the names of entity locations.

Figure 4. Name similarity and edit distance

As shown in Figure 4, the edit distance between the names

(„Galaxies Cafe‟ and „Galaxies Coffee House‟) shown in the first

example is 9, which is greater than that of the second example

(„Espresso Darer‟ and „Espresso Diana‟). However, the records

shown in the first example are nearly duplicated while those

shown in the second case describe different entities. Obviously,

Offline Learning

Candidate Selection

Similar

Candidates

Feature Extraction

Model Training

POI/YPs

Index

Spatial Indexing

Inference Model

Address

Hierarchy

Graph Building

An Entity

Lables

Similarity

Features

Candidate Selection

Similar Candidates

Feature Extraction

Inference

Results

An Entity

Similarity Features

POI/YPs

Spatial

Indexing

Index

Online Inference

Galaxies Coffee House

Espresso Darer

Espresso Diana

Galaxies Cafe
Galaxies

Coffee House

Cafe

Espresso
Diana

Darer

Same part Difference Record names Edit Dist.

9

4

Same

Diff.

Results

this observation is against and beyond the nature of the edit

distance.

In our method, we first detect the shared and differing words

between two names. As shown in Equation (1) and (2), the shared

words could formulate a vector 〈 〉 and the

different parts are stored in anther vector 〈 〉,

where is a term which might contain several words.

 (); (1)

 (); (2)

Regarding the first instance depicted in Figure 4, <Galaxies>

and =<Café, Coffee House>, and in the second example,

 <Espresso> and =<Darer, Diana>. Intuitively, terms like

„the‟ frequently appearing in the name field of other entities might

be too general to represent the meaning of an entity, while terms

that rarely occur in entities‟ names would be more important to

distinguish an entity from others.

Following this observation, we employ the idea of idf, which is a

statistic metric used in information retrieval to determine how

important a word is to a document. Inverse document frequency

can be regarded as a factor diminishing the weight of terms

occurring frequently in many names and increasing the weight of

terms occurring rarely. As shown in Equation (3), N denotes the

number of entities in the corpus and the denominator is the

number of entities whose name contains the term .

 ()

 * +
; (3)

From the detected and , we identify two features and

according to Equation (4) and (5). In short, we aggregate the

weights of the same parts and find out the maximum different

parts between two names. These two features represent the

similarity between names of two entities and will be fed into the

inference model with other features.

 ∑ ()

 ; (4)

 (); (5)

3.2.2 Address Similarity
As we mentioned before, the address field of a record could be

somehow insufficient and inaccurate. For instance, the following

two strings describe the address of the same building.

“79 Beaver St, New York, NY 10005-2812”, and

“92 Water St, New York, NY 10005-3511”

At first glance, the location corresponding to these two addresses

is totally different in terms of edit distance or presentation.

However, these two locations pertain to the same node (zip code:

10005) in the city structure, i.e., they may be located very closely

in geographical space.

The observation is “the geospatially closer two records are

located, the higher the probability these two records might be

nearly duplicated”. Following this observation, we first project

each location entity to a node of a city structure and find out the

lowest parent node two records share. In short, the address

similarity is represented by the level of the lowest co-parent of

two records. The lower the level shared by two records is the

more similar these two records might be.

As shown in Figure 5, we parse the address of each YP record

(line 2) into several phrases and insert this record into a city

structure (refer to Definition 1) according to its zip code. Later,

we calculate the average (latitude and longitude) coordinates of

each node on the bottom level of the city structure. The returned

city structure with the average coordinates will later be used for

address similarity calculation.

Algorithm BuildCityTree (,)

Input: city structure and the collection of yellow page entities

Output: city structure with mapped entities

1. Foreach record

2. =AddressSegmentation(R.Address); //address segmentation

3. =InsertAddress(,)

4. Foreach node // the lowest level of the city structure

5. Sum=0;

6. Foreach record

7. Sum+= R. GPS;

8. ; //calculate the average coordinates of a node

9. Return .

Figure 5. The algorithm for building a city tree

As shown in Figure 6, given two records and , we find the

nodes these two records belong to and return the lowest co-parent

they share in the city structure built above. Figure 7

demonstrates some examples of co-parent search, and the node

search algorithm is detailed in Figure 8.

Algorithm AddressSimlarity (, ,)

Input: city structure with mapped entities, two records and

Output: An integer representing address similarity between and

1. =SearchNode(,);

2. =SearchNode(,);

3. =SearchCoParent(, ,); //search for the lowest co-parent

4. Return ; //return the level node lies in.

Figure 6. Measuring the address similarity between records

For instance, as depicted in Figure 7 A), the co-parent node of

 and is on the second level, and the co-parent nodes

demonstrated in Figure 7 B) and C) are on the third and fourth

level respectively. Obviously, the case presented in Figure 7 C) is

more likely to be nearly duplicated.

Figure 7. Examples of co-parent

Since the addresses of YP entities are relatively accurate, we

determine the nodes they pertain to by using their address (Figure

8, lines 1~3). However, with regard to a POI entity, we search for

the nearest node that is geospatially close to the POI on the

bottom level of (Figure 8, lines 4~10). The measurement here is

geographical distance calculated based on GPS coordinates rather

than text matching.

R1

R2

np

R1 R2

np

R1

R2

np

A) B) C)

Algorithm SearchNode (,)

Input: city structure with mapped entities and a record R

Output: the node the record R pertains to

1. If .type = YP //Yellow page entity

2. =NameSegmentation(.Address);

3. n’=ProjectToNode(,); //map to a node in terms of its address.

4. Else //POI entity

5. minDist=0;

6. Foreach node // the lowest level of the city structure

7. dist=Distance(.GPS,); //distance between R and node n

8. If dist < minDist

9. minDist dist;

10. n’=n;

11. Return .

Figure 8. Mapping a location entity to a city structure

3.2.3 Category Similarity
Similar to address similarity, we map each location entity to a

category hierarchy CH in terms of the category they pertain to and

find the lowest co-parent node on the CH. The lower the level

their co-parent node is found on the more similar these two

records might be. Sometimes, the category of location entity with

multiple functionalities is really difficult to determine, e.g., some

shops usually provide coffee, lunch and wine simultaneously.

Therefore, different people would classify these shops into

different categories. So, it is not reasonable to make a binary

decision whether two records are nearly duplicated based on

exactly matching their categories.

4. Experiments
In this Section, we first present the experimental settings and then

report on some major results, followed by a discussion.

4.1 Settings

4.1.1 Dataset
We evaluate our approach based on the real location dataset of

Beijing, which contains 0.64 million location entities (0.25

million POIs and 0.39 million YPs). From this dataset, we

manually labeled 1600 entity pairs consisting of 800 nearly

duplicated pairs and 800 non-duplicated ones. These entity pairs

were randomly selected and used as an evaluation dataset.

With the manually labeled ground truth, we can evaluate our

approach as a classification problem. Meanwhile, to investigate

the stability of our method, we perform the experiment on

different scales of dataset step by step. If the performance does

not vary in the scale of the test datasets, our method is stable and

scalable. Table II shows four evaluation datasets of different

scales. For instance, in dataset D1, we select 200 entity pairs as

the training set and use 200 pairs as the test. In both the training

and test datasets, the number of nearly duplicated cases is the

same with that of non-duplicated pairs.

Table II. Evaluation Datasets

Datasets Training Set Test Set Total

D1 200 200 400

D2 400 400 800

D3 600 600 1200

D4 800 800 1600

4.1.2 Inference Model
Our inference model employs a decision tree as a classifier and

uses bootstrap aggregating (bagging) [7] as a meta-algorithm to

improve the accuracy by reducing variance and over-fitting. All

the experiments related to inference are conducted by using Weka

APIs [17], a well-known open toolkit for machine learning.

4.1.3 Baselines
We compared our method with two baselines. One is the exact

match, in which two records are detected as nearly duplicated if

their names and addresses are identical. This method would have

a relatively high precision with a very low recall as a trade-off.

The other is a rule-based method, in which two records are

detected as nearly duplicated if the edit distance between their

names is less than a threshold and the geo-distance between them

is less than a certain value.

4.2 Results

4.2.1 Single Feature Study
Figures 9 and 10 depict the precision and recall of our method

using each single feature. Herein, and were defined in

Equation (4) and (5); denotes address similarity and

represents category similarity.

First, and are more effective beyond and in identifying

nearly duplicated entities. In short, the information contained in a

location entity‟s name is more important than the observations

from other fields of this entity. Meanwhile, the address similarity

is more powerful than category similarity in terms of the inference

precision. However, category similarity has a very high recall

capability in retrieving the nearly duplicated entities over others.

Second, we can see that the precision and recall of our method

using each feature as a stand-alone does not vary too much in the

increasing scale of the evaluation dataset. This phenomenon

justifies the scalability of our method and the stability of those

features.

Figure 9. Precision of identifying nearly duplicated entities

using a single feature

Figure 10. Recall of identifying nearly duplicated entities

using a single feature

0.4

0.5

0.6

0.7

0.8

0.9

400 800 1200 1600

P
r
e
c
is

io
n

Number of entity pairs

S1

S2

S3

S4

0.4

0.5

0.6

0.7

0.8

0.9

1

400 800 1200 1600

R
e
c
a

ll

Number of entity pairs

S1

S2

S3

S4

4.2.2 Feature Combination
Table III presents the performance of our methods using different

feature combinations, such as , which means combining

name similarity with address similarity. All the results were

obtained based on dataset D4. From the reported data, we can see

the inference performance clearly increases when adding address

and category similarities. When these four features were used

together, we obtained the highest accuracy.

Table III. The performance of feature combinations

Features
Duplicated Non-duplicated Overall

accuracy Pre. Rec. Pre. Rec.

 0.86

0
0.85

7
0.852 0.86

4
0.858

 0.80

0
0.76

7
0.746 0.81

9
0.782

 0.86

4
0.85

9
0.853 0.86

9
0.861

 0.86

4
0.85

9
0.853 0.86

9
0.861

0.88

5
0.86

6
0.858 0.89

1
0.875

Figure 11 depicts the performance of the rule-based baseline

method, which estimates the near duplication according to geo-

distance and edit distance. For instance, when Geo-dist=0.3 KM

and edit distance=5, the accuracy of this baseline reached its peak

(0.75). In short, if the geo-distance between two records is less

than 0.3 KM and the edit distance between their name is smaller

than 5, these two records are regarded as nearly duplicated.

Figure 11. Overall accuracy of the rule-based baseline method

In Table IV, we compare the performance of different methods

using dataset D4. Clearly, our approach outperformed the two

baseline methods in terms of both precision and recall.

Table IV. Comparison of different methods

Features
Duplicated Non-duplicated Overall

accuracy Pre. Rec. Pre. Rec.

Exact Match 1 0.183 0.558 0.100 0.598

Rule-based

method

0.78

0
0.701 0.736 0.808 0.755

Our approach 0.88

5
0.866 0.858 0.891 0.875

Further, Figure 12 shows the stability and scalability of our

approach based on increasing datasets, where precision (Y)

denotes the accuracy of inferred nearly duplicated and precision

(N) means that of non-duplicated records. No matter what size of

dataset we used, the precision and recall of our method are around

0.85. Also, the overall accuracy improved as the dataset increases.

Therefore, our approach would be more effective on a large-scale

dataset.

Figure 12. Performance of our approach over different

datasets

5. Related Work
Actually, literature similar to our work is few. However, the idea

of our work is related to the following three parts: similar

document search in information retrieval, string distance and

mining similar location entities.

5.1 Document Retrieval
Document retrieval is defined as the matching of some stated user

query against a set of free-text records. These records could be

any type of mainly unstructured text, such as newspaper articles,

real estate records or paragraphs in a manual. User queries can

range from multi-sentence full descriptions of an information need

to a few words [2]. In this retrieval, a document was first parsed

into some terms, which will be calculated term frequency-inverse

document frequency (tf-idf).

Tf-idf is a statistical measure used to evaluate how important a

word is to a document in a collection or corpus [15]. The

importance increases proportionally to the number of times a

word appears in the document but is offset by the frequency of the

word in the corpus [12][13]. Then, each document is represented

by a feature vector, each item of which denotes the tf-idf value of

a term. Later, an inverse index between a term and documents

containing this term can be built for online-search.

In our approach, we also employ the concept of tf-idf to weight

the different parts of an entity‟s name. The terms that appear in

one entity‟s name but that rarely occur in other entities‟ names

would be more important than the rest of the name in

differentiating the entity from others. However, instead of

building an inverse index between terms and records, we convert

the sum of the same parts‟ idf and the maximum idf of the

different parts into two features. Therefore, we are able to use a

machine learning strategy to infer the nearly duplicated entities.

5.2 String Edit Distance
The edit distance is given by the minimum number of operations

needed to transform one string into the other, where an operation

is an insertion, deletion, or substitution of a single character.

Some excellent literature about string distance is available

[3][5][14]. Several variants of the edit distance have been

proposed, including the normalized distance [9] and the constraint

edit distance [11].

Basically, the bigger the edit distance between two strings is, the

more different these two strings are. However, this distance metric

cannot be used directly to measure the similarity between the

names of entity locations (refer to the example shown in Figure 4).

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5 6 7 8 9 10

A
c
c
u

r
a

c
y

Edit Distance

GeoDist=0.3

GeoDist=0.6

GeoDist=0.9

0.65

0.7

0.75

0.8

0.85

0.9

0.95

precision (Y) recall (Y) precision (N) recall (N) overall

Performance Measures

D1

D2

D3

D4

http://en.wikipedia.org/wiki/Natural_language
http://en.wikipedia.org/wiki/Newspaper_article
http://en.wikipedia.org/wiki/Document
http://en.wikipedia.org/wiki/Text_corpus
http://en.wikipedia.org/wiki/Proportionality_(mathematics)

In our string distance, we consider not only the information of the

two strings to be matched but also their context information, i.e.,

the tf-idf value of the words contained in the two strings in a

context of the whole corpus. Meanwhile, the similarities we

defined for an entity pair are far beyond the string distance, e.g.,

the address and category similarities are based on some kinds of

tree structures.

5.3 Mining Similar Location Entities
Co-location pattern discovery is a newly developed trend in this

direction. It aims to find classes of spatial objects that are

frequently located together, e.g., restaurants and shopping malls

are usually co-located [4][10][16].

Zheng et al. [8] detected spatial outliers from a location dataset

using a data mining algorithm. Here a spatial outlier means that

the geo-position field of a location entity‟s record is different from

its real-world position. Thus, people will be misguided by the

inaccurate results returned by a local search engine like Bing local

search. Chang et al [1] proposed a system that can find out the

geographic regions sharing a similar distribution of POIs.

These techniques mentioned above focus on clustering different

location entities in terms of some similar properties. However, we

aim to detect the same entities (in the real world) but having

nearly duplicated presentations in different data sources.

6. Conclusion
In this paper, we propose an algorithm that detects nearly

duplicated records in a (multiple) location dataset(s) using a

machine-learning-based inference paradigm. In our approach, we

identify name similarity, address and category similarities

between two records as features, and define corresponding metrics

that measure these similarities well. Using a small set of human

labeled ground truths, we train a classification model, which can

be later used for inferring large-scale datasets. We evaluated our

approach on a real location dataset and test the stability and

scalability of our method with different sizes of data. As a result,

our approach clearly outperformed baseline methods by obtaining

an overall inference accuracy of 0.875. Meanwhile, no matter

what size of dataset we used, our approach achieved an accuracy

of about 0.85. These results justify the stability and scalability of

our approach in processing large-scale datasets.

7. REFERENCES
[1] Chang, S., Zheng, Y., Hsu, W., Lee, M., L. and Xie, X.

Answering Top-k Similar Region Search Queries. In

Proceedings of Database Systems for Advanced Applications

(2010), Springer Press: 186-201

[2] Document Retrieval.

http://en.wikipedia.org/wiki/Document_retrieval

[3] Hall P., and Dowling G., Approximate string match. ACM

Computing Surveys, 12, 4 (1980): 381-402.

[4] Huang, Y., Shekhar, S., and Xiong, H.. Discovering co-

location patterns from spatial datasets: A general approach.

TKDE, 16(12):1472-1485, 2004

[5] Kukich, K. Techniques for automatically correcting words in

text. ACM Computing Surveys, 24 (1992): 377-439

[6] Levenshtein, V. I. Binary codes capable of correcting

deletions, insertions, and reversals. Soviet Physics Doklady

10 (1966):707–710.

[7] Leo Breiman. Bagging Predictors. Machine Learning. 1996

[8] International Patent. MS 326249.01. Detecting spatial

outliers in a location entity dataset. 2009

[9] Marzal, A., and Vidal, E. Computation of normalized edit

distance and applications. IEEE Trans. PAMI 15, 9 (1993):

926-932

[10] Morimoto, Y. Mining frequent neighboring class sets in

spatial databases. In Proceedings of SIGKDD, 2001, ACM

Press: 353-358.

[11] Oomman, B. Constraint string editing. Information Sciences

40 (1986)

[12] Salton, G. and Buckley, C. Term-weighting approaches in

automatic text retrieval. Information Processing &

Management, 24, 5 (1988): 513–523.

[13] Salton, G., Edward, A. and Wu, H. Extended Boolean

information retrieval. Communications of the ACM, 26, 11

(1983): 1022–1036.

[14] Sankoff, D. and Kruskal, J. Time Warps, String Edits, and

Macromolecules: The Theory and Practice of Sequence

Comparison. AddisonWesley, Reading, MA, 1983.

[15] Spärck Jones, Karen. A statistical interpretation of term

specificity and its application in retrieval. Journal of

Documentation 28, 1 (1972): 11–21

[16] Xiao, X., Xie, X., Luo, Q. Density-based co-location pattern

discovery. In Proceedings of ACM SIGSPATAIL conference

on Geographic Information Systems, 2008. ACM Press: 11-

20.

[17] Weka. http://www.cs.waikato.ac.nz/ml/weka/.

http://research.microsoft.com/apps/pubs/?id=117778

