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ABSTRACT 

The quality of a local search engine, such as Google and Bing 

Maps, heavily relies on its geographic datasets. Typically, these 

datasets are obtained from multiple sources, e.g., different vendors 

or public yellow-page websites. Therefore, the same location 

entity, like a restaurant, might have multiple records with slightly 

different presentations of title and address in different data 

sources. For instance, „Seattle Premium Outlets‟ and „Seattle 

Premier Outlet Mall‟ describe the same Outlet located in the same 

place while their titles are not identical. This will cause many 

nearly-duplicated records in a location database, which would 

bring trouble to data management and make users confused by the 

various search results of a query. To detect these nearly duplicated 

records, we propose a machine-learning-based approach, which is 

comprised of three steps: candidate selection, feature extraction 

and training/inference. Three key features consisting of name 

similarity, address similarity and category similarity, as well as 

corresponding metrics, are proposed to model the differences 

between two entity records. We evaluate our method with 

intensive experiments based on a large-scale real dataset. As a 

result, both the precision and recall of our method exceeded 90%. 

Categories and Subject Descriptors 

H.2.8 [Database Management]: Database Applications - data 

mining, Spatial databases and GIS. 

General Terms 

Algorithms, Performance, Experimentation.  

Keywords 

Local search, Geographical information systems, Data quality, 

name similarity, address similarity. 

1. INTRODUCTION 
With the combination of geographical information systems and 

the Web, users are increasingly relying on mobile/location search 

services, such as Google and Bing Maps, to find destinations like 

shopping malls or restaurants. The quality of these kinds of search 

engines heavily depends on their location datasets, which annotate 

the digital map with landmarks, businesses and points of interest.  

In this kind of dataset each location entity consists of a set of 

properties shown in Table I. We call each row a record, and name 

a column as a field. The location entities are usually classified as 

“point of interest” (POI) entities or “yellow page” (YP) entities. 

POI entities are often created by users with mobile, GPS-enabled 

devices. Accordingly, the GPS coordinates for such entities tend 

to have a high degree of accuracy. Other fields of a POI entity 

(e.g., name, address, etc.), however, tend to be less accurate as the 

entity-creating user may not enter those fields with a great degree 

of care. YP entities are often created by the businesses or 

locations that they identify, and may be captured for the dataset by, 

e.g., crawling the Internet. Because YP entities are often created 

by businesses or locations having a strong desire to be found, 

name and address fields of the entities are likely to be highly 

accurate. GPS coordinates for YP entities are then geo-coded 

based on the address field and vary in quality based on the 

accuracy of the address field. 

Table 1. Properties of a location entity 

Name Address 
GPS 

Position 

Phone 

Num. 
Category Type 

The Matt‟s 

Bar 

701 5
th

 Ave 

Seattle, WA 

116.325, 

35.364 

1-

56987452 
Café YP 

Silver 

Cloud Inn 

314 7
th

 Ave 

Redmond, 

WA 

116.451, 

35.209 

1-

25698716 
Hotel POI 

 

Typically, these datasets are obtained from a variety of sources, 

such as purchased from multiple professional data providers and 

crawled from the Web. Intuitively, different people would pay 

different attention when manually recording a location entity in 

the physical world. Meanwhile, some fields of an entity could 

change as time goes by. For example, a restaurant could change 

its name, and a street can be renamed. Therefore, a location entity 

could have multiple records with slightly different presentations in 

different data sources. For instance, „Seattle Premium Outlets‟ and 

„Seattle Premier Outlet Mall‟ describe the same Outlet located in 

the same place while their titles are not identical. We call this 

phenomena nearly duplicated entities, which means two records 

from a (multiple) location dataset(s) describe the same real-world 

entity with slightly different (very similar) presentations. 

These nearly duplicated entities will bring trouble to the 

management of a location database. Also, users would be 

confused by the multiple results associated with a query. For 

instance, when searching for “Matt Bar”, three results (“The 

Matt‟s Bar”, “Matt‟s Bar”, “The Matt Bar”) with different geo-

positions could be retrieved for the user. As a result, the user 

would have no idea which one is the correct answer. However, by 

merging these nearly duplicated records, we can get the following 

two benefits. First, we can save lots of storage by normalizing the 

nearly duplicated records and make our location database more 

consistent. Second, if a POI record and a YP record are detected 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 

requires prior specific permission and/or a fee. 

GIS '10, 03-NOV-2010, San Jose CA, USA 
Copyright © 2010 ACM 978-1-4503-0428-3/10/11…$10.00  

 



as nearly duplicated, we are able to improve the geo-position 

accuracy of the YP entity using the POI entity‟s GPS position.  

However, it is very challenging to identify whether or not two 

records are nearly duplicated. First, the two records might have 

different presentations in the same field. Therefore, we cannot 

make a decision by exactly matching the fields of two records. 

Second, each field of a record might not be very accurate. (As we 

mentioned before, the geo-position of a YP entity would not be 

very precise and the address information of a POI entity might be 

less accurate.) Consequently, it is very difficult to define some 

thresholds to determine the similarity between two records. For 

instance, it is hard to say two records are nearly duplicated if the 

geo-distance between them is less than 50 meters and the edit 

distance between their names is less than 2. Third, metrics like the 

edit distance and Euclidian distance cannot well model the 

difference between two records. For example, „Sunshine Day 

coffee‟ and „Sunny Day coffee‟ are different restaurants located in 

the same street while the edit distance between their names is very 

small and their locations are very close. 

In this paper, we propose a machine-learning-based approach, 

which can detect nearly duplicated records from a (or multiple) 

location dataset(s). It is a step towards improving the data quality 

of geographical information systems for mobile/local search 

services. In this approach, we first select a small set of similar 

candidates for each given location entity using a preprocessing 

algorithm. Then, for each pair of similar candidates, we 

investigate the similarity of each field, such as name similarity, 

address similarity and category similarity, between them, and 

identify a set of features representing these similarities. Later, 

these features are fed in a classification model, which has been 

trained in advance using human labeling datasets, to attain 

prediction results (duplicated or non-duplicated). The contribution 

of this work lies in the following three aspects: 

 We employ the philosophy of machine learning to infer the 

similarity between two entities rather than using exact match 

or rule-based heuristics. Meanwhile, instead of checking 

each single field, multiple fields of an entity are considered 

comprehensively when performing the inference. 

 We identify a set of key features including name similarity, 

address similarity and category similarity, which can be 

used to effectively differentiate nearly-duplicated from non-

duplicated records. Also, we define corresponding metrics 

that can better model these similarities beyond existing 

distance measures, such as the edit and Euclidian distances. 

 We evaluate our approach using a large-scale real dataset 

and justify its effectiveness with intensive experiments. 

As the technology has been transferred into Microsoft Bing Local 

Search, we will not introduce our approach in detail.  

The structure of the rest of this paper is organized as follows. In 

Section 2, we give an overview of our approach. Then, in Section 

3 we present some key modules of our method, including 

candidate selection and feature extraction. In Section 4, we 

conduct intensive experiments on the real dataset and report on 

some major results followed by a discussion. Finally, we draw our 

conclusion and present future work in Section 5. 

2. SYSTEM OVERVIEW 
In this Section, we first introduce some basic concepts used in our 

method and then briefly describe the architecture of our approach, 

consisting of online inference and offline learning. 

2.1 Preliminary 
Definition 1. Record. A record R in a location database is a set of 

descriptions of different properties of a location entity O from 

the real world. Each record has a set of fields F={name, Address, 

geo-position, category, phone, type}, where a field     

represents a property of the location entity O. 

Definition 2. Nearly duplicated records. Two records R1 and R2 

describe the same location entity O, while               . 

Definition 3. City structure C. City structure is a tree-based 

hierarchy specifying the parent-child relationships between 

locations of different granularities. Nodes appearing on a higher 

level have a larger geo-scale than those occurring on a lower level. 

This structure can be built based on the zip codes of a city or some 

predefined schema offered by governments. 

Figure 1 demonstrates the city structure of New York City.      
denotes the i-th level of the city structure  , e.g.,      represents 

the 4th  level (could be streets, in a semantic meaning) of the city. 

Of course, different cities have different structures, and some 

cities may only have a three-level structure (such as city  area 

code  zip code). 

 

Figure 1. The city structure of New York City 

Definition 4. Category Hierarchy CH: Category hierarchy is a 

tree-based structure describing the parent-child relationship 

between location entity categories of different granularities. The 

children nodes denote the sub-categories of their parent node; 

therefore, they have a relatively finer granularity. 

 

Figure 2. Category hierarchy 

Figure 2 depicts an example of category hierarchy. On the first 

level, location entities can be partitioned into categories of 

education, entertainment, sports and government, etc. Further, the 

categories on the second level, e.g., entertainment, can be divided 
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into finer subcategories, such as restaurant, coffee, and Movie 

Theater. Later, the category of restaurant can be classified into 

Chinese restaurant and Italian restaurant, etc., on the third level.  

2.2 Architecture 
Figure 3 shows the architecture of our approach, which is 

comprised of offline learning and online inference operations. 

Offline Learning: First, for each record R from a location dataset 

 , we filter obviously irrelevant ones using some simple 

heuristics and select some similar candidates  , where    ; we 

call this operation candidate selection. For example, if the names 

of two entities are totally different (or the geo-positions of two 

records are far away from each other), they would not describe the 

same entity in the physical world. In order to improve the 

efficiency of the selection, a spatial index is built over the whole 

dataset, i.e., only the records within a distance threshold to the 

given record will be considered as similar candidates.  

Second, given a record   , we formulate some record pairs, e.g., 

              , between    and its similar candidates. 

Then, we investigate the similarity between the records in each 

pair   by respectively checking the similarity between their names, 

addresses and categories. Later, a set of features are extracted to 

represent these similarities. With regard to the name similarity, 

the idea of inverse document frequency (idf) is used to weight 

different terms of an entity name according to their occurring 

frequencies in the name fields of the total corpus. Regarding the 

address similarity, we project the addresses of these two records 

to the city structure by parsing their addresses. The lower the level 

two entities encounter, the higher the address similarity these two 

entities share.  

Third, the extracted features are employed to train a classification 

model with human labeled ground truths. Later, this model will be 

used to answer online queries. 

 

Figure 3. Architecture of our approach 

Online Inference: Given a record, we first select a set of similar 

candidates using the same method as the offline learning. Then, 

the same features are extracted from each record pair, consisting 

of the record and one of its similar candidates. We feed these 

features into the inference model learned in the offline process 

and obtain a predicted result. 

3. Detailed Methodology 
This section presents some key components of our method, 

including candidate selection and feature extraction. 

3.1 Candidate Selection 
The candidate selection aims to filter some obviously irrelevant 

entities in terms of some insights generated from commonsense 

knowledge; therefore improving the efficiency of our approach. 

Insight 1: If the name fields of two records are totally different, 

we believe they describe different location entities.  

Typically, people might make some mistakes, such as typos, when 

recording a location entity in the physical world. However, these 

mistakes would not be that huge so as to totally change the name 

of a POI entity.  

Insight 2: If the geo-distance between two entities exceeds a 

threshold, we believe they are impossible to be nearly duplicated 

ones.  

Although the accuracy of a YP entity‟s geo-position varies in the 

quality of a geo-coder and that of its address, the inferred geo-

position could not be very far away from its real location, e.g., 10 

km away. 

Insight 3: If the level-1 category fields of two records are 

different, they are impossible to be nearly duplicated records of 

the same physical entity.  

Sometimes, people may fail in differentiating a European 

restaurant from US ones; however, they would not regard a movie 

center as a café. Therefore, if two entities pertain to different 

categories on a high level, we believe they are different records.  

3.2 Feature Extraction 
Herein, we identify three key features, consisting of name, address 

and category similarities, and calculate these similarities with 

corresponding metrics. 

3.2.1 Name Similarity 
Normally, people use edit distance [3] to measure the difference 

between two strings. The edit distance is given by the minimum 

number of operations needed to transform one string into the other, 

where an operation is an insertion, deletion, or substitution of a 

single character. Basically, the bigger the edit distance between 

two strings is, the more different these two strings are. However, 

this distance metric cannot be used directly to measure the 

similarity between the names of entity locations.  

 

Figure 4. Name similarity and edit distance  

As shown in Figure 4, the edit distance between the names 

(„Galaxies Cafe‟ and „Galaxies Coffee House‟) shown in the first 

example is 9, which is greater than that of the second example 

(„Espresso Darer‟ and „Espresso Diana‟). However, the records 

shown in the first example are nearly duplicated while those 

shown in the second case describe different entities. Obviously, 
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this observation is against and beyond the nature of the edit 

distance. 

In our method, we first detect the shared and differing words 

between two names. As shown in Equation (1) and (2), the shared 

words could formulate a vector    〈          〉  and the 

different parts are stored in anther vector    〈          〉, 

where    is a term which might contain several words. 

                                     (               );         (1) 

                                     (               );         (2) 

Regarding the first instance depicted in Figure 4,    <Galaxies> 

and   =<Café, Coffee House>, and in the second example, 

   <Espresso> and   =<Darer, Diana>. Intuitively, terms like 

„the‟ frequently appearing in the name field of other entities might 

be too general to represent the meaning of an entity, while terms 

that rarely occur in entities‟ names would be more important to 

distinguish an entity from others. 

Following this observation, we employ the idea of idf, which is a 

statistic metric used in information retrieval to determine how 

important a word is to a document. Inverse document frequency 

can be regarded as a factor diminishing the weight of terms 

occurring frequently in many names and increasing the weight of 

terms occurring rarely. As shown in Equation (3), N denotes the 

number of entities in the corpus and the denominator is the 

number of entities whose name contains the term   . 

                                 (  )     
 

 *             + 
;          (3) 

From the detected    and   , we identify two features    and    

according to Equation (4) and (5). In short, we aggregate the 

weights of the same parts and find out the maximum different 

parts between two names. These two features represent the 

similarity between names of two entities and will be fed into the 

inference model with other features. 

                                 ∑    (     )
    
    ;                     (4) 

                                         
    (  );                     (5) 

3.2.2 Address Similarity 
As we mentioned before, the address field of a record could be 

somehow insufficient and inaccurate. For instance, the following 

two strings describe the address of the same building. 

“79 Beaver St, New York, NY 10005-2812”, and 

“92 Water St, New York, NY 10005-3511” 

At first glance, the location corresponding to these two addresses 

is totally different in terms of edit distance or presentation. 

However, these two locations pertain to the same node (zip code: 

10005) in the city structure, i.e., they may be located very closely 

in geographical space.  

The observation is “the geospatially closer two records are 

located, the higher the probability these two records might be 

nearly duplicated”. Following this observation, we first project 

each location entity to a node of a city structure and find out the 

lowest parent node two records share. In short, the address 

similarity is represented by the level of the lowest co-parent of 

two records. The lower the level shared by two records is the 

more similar these two records might be. 

As shown in Figure 5, we parse the address of each YP record 

(line 2) into several phrases and insert this record into a city 

structure   (refer to Definition 1) according to its zip code. Later, 

we calculate the average (latitude and longitude) coordinates of 

each node on the bottom level of the city structure. The returned 

city structure with the average coordinates will later be used for 

address similarity calculation. 

Algorithm BuildCityTree ( ,  ) 

Input: city structure   and the collection of yellow page entities   

Output: city structure    with mapped entities 

1. Foreach record     

2.         =AddressSegmentation(R.Address); //address segmentation 

3.          =InsertAddress( ,  ) 

4. Foreach node            // the lowest level of the city structure 

5.        Sum=0; 

6.        Foreach record     

7.                 Sum+= R. GPS; 

8.                       ;  //calculate the average coordinates of a node 

9. Return   . 

Figure 5. The algorithm for building a city tree 

As shown in Figure 6, given two records    and   , we find the 

nodes these two records belong to and return the lowest co-parent 

they share in the city structure    built above. Figure 7 

demonstrates some examples of co-parent search, and the node 

search algorithm is detailed in Figure 8.  

Algorithm AddressSimlarity (  ,   ,   ) 

Input: city structure    with mapped entities, two records    and    

Output: An integer representing address similarity between    and    

1.   =SearchNode(  ,   ); 

2.   =SearchNode(  ,   ); 

3.   =SearchCoParent(  ,   ,   ); //search for the lowest co-parent 

4. Return         ;                       //return the level node    lies in. 

Figure 6. Measuring the address similarity between records 

For instance, as depicted in Figure 7 A), the co-parent node    of 

   and    is on the second level, and the co-parent nodes 

demonstrated in Figure 7 B) and C) are on the third and fourth 

level respectively. Obviously, the case presented in Figure 7 C) is 

more likely to be nearly duplicated. 

 

Figure 7. Examples of co-parent  

Since the addresses of YP entities are relatively accurate, we 

determine the nodes they pertain to by using their address (Figure 

8, lines 1~3). However, with regard to a POI entity, we search for 

the nearest node that is geospatially close to the POI on the 

bottom level of    (Figure 8, lines 4~10). The measurement here is 

geographical distance calculated based on GPS coordinates rather 

than text matching. 
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Algorithm SearchNode (  ,  ) 

Input: city structure    with mapped entities and a record R 

Output: the node the record R pertains to 

1. If  .type = YP                           //Yellow page entity 

2.       =NameSegmentation( .Address); 

3.      n’=ProjectToNode( ,   );  //map    to a node in terms of its address. 

4.  Else                                          //POI entity 

5.       minDist=0; 

6.      Foreach node            // the lowest level of the city structure 

7.           dist=Distance( .GPS,        ); //distance between R and node n 

8.            If dist < minDist 

9.                    minDist dist; 

10.                   n’=n; 

11. Return   . 

Figure 8. Mapping a location entity to a city structure 

3.2.3 Category Similarity 
Similar to address similarity, we map each location entity to a 

category hierarchy CH in terms of the category they pertain to and 

find the lowest co-parent node on the CH. The lower the level 

their co-parent node is found on the more similar these two 

records might be. Sometimes, the category of location entity with 

multiple functionalities is really difficult to determine, e.g., some 

shops usually provide coffee, lunch and wine simultaneously. 

Therefore, different people would classify these shops into 

different categories. So, it is not reasonable to make a binary 

decision whether two records are nearly duplicated based on 

exactly matching their categories. 

4. Experiments 
In this Section, we first present the experimental settings and then 

report on some major results, followed by a discussion. 

4.1 Settings 

4.1.1 Dataset 
We evaluate our approach based on the real location dataset of 

Beijing, which contains 0.64 million location entities (0.25 

million POIs and 0.39 million YPs). From this dataset, we 

manually labeled 1600 entity pairs consisting of 800 nearly 

duplicated pairs and 800 non-duplicated ones. These entity pairs 

were randomly selected and used as an evaluation dataset.  

With the manually labeled ground truth, we can evaluate our 

approach as a classification problem. Meanwhile, to investigate 

the stability of our method, we perform the experiment on 

different scales of dataset step by step. If the performance does 

not vary in the scale of the test datasets, our method is stable and 

scalable. Table II shows four evaluation datasets of different 

scales. For instance, in dataset D1, we select 200 entity pairs as 

the training set and use 200 pairs as the test. In both the training 

and test datasets, the number of nearly duplicated cases is the 

same with that of non-duplicated pairs. 

Table II. Evaluation Datasets 

Datasets Training Set Test Set Total 

D1 200 200 400 

D2 400 400 800 

D3 600 600 1200 

D4 800 800 1600 

4.1.2 Inference Model 
Our inference model employs a decision tree as a classifier and 

uses bootstrap aggregating (bagging) [7] as a meta-algorithm to 

improve the accuracy by reducing variance and over-fitting. All 

the experiments related to inference are conducted by using Weka 

APIs [17], a well-known open toolkit for machine learning. 

4.1.3 Baselines 
We compared our method with two baselines. One is the exact 

match, in which two records are detected as nearly duplicated if 

their names and addresses are identical. This method would have 

a relatively high precision with a very low recall as a trade-off. 

The other is a rule-based method, in which two records are 

detected as nearly duplicated if the edit distance between their 

names is less than a threshold and the geo-distance between them 

is less than a certain value. 

4.2 Results 

4.2.1 Single Feature Study 
Figures 9 and 10 depict the precision and recall of our method 

using each single feature. Herein,    and    were defined in 

Equation (4) and (5);    denotes address similarity and    

represents category similarity.  

First,    and    are more effective beyond    and    in identifying 

nearly duplicated entities. In short, the information contained in a 

location entity‟s name is more important than the observations 

from other fields of this entity. Meanwhile, the address similarity 

is more powerful than category similarity in terms of the inference 

precision. However, category similarity has a very high recall 

capability in retrieving the nearly duplicated entities over others. 

Second, we can see that the precision and recall of our method 

using each feature as a stand-alone does not vary too much in the 

increasing scale of the evaluation dataset. This phenomenon 

justifies the scalability of our method and the stability of those 

features. 

 

Figure 9. Precision of identifying nearly duplicated entities 

using a single feature  

 

Figure 10. Recall of identifying nearly duplicated entities 

using a single feature  

0.4

0.5

0.6

0.7

0.8

0.9

400 800 1200 1600

P
r
e
c
is

io
n

Number of  entity pairs

S1

S2

S3

S4

0.4

0.5

0.6

0.7

0.8

0.9

1

400 800 1200 1600

R
e
c
a

ll

Number of entity pairs

S1

S2

S3

S4



4.2.2 Feature Combination 
Table III presents the performance of our methods using different 

feature combinations, such as         , which means combining 

name similarity with address similarity. All the results were 

obtained based on dataset D4. From the reported data, we can see 

the inference performance clearly increases when adding address 

and category similarities. When these four features were used 

together, we obtained the highest accuracy. 

Table III. The performance of feature combinations 

Features 
Duplicated Non-duplicated Overall 

accuracy Pre. Rec. Pre. Rec. 

      0.86

0 
0.85

7 
0.852 0.86

4 
0.858 

      0.80

0 
0.76

7 
0.746 0.81

9 
0.782 

         0.86

4 
0.85

9 
0.853 0.86

9 
0.861 

         0.86

4 
0.85

9 
0.853 0.86

9 
0.861 

        

    

0.88

5 
0.86

6 
0.858 0.89

1 
0.875 

Figure 11 depicts the performance of the rule-based baseline 

method, which estimates the near duplication according to geo-

distance and edit distance. For instance, when Geo-dist=0.3 KM 

and edit distance=5, the accuracy of this baseline reached its peak 

(0.75). In short, if the geo-distance between two records is less 

than 0.3 KM and the edit distance between their name is smaller 

than 5, these two records are regarded as nearly duplicated. 

 

Figure 11. Overall accuracy of the rule-based baseline method 

In Table IV, we compare the performance of different methods 

using dataset D4. Clearly, our approach outperformed the two 

baseline methods in terms of both precision and recall.  

Table IV. Comparison of different methods 

Features 
Duplicated Non-duplicated Overall 

accuracy Pre. Rec. Pre. Rec. 

Exact Match 1 0.183 0.558 0.100 0.598 

Rule-based 

method 

0.78

0 
0.701 0.736 0.808 0.755 

Our approach 0.88

5 
0.866 0.858 0.891 0.875 

Further, Figure 12 shows the stability and scalability of our 

approach based on increasing datasets, where precision (Y) 

denotes the accuracy of inferred nearly duplicated and precision 

(N) means that of non-duplicated records. No matter what size of 

dataset we used, the precision and recall of our method are around 

0.85. Also, the overall accuracy improved as the dataset increases. 

Therefore, our approach would be more effective on a large-scale 

dataset. 

 

Figure 12. Performance of our approach over different 

datasets 

5. Related Work 
Actually, literature similar to our work is few. However, the idea 

of our work is related to the following three parts: similar 

document search in information retrieval, string distance and 

mining similar location entities. 

5.1 Document Retrieval 
Document retrieval is defined as the matching of some stated user 

query against a set of free-text records. These records could be 

any type of mainly unstructured text, such as newspaper articles, 

real estate records or paragraphs in a manual. User queries can 

range from multi-sentence full descriptions of an information need 

to a few words [2]. In this retrieval, a document was first parsed 

into some terms, which will be calculated term frequency-inverse 

document frequency (tf-idf).  

Tf-idf is a statistical measure used to evaluate how important a 

word is to a document in a collection or corpus [15]. The 

importance increases proportionally to the number of times a 

word appears in the document but is offset by the frequency of the 

word in the corpus [12][13]. Then, each document is represented 

by a feature vector, each item of which denotes the tf-idf value of 

a term. Later, an inverse index between a term and documents 

containing this term can be built for online-search. 

In our approach, we also employ the concept of tf-idf to weight 

the different parts of an entity‟s name. The terms that appear in 

one entity‟s name but that rarely occur in other entities‟ names 

would be more important than the rest of the name in 

differentiating the entity from others. However, instead of 

building an inverse index between terms and records, we convert 

the sum of the same parts‟ idf and the maximum idf of the 

different parts into two features. Therefore, we are able to use a 

machine learning strategy to infer the nearly duplicated entities. 

5.2 String Edit Distance 
The edit distance is given by the minimum number of operations 

needed to transform one string into the other, where an operation 

is an insertion, deletion, or substitution of a single character. 

Some excellent literature about string distance is available 

[3][5][14]. Several variants of the edit distance have been 

proposed, including the normalized distance [9] and the constraint 

edit distance [11]. 

Basically, the bigger the edit distance between two strings is, the 

more different these two strings are. However, this distance metric 

cannot be used directly to measure the similarity between the 

names of entity locations (refer to the example shown in Figure 4).  

0.5

0.55

0.6

0.65

0.7

0.75

0.8

1 2 3 4 5 6 7 8 9 10

A
c
c
u

r
a

c
y

Edit Distance

GeoDist=0.3

GeoDist=0.6

GeoDist=0.9

0.65

0.7

0.75

0.8

0.85

0.9

0.95

precision (Y) recall (Y) precision (N) recall (N) overall

Performance Measures

D1

D2

D3

D4

http://en.wikipedia.org/wiki/Natural_language
http://en.wikipedia.org/wiki/Newspaper_article
http://en.wikipedia.org/wiki/Document
http://en.wikipedia.org/wiki/Text_corpus
http://en.wikipedia.org/wiki/Proportionality_(mathematics)


In our string distance, we consider not only the information of the 

two strings to be matched but also their context information, i.e., 

the tf-idf value of the words contained in the two strings in a 

context of the whole corpus. Meanwhile, the similarities we 

defined for an entity pair are far beyond the string distance, e.g., 

the address and category similarities are based on some kinds of 

tree structures.  

5.3 Mining Similar Location Entities 
Co-location pattern discovery is a newly developed trend in this 

direction. It aims to find classes of spatial objects that are 

frequently located together, e.g., restaurants and shopping malls 

are usually co-located [4][10][16].  

Zheng et al. [8] detected spatial outliers from a location dataset 

using a data mining algorithm. Here a spatial outlier means that 

the geo-position field of a location entity‟s record is different from 

its real-world position. Thus, people will be misguided by the 

inaccurate results returned by a local search engine like Bing local 

search. Chang et al [1] proposed a system that can find out the 

geographic regions sharing a similar distribution of POIs. 

These techniques mentioned above focus on clustering different 

location entities in terms of some similar properties. However, we 

aim to detect the same entities (in the real world) but having 

nearly duplicated presentations in different data sources.  

6. Conclusion 
In this paper, we propose an algorithm that detects nearly 

duplicated records in a (multiple) location dataset(s) using a 

machine-learning-based inference paradigm. In our approach, we 

identify name similarity, address and category similarities 

between two records as features, and define corresponding metrics 

that measure these similarities well. Using a small set of human 

labeled ground truths, we train a classification model, which can 

be later used for inferring large-scale datasets. We evaluated our 

approach on a real location dataset and test the stability and 

scalability of our method with different sizes of data. As a result, 

our approach clearly outperformed baseline methods by obtaining 

an overall inference accuracy of 0.875. Meanwhile, no matter 

what size of dataset we used, our approach achieved an accuracy 

of about 0.85. These results justify the stability and scalability of 

our approach in processing large-scale datasets. 
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