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Abstract—The quality of photographs is often reduced by sensor 
noise. This was a problem with film cameras, and is still a 
problem with current CCD and CMOS sensors, particularly in 
low-lighting conditions. De-noising techniques do not always 
perform satisfactorily. Typical de-noise techniques reduce the 
sharpness of the image. In this paper we propose a new de-noising 
technique, which is based on a dual-shot technique. The proposed 
algorithm is based on selectively removing high frequencies that 
do not correlate well between the frames. The algorithm borrows 
from video processing noise-removal techniques, but the final 
picture is derived from filtering a single shot, avoiding double-
contouring and other artifacts that may happen with video 
techniques. While the decision is made based on both frames, the 
filtering itself is done using exclusively one of the frames. For this 
reason, the second (auxiliary) shot may be of much lower quality. 

Keywords - CCD; noise reduction; sensor noise; low-light; de-
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I.  INTRODUCTION  
Most photographs are contaminated by noise. This was a 
problem with film cameras, and still is a problem with digital 
cameras. In fact, noise is essentially intrinsic to image capture 
devices, including CCD and CMOS sensors. While this noise 
may be negligible for high-contrast, well lit scenes, it may 
become significant for dark or low contrast scenes. Several 
techniques have been proposed for reducing sensor noise. A 
common approach is to low-pass the image, since typical CCD 
noise is uncorrelated from pixel to pixel. To limit the 
smoothing of the high frequency content of the image, a 
special filter is often used, preserving the high frequency at the 
edges, whenever one is detected. Examples of such techniques 
include directional filtering, and bi-lateral filter. Other 
techniques try to preserve the edges by using median or other 
non-linear techniques.  

A more recent approach tries to obtain information from 
multiple shots of the same scene, in order to improve the 
quality of the noise removal. In many respects, these 
techniques are similar to noise-removal or pre-processing 
techniques used in video, where pre-processing involves a 
temporal-filter, based on motion-compensated frames [1-3]. 
Nevertheless, areas that are not perfectly motion compensated 
will introduce artifacts (or “phantoms). This type of artifact 
may be fine for video, where a frame will be displayed for only 
a fraction of a second. Nevertheless it would be completely 
unacceptable for still images. In this paper, we propose a new 
filtering method, based on double shot of the same scene. With 
digital cameras, the actual cost of the double shot is low, and 

the double shot approach has been proposed before for 
different applications [5]. The proposed algorithm reduces the 
camera noise without removing legitimate texture, smoothing 
edges, or introducing double-contour artifacts.  

II. CAN WE DIFFERENTIATE BETWEEN SENSOR NOISE AND 
ACTUAL SIGNAL? 

How exactly can we remove the camera noise without 
affecting too much of the picture? We first note that camera 
noise, while spreading over the whole frequency range, is most 
important at higher frequencies, where it is expensive to 
encode, and often more intense than the high frequency 
contents of the desired signal itself. A simplistic solution 
would be therefore to low-pass the image. Nevertheless, doing 
so would also significantly reduce the sharpness of the image, 
ending up with a lower quality signal. To solve this problem, 
we propose using an auxiliary picture, which can be used as 
reference to check whether a certain detail comes from the 
actual scene or if it is mostly camera noise. By using an 
auxiliary picture of the same scene, these two sources of high-
frequency can be differentiated, even if they have the same 
spectrum. More specifically, the high frequency content of the 
image is going to be consistent across both shots, while the 
camera noise will be independent. If needed, small changes or 
camera motion can be handled by motion compensation. 

III. SPATIAL VS.TEMPORAL FILTERING 
By having access to multiple frames, the problem is reduced to 
almost the same problem as that of pre-processing video. As 
we mentioned in the previous section, most of the information 
to be removed consist of high frequencies. Therefore, one 
could try to attenuate the undesired high frequencies by simple 
spatial low-pass filtering. Nevertheless, only temporal filtering 
will attenuate camera noise while at same time preserving the 
high frequency contents of the actual image. For this reason, 
most pre-processing methods generally involve some sort of 
temporal filtering. The key disadvantage of these temporal 
filtering methods is the phantoms (double-contours) generated 
in the image, even when motion compensated filtering is used. 
Furthermore, to obtain enough noise attenuation, a large 
number of frames would be needed, which may not be 
practical. 

In [7], we propose a video pre-processing algorithm where 
– in essence – the decision about filtering or not comes from 
the temporal analysis, but the filtering itself is done in the 
spatial domain. We now extend that algorithm to the case of 
still images, based on a double-shot approach.  



IV. THE PROPOSED ALGORITHM 
The proposed method is based on the idea that sensor noise is 
not correlated between successive shots, and therefore cannot 
be predicted from one shot to the next. Nevertheless, different 
from the video case, where every frame is going to encoded, in 
the photograph case, only one of the shots is of interest. For 
this reason, is very likely that one of the shots may be a low-
quality one. For example, it may have a lower-power flash, or 
a lower exposure time. We therefore also re-match the picture 
for lighting and contrast compensation. After that, we compare 
the high frequency content of the main frame with the high 
frequency content of the motion compensation residual. High 
frequencies that are present in the image, but not in the motion 
compensated residual will represent content derived from the 
scene, and should therefore be preserved. All other high 
frequency should be attenuated, since it will correspond mostly 
to camera noise. Figure 1 presents a high level diagram of the 
proposed method. We first compensate the auxiliary picture to 
produce a frame with similar lighting to the main picture. 
Then, we produce a motion compensated (MC) frame, and a 
high pass version of both the original frame and the MC 
residual. High frequency “energy” content is compared 
between these two, and a ratio based on these two energy 
values determines how much to attenuate the high frequency 
contents of the original frame.  

More precisely, given a Picture P, we produce high pass 
version of the frame, Php, given by Php = P*hh, where hh is a 
high pass FIR filter. In our simulations we used a separable 5-
tap filter with a smooth transition around .3π, but other filter 
could be used, tuned to the amount of smoothness desired, or 
to computational constrains. This high pass frame is then 
squared and low pass filtered (we used a 7×7 tap separable 
linear filter). This produces an estimate of the amount of high 
frequency in each region of original frame, which we call EF.  

A motion compensated picture residual R is also 
produced. Depending on computational and other 
requirements, this motion compensation can be either a 
camera-motion only (i.e., one single motion vector for the 
whole image), or a full-fledged motion compensation, which 
would also compensate for subject motion. An estimate of the 
high frequency content in the MC residual ER is then produced 

by following the same steps used to produce EF. We now have 
an estimate of the high frequency content of the original 
picture (EF), and of the (motion compensated) frame 
difference. 

We then obtain an attenuation map by computing, for each 
pixel: 

max(0,min(1, 1.(ER/(ER+EF) - B1)))ATT G=  (1) 
 

where G1 is a gain factor and B1 a bias factor. To understand 
the theoretical values of G1 and B1, let us analyze two extreme 

 
Figure 1 – overall diagram of the proposed algorithm. 

Figure 2 – Main Picture Figure 3 – Processed Picture 



cases. First, suppose that all high frequencies are from the 
image. In this case, the MC residual will be zero (as long as 
the motion compensation works). Since all high frequency 
content is actually from the image, we do not want to attenuate 
any of it, and therefore the theoretical value for B1 is zero. A 
higher value may be used to preserve more of the high 
frequencies, since the MC tends to never exactly match, due to 
the motion vector precision, or other factors. Now, let’s 
examine the other extreme. If the desired image is completely 
flat, all high frequencies on both the original frame and on the 
MC residual will be due to camera noise. If we assume that the 
MC did not track this camera noise, the energy level in the MC 
should be around twice the energy level in the original frame. 
Therefore, setting G1=1.5 will yield ATT=1, and therefore 
remove all high frequencies from this region of the image, as 
we would expect. A higher value of G1 will increase noise 
attenuation, and may also be used to compensate the fact that 
the MC may track some of the camera noise. Or, a lower value 
may be used to be conservative and preserve more of the high 
frequencies. In our experiments, we have set to G1 = 1.5, and 
B1 = 0. 

The final frame is the obtained by subtracting the 
(attenuated) high frequency content Php from the original 
frame P, i.e.: 

 OP P ATT Php= − ⋅  (2) 
where OP is the output picture. 

Note that in the above explanation (and in Figures 3 to 7) 
we use only one high frequency band. This is not a constraint 
of the algorithm; in fact, we could use as many bands as we 
desire. In particular, one could use a wavelet or other 
decomposition, and produce an attenuation map for each 
subband.  

IV. RESULTS 

Figures 2-8 illustrate some of the results obtained by applying 
the algorithm. We run tests on two types of data. First, since 
these are easily available, we tested our algorithm on a video 
sequence. We then tested with data acquired by a digital still 
camera under low-lighting conditions. Let us first look at the 
video images. Figure 2 is the original frame 50 of the MPEG-4 
test sequence SEAN, while Figure 4 represents the high 
frequency content in that same frame. Figure 6 shows the 
attenuation map, which highlights regions where the high 
frequency content was not tracked by the motion 
compensation, and should therefore be attenuated. Note that all 
textured regions of the background (e.g. the plants and the 
textured columns) appear dark in the attenuation map, meaning 
they will have their detail information preserved. The same is 
true of regions that are well tracked by the MC, like the dark 
suit contour, or the tie. In contrast, flat regions of the 
background (where high frequencies are dominated by camera 
noise) will be low-passed, like the sofa or the wall. This 
attenuation of the undesired high frequencies can be observed 
by comparing Figures 4 and 5, which show the high frequency 
content of the original and output (processed) images, 
respectively.  Figures 3 show the final image. Figure 7 show a 
side-by-side comparison between the original and processed 
images, zoomed on the region around the sofa. Note the 
preservation of the texture and sharpness in textured regions 
(the column, the plants), but the absence of sensor noise in 
non-textured regions (e.g., the suit, the wall, and the sofa). 

Finally, Figure 8 shows a more important case: enhan-
cement on a picture taken at a low-lighting condition. The 
original picture is the one in the center. Note the accentuated 
sensor noise, typical of the low-light condition. The picture on 
the left is the result after independently processing each color. 
Finally, the picture on the left is provided for comparison. It is 
a wavelet-based de-noising, with a soft threshold [8].  

Figure 5 - High frequency content of processed image 

Figure 6 - Attenuation map (whiter = attenuate more) 

Figure 4 - High Frequency content of original picture 



V. CONCLUSIONS 

We have presented an algorithm for reducing camera (sensor) 
noise in image sensors. The algorithm can differentiate 
between camera noise, and the actual frequency content of the 
image. The algorithm does that by using an auxiliary picture, 
where the sensor noise is independent, but picture content is 
assumed to be the same. Artifacts were avoided by limiting the 
filtering to spatial domain, in contrast to other techniques that 
do median or some other type of time-domain filtering. The 
basic operation of the algorithm is simple, and should be able 
to be handled by the camera.  We tested the algorithm on 
frames obtained from video sequences, as well as frames 
obtained from a still camera. In the experiments with the 
camera, we set the camera for under-exposure, as would be the 
case in low-light conditions. We then used the algorithm 
independently on each color component. The reduction in the 
granularity is easily observed, and the results compare well to 
wavelet based soft thresholding, and to other techniques we 
have considered. 
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Figure 7 – Detail on Salesman: Processed (left) and Original (right)  

 
Figure 8 – A color picture on low-lighting. Original (center), Proposed (left) and wavelet de-noising (right). 

 


